2018 Consumer Confidence Report

Water System Name: MORADA PRODUCE

Report Date:

March 2019

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2018.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: This info is not available, please see the Drinking Water Source Assessment Information section located at the end of this report for more details.

Your water comes from 1 source(s): Well #2

Opportunities for public participation in decisions that affect drinking water quality: Notification of meetings are conducted by postings, email, radio and word of mouth.

For more information about this report, or any questions relating to your drinking water, please call (209) 838 - 7842 and ask for Quality Service, Inc..

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to

health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

mg/L: milligrams per liter or parts per million (ppm)

ug/L: micrograms per liter or parts per billion (ppb)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants,* such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants,* such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants,* that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3 and 4 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Tabl	e 1 - SAMPL	ING RESULTS S	SHOWING TH	E D	ETEC	CTION OF LEAD AND COPPER
Lead and Copper (complete if lead or copper detected in last sample set)	Sample Date	90th percentile level detected	No. Sites Exceeding AL	AL	PHG	Typical Sources of Contaminant
Lead (ug/L)	5 (2018)	15	1	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers, erosion of natural deposits
Copper (mg/L)	5 (2018)	0.14	0	1.3	.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

Table 2 - DETECT	ION OF CON	ITAMINAN	ITS WITH A	PRIMARY	<u>Y</u> DRINKIN	G WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant
Barium (mg/L)	(2016)	0.17	n/a	1	2	Discharge from oil drilling wastes and from metal refineries; erosion of natural deposits
Hexavalent Chromium (ug/L)	(2014)	5	n/a		0.02	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits.
Fluoride (mg/L)	(2015)	0.1	n/a	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.

Nitrate as N (mg/L)	(2018)	1.7	n/a	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Gross Alpha (pCi/L)	(2016)	2.98	n/a	15	(0)	Erosion of natural deposits.
1,2,3-Trichloropropane (1,2,3-TCP) (ug/L)	(2018)	0.529	0.022 - 0.8	0.005	0.0007	

	Table 3 - DETECTION OF UNREGULATED CONTAMINANTS										
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant						
Vanadium (mg/L)	(2016)	0.013	n/a	0.05	Vanadium exposures resulted in developmental and reproductive effects in rats.						

Table 4 - DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE										
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL (MRDL)	PHG (MCLG)	Violation	Typical Sources of Contaminant			
Chlorine (mg/L)	(2018)	0.00	n/a	4.0	4.0	No	Drinking water disinfectant added for treatment.			

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Morada Produce WS* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

About our Lead: Infants and children who drink water containing lead in excess of the action level may experience delays in their physical or mental development. Children may show slight deficits in attention span and learning abilities. Adults who drink this water over many years may develop kidney problems or high blood pressure.

For Systems with Lead (Pb) above 15 ppb (the regulatory AL) in more than 5%, and up to and including 10%, of sites sampled: Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home`s plumbing. If you are concerned about elevated lead levels in your home`s water, you may wish to have your water tested and flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the Safe Drinking Water Hotline (800-426-4791). Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home`s plumbing. If you are concerned about elevated lead levels at your home may be higher than at other homes in the community as a result of materials used in your home`s plumbing. If you are concerned about elevated lead levels in your home`s water, you may wish to have your water tested and flush your tap for 30 seconds to 2 minutes before using tap water tested and flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the Safe Drinking tap water. Additional information is available from the Safe Drinking tap water. Additional information is available from the Safe Drinking tap water. Additional information is available from the Safe Drinking tap water. Additional information is available from the Safe Drinking Water Hotline (800-426-4791).

About our 1,2,3-Trichloropropane (1,2,3-TCP): Some people who use water containing 1,2,3-trichloropropane in excess of the action level over many years may have an increased risk of getting cancer, based on studies in laboratory animals.

2018 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A Source Water Assessment has not been completed for the source WELL#2 of the MORADA PERODUCE WATER SYSTEM water system.

Well #2 - does not have a completed Source Water Assessment on file.

Discussion of Vulnerability

Assessment summaries are not available for some sources. This is because:

The Assessment has not been completed. Contact the local Department of Health Services (DHS) Drinking Water field office or the water system to find out when the Assessment is scheduled to be done.

□ The source is not active. It may be out of service, or new and not yet in service.

The Assessment was not submitted electronically. The site used to obtain Assessments only provides access to Assessment summaries submitted electronically.

Acquiring Information

For more info you may visit https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/DWSAP.html or contact the health department in the county to which the water system belongs as indicated on this following link: https://www.waterboards.ca.gov/drinking_water/programs/documents/ddwem/DDWdistrictofficesmap.pdf

Morada Produce WS Analytical Results By FGL - 2018

		LE	EAD AND	COPPER RU	LE				
		Units	MCLG	CA-MCL	PHG	Sampled	Result	90th Percentile	# Samples
Lead		ug/L	0	15	0.2			14.7	5
Bleach Room Sink	STK1838994-4	ug/L				2018-06-26	22.8		
Main Kitchen Office	STK1838994-2	ug/L				2018-06-26	ND		
Pack Shed East Hosebib	STK1838994-3	ug/L				2018-06-26	6.6		
Receiving Office Kitchen	STK1838994-1	ug/L				2018-06-26	ND		
Rest Room-Main Office	STK1838994-5	ug/L				2018-06-26	ND		
Copper		mg/L		1.3	.3			0.14	5
Bleach Room Sink	STK1838994-4	mg/L				2018-06-26	ND		
Main Kitchen Office	STK1838994-2	mg/L				2018-06-26	0.13		
Pack Shed East Hosebib	STK1838994-3	mg/L				2018-06-26	0.15		
Receiving Office Kitchen	STK1838994-1	mg/L				2018-06-26	ND		
Rest Room-Main Office	STK1838994-5	mg/L				2018-06-26	0.08		

	PRIM	ARY DRI	NKING W	ATER STAN	IDARDS ((PDWS)			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Barium		mg/L	2	1	2			0.17	0.17 - 0.17
Well #2	STK1637165-1	mg/L				2016-06-15	0.17		
Hexavalent Chromium		ug/L			0.02			5.0	5.0 - 5.0
Well #2	STK1452291-1	ug/L				2014-12-03	5.0		
Fluoride		mg/L		2	1			0.1	0.1 - 0.1
Well #2	STK1536378-1	mg/L				2015-06-16	0.1		
Nitrate as N		mg/L		10	10			1.7	1.7 - 1.7
Well #2	STK1838993-1	mg/L				2018-06-27	1.7		
Gross Alpha	•	pCi/L		15	(0)			2.98	2.98 - 2.98
Well #2	STK1632518-1	pCi/L				2016-03-08	2.98		
1,2,3-Trichloropropane (1,2,3-	ТСР)	ug/L		0.005	0.0007			0.529	0.022 - 0.8
Well #2	STK1857957-1	ug/L				2018-12-18	0.8		
Well #2	STK1853203-1	ug/L				2018-09-13	0.49		
Well #2	STK1838315-1	ug/L				2018-06-14	0.44		
Well #2	STK1834052-2	ug/L				2018-03-30	0.022		
Well #2	STK1834052-1	ug/L				2018-03-30	0.8		
Well #2	STK1832879-1	ug/L				2018-03-07	0.62		

UNREGULATED CONTAMINANTS									
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Vanadium		mg/L		NS	n/a			0.013	0.013 - 0.013
Well #2	STK1637165-1	mg/L				2016-06-15	0.013		

DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE									
	Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)	
Chlorine		mg/L		4.0	4.0			0.00	ND -
Well #2	STK1837077-4	mg/L				2018-05-23	ND		
Average Well #2								0	

Morada Produce WS CCR Login Linkage - 2018

FGL Code	Lab ID	Date_Sampled	Method	Description	Property
Bleach Room Sin	STK1838994-4	2018-06-26	Metals, Total	Bleach Room Sink	Copper & Lead Monitoring
E/S OfficeTrail	STK1837077-2	2018-05-23	Coliform	E/S Office Trailer HB	Bacteriological Monitoring
InsideCherryShe	STK1837077-3	2018-05-23	Coliform	Inside Cherry Shed HB	Bacteriological Monitoring
Main Kitchen Of	STK1838994-2	2018-06-26	Metals, Total	Main Kitchen Office	Copper & Lead Monitoring
NE Corner	STK1832851-1	2018-03-07	Coliform	NE Corner of New Bldg.	Bacteriological Monitoring
	STK1834522-1	2018-04-10	Coliform	NE Corner of New Bldg.	Bacteriological Monitoring
	STK1836291-1	2018-05-15	Coliform	NE Corner of New Bldg.	Bacteriological Monitoring
	STK1837077-1	2018-05-23	Coliform	NE Corner of New Bldg.	Bacteriological Monitoring
	STK1838317-1	2018-06-14	Coliform	NE Corner of New Bldg.	Bacteriological Monitoring
	STK1839697-1	2018-07-11	Coliform	NE Corner of New Bldg.	Bacteriological Monitoring
	STK1852000-1	2018-08-20	Coliform	NE Corner of New Bldg.	Bacteriological Monitoring
	STK1853202-1	2018-09-13	Coliform	NE Corner of New Bldg.	Bacteriological Monitoring
	STK1855067-1	2018-10-16	Coliform	NE Corner of New Bldg.	Bacteriological Monitoring
Pack Shed East	STK1838994-3	2018-06-26	Metals, Total	Pack Shed East Hosebib	Copper & Lead Monitoring
Receiving Offic	STK1838994-1	2018-06-26	Metals, Total	Receiving Office Kitchen	Copper & Lead Monitoring
Rest Room	STK1838994-5	2018-06-26	Metals, Total	Rest Room-Main Office	Copper & Lead Monitoring
Well #2	STK1452291-1	2014-12-03	Wet Chemistry	Well #2	Chrome 6 Monitoring
	STK1536378-1	2015-06-16	Wet Chemistry	Well #2	MORADA PRODUCE
	STK1632518-1	2016-03-08	Radio Chemistry	Well #2	Radio Monitoring
	STK1637165-1	2016-06-15	Metals, Total	Well #2	Water Quality Monitoring
	STK1832879-1	2018-03-07	SRL 524M-TCP	Well #2	TCP Monitoring
	STK1834052-1	2018-03-30	SRL 524M-TCP	Well #2	TCP Monitoring
	STK1834052-2	2018-03-30	SRL 524M-TCP	Well #2	TCP Monitoring
	STK1837077-4	2018-05-23	Field Test	Well #2	MORADA PRODUCE
	STK1838315-1	2018-06-14	SRL 524M-TCP	Well #2	TCP Monitoring
	STK1838993-1	2018-06-27	Wet Chemistry	Well #2	NO3_N Monitoring
	STK1853203-1	2018-09-13	SRL 524M-TCP	Well #2	TCP Monitoring
	STK1857957-1	2018-12-18	SRL 524M-TCP	Well #2	TCP Monitoring