Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR)

(to certify electronic delivery of the CCR, use the certification form on the State Water Board's website at $\underline{ http://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/CCR.shtml) }$

Water System Name: MUSCO FAMILY OLIVE CO

			correct and consistent with the compliance monitors are consistent with the compliance monitors are consistent with the compliance monitors.	oring data
Certified By:	Name	David K. Ormonde II	Op.#36945	
	Signature	Mam//la		
	Title		ional Safety Compliance Manager	
	Phone Number	(209) 229-7067	Date 05-09-2020	
	report delivery uso I fill-in where appro		s taken, please complete the form below by check	ing all items
	-		ery methods. Specify other direct delivery method	ds used:
Email	ed to "Tracy" gro	oup and posted at fac	cility entrance.	
				*
"Good method		used to reach non-bill p	aying customers. Those efforts included the follow	ving
	Posted the CCR on	the internet at http://_	· · ·	
	Mailed the CCR to	postal patrons within th	he service area (attach zip codes used)	
	Advertised the ava	ilability of the CCR in n	ews media (attach a copy of press release)	
			er of general circulation (attach a copy of the ewspaper and date published)	
	Posted the CCR in	public places (attach a	list of locations)	
		e copies of CCR to singles, businesses, and school	le bill addresses serving several persons, ols	
			ch a list of organizations)	
	Delivery to commu	nity organizations (atta		
	-	nity organizations (atta t of other methods used))	
For sys	Other (attach a list	t of other methods used	sted CCR on a publicly-accessible internet site	

2019 Consumer Confidence Report

Water System Name: MUSCO FAMILY OLIVE CO Report Date: April 2020

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2019.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: This info is not available, as this water system does not have a completed assessment on file. Please see the Drinking Water Source Assessment Information section located at the end of this report for more details.

Your water comes from 1 source(s): Well #1

Opportunities for public participation in decisions that affect drinking water quality: Water board or city/county council meetings are currently not regularly-scheduled. Open door policy at the Cannery allows anyone with any concerns or questions to address them directly to David Ormonde, either in person or by email.

For more information about this report, or any questions relating to your drinking water, please call 209-229-7067 and ask for David Ormonde or email DavidO@Olives.Com or visit our website at www.olives.com.

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

mg/L: milligrams per liter or parts per million (ppm)

ug/L: micrograms per liter or parts per billion (ppb)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- *Organic chemical contaminants*, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3 and 4 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER										
Lead and Copper (complete if lead or copper detected in last sample set)	Sample Date	90th percentile level detected	No. Sites Exceeding AL	AL	PHG	Typical Sources of Contaminant				
Copper (mg/L)	5 (2019)	0.08	0	1.3	.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives				

Table 2 - 1	DETECTION	OF CONTA	MINANTS W	TH A PRI	MARY DRIN	NKING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant
Arsenic (ug/L)	(2018)	10	9 - 11	10	0.004	Erosion of natural deposits; runoff from orchards, glass and electronics production wastes
Nitrate as N (mg/L)	(2019)	4	n/a	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Selenium (ug/L)	(2019)	47	n/a	50	30	Discharge from petroleum, glass, and metal refineries; erosion of natural deposits; discharge from mines and chemical manufacturers; runoff from livestock lots(feed additive)
Gross Alpha (pCi/L)	(2019)	18.4	14.1 - 21.6	15	(0)	Erosion of natural deposits.
Uranium (pCi/L)	(2019)	11	5.43 - 14.8	20	0.43	Erosion of natural deposits

Table 3 - DETECTION OF UNREGULATED CONTAMINANTS										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant					
Vanadium (mg/L)	(2017)	0.025	n/a	0.05	Vanadium exposures resulted in developmental and reproductive effects in rats.					

Ta	Table 4 - DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL (MRDL)	PHG (MCLG)	Violation	Typical Sources of Contaminant				
Chlorine (mg/L)	(2019)	0.00	n/a	4.0	4.0	No	Drinking water disinfectant added for treatment.				

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Musco Family Olive Co.* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION (VIOLATION OF A MCL,MRDL,AL,TT, OR MONITORING AND REPORTING REQUIREMENT										
Violation	Explanation	Duration	Actions Taken To Correct the Violation	Health Effects Language							
Arsenic				Some people who drink water containing arsenic in excess of the MCL over many years could experience skin damage or problems with their circulatory system, and may have an increased risk of getting cancer.							

About your Arsenic: The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

2019 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A Source Water Assessment has not been completed for WELL 01 of the MUSCO FAMILY OLIVE CO water system.

Well #1 - does not have a completed assessment on file.

Discussion of Vulnerability

Assessment summaries are not available for some sources. This is because:

- ☐ The Assessment has not been completed. Contact the local Department of Health Services (DHS) Drinking Water field office or the water system to find out when the Assessment is scheduled to be done.
- ☐ The source is not active. It may be out of service, or new and not yet in service.
- \square The Assessment was not submitted electronically. The site used to obtain Assessments only provides access to Assessment summaries submitted electronically.

Acquiring Information

For more info you may visit https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/DWSAP.html or contact the health department in the county to which the water system belongs as indicated on this following link: https://www.waterboards.ca.gov/drinking_water/programs/documents/ddwem/DDWdistrictofficesmap.pdf

Musco Family Olive Co. Analytical Results By FGL - 2019

LEAD AND COPPER RULE										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	90th Percentile	# Samples	
Copper		mg/L		1.3	.3			0.075	5	
CBSS	STK1950841-7	mg/L				2019-07-23	0.06			
CK	STK1950841-4	mg/L				2019-07-23	ND			
LSP	STK1950841-2	mg/L				2019-07-23	ND			
RBR	STK1950841-10	mg/L				2019-07-23	0.09			
WBR	STK1950841-8	mg/L				2019-07-23	0.05			

	PRIM	ARY DRI	NKING W	ATER STAN	DARDS ((PDWS)			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Arsenic		ug/L		10	0.004			10	9 - 11
Well #1	STK1853692-1	ug/L				2018-09-21	9		
Well #1	STK1851754-1	ug/L				2018-08-15	11		
Nitrate as N		mg/L		10	10			4.0	4.0 - 4.0
Well #1	STK1951646-1	mg/L				2019-08-08	4.0		
Selenium		ug/L	50	50	30			47	47 - 47
Well #1	STK1936545-1	ug/L				2019-05-09	47		
Well #1	STK1932594-1	ug/L				2019-02-21	47		
Gross Alpha		pCi/L		15	(0)			18.4	14.1 - 21.6
Well #1	STK1957633-1	pCi/L				2019-12-03	14.1		
Well #1	STK1953336-1	pCi/L				2019-09-06	21.6		
Well #1	STK1939336-1	pCi/L				2019-06-26	19.5		
Uranium		pCi/L		20	0.43			10.84	5.43 - 14.8
Well #1	STK1957633-1	pCi/L				2019-12-03	12.3		
Well #1	STK1953336-1	pCi/L				2019-09-06	5.43		
Well #1	STK1939336-1	pCi/L				2019-06-26	14.8		

UNREGULATED CONTAMINANTS									
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Vanadium		mg/L		NS	n/a			0.025	0.025 - 0.025
Well #1	STK1750422-1	mg/L				2017-08-16	0.025		

DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE									
	Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)	
Chlorine		mg/L		4.0	4.0			0.00	ND -
Wellhead	STK1932407-4	mg/L				2019-02-18	ND		
Average Wellhead								0	

Musco Family Olive Co. CCR Login Linkage - 2019

FGL Code	Lab ID	Date_Sampled	Method	Description	Property
CuPb-ss07	STK1950841-7	2019-07-23	Metals, Total	CBSS	Copper & Lead Monitoring (Cannery Break Room Sink)
CuPb-ss04	STK1950841-4	2019-07-23	Metals, Total	СК	Copper & Lead Monitoring (Cooperate Kitchen)
CuPb-ss02	STK1950841-2	2019-07-23	Metals, Total	LSP	Copper & Lead Monitoring (Lab Sink Processors)
Bacti-Rout-ss01	STK1930187-1	2019-01-04	Coliform	Office Kitchen Sink	Bacteriological Monitoring
	STK1931802-1	2019-02-06	Coliform	Office Kitchen Sink	Bacteriological Monitoring
	STK1932407-1	2019-02-18	Coliform	Office Kitchen Sink	Bacteriological Monitoring
	STK1933116-1	2019-03-06	Coliform	Office Kitchen Sink	Bacteriological Monitoring
	STK1934935-1	2019-04-10	Coliform	Office Kitchen Sink	Bacteriological Monitoring
	STK1936542-1	2019-05-09	Coliform	Office Kitchen Sink	Bacteriological Monitoring
	STK1938173-1	2019-06-07	Coliform	Office Kitchen Sink	Bacteriological Monitoring
	STK1939669-1	2019-07-05	Coliform	Office Kitchen Sink	Bacteriological Monitoring
	STK1951645-1	2019-08-08	Coliform	Office Kitchen Sink	Bacteriological Monitoring
	STK1953337-1	2019-09-06	Coliform	Office Kitchen Sink	Bacteriological Monitoring
	STK1954741-1	2019-10-02	Coliform	Office Kitchen Sink	Bacteriological Monitoring
	STK1956654-1	2019-11-08	Coliform	Office Kitchen Sink	Bacteriological Monitoring
	STK1957634-1	2019-12-03	Coliform	Office Kitchen Sink	Bacteriological Monitoring
Bacti-Rpt-ss01	STK1932407-2	2019-02-18	Coliform	Production Lab Sink	Bacteriological Monitoring
CuPb-ss10	STK1950841-10	2019-07-23	Metals, Total	RBR	Copper & Lead Monitoring (Receiving Bathroom)
Bacti-Rpt-ss02	STK1932407-3	2019-02-18	Coliform	Warehouse Break Room	Bacteriological Monitoring
CuPb-ss08	STK1950841-8	2019-07-23	Metals, Total	WBR	Copper & Lead Monitoring (Warehouse Breakroom)
WELL 01	STK1750422-1	2017-08-16	Metals, Total	Well #1	IOC/SOC/VOC Monitoring
	STK1851754-1	2018-08-15	Metals, Total	Well #1	IOC/SOC/VOC Monitoring
	STK1853692-1	2018-09-21	Metals, Total	Well #1	IOC/SOC/VOC Monitoring
	STK1932594-1	2019-02-21	Metals, Total	Well #1	IOC/SOC/VOC Monitoring
	STK1936545-1	2019-05-09	Metals, Total	Well #1	IOC/SOC/VOC Monitoring
	STK1939336-1	2019-06-26	Radio Chemistry	Well #1	Radio Monitoring
	STK1951646-1	2019-08-08	Wet Chemistry	Well #1	Water Monitoring
	STK1953336-1	2019-09-06	Radio Chemistry	Well #1	Radio Monitoring
	STK1957633-1	2019-12-03	Radio Chemistry	Well #1	Radio Monitoring
Bacti-Rpt-ss03	STK1932407-4	2019-02-18	Coliform	Wellhead	Bacteriological Monitoring
	STK1932407-4	2019-02-18	Field Test	Wellhead	Bacteriological Monitoring