Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR)

(to certify electronic delivery of the CCR, use the certification form on the State Water Board's website at http://www.swrcb.ca.gov/drinking_water/certlic/drinkingwater/CCR.shtml)

Wate	r Syste	em Name: SMSBRIN	IERS INC							
Wate	r Syste	em Number: 3901318								
The w	ater sy		by certifies that its Consumer Confiden	ce Report was distributed on bility have been given). Further, the system						
certif	ies tha			nt with the compliance monitoring data						
			er Resources Control Board, Division o	1 5						
		~		1						
Cert	ified By	y: Name:	Majoh Bhuninec	ldy .						
		Signature:	Marty.							
		Title:	Es QA Manager							
		Phone Number:	(209) 390-0820	Date: 06/30/2021						
		nd fill-in where appropria								
X			r other direct delivery methods. Specif	y other direct delivery methods used: 1 Site. Alugy & wark available the website.						
	to (desertal author via	the CA shinking water wat	the website						
	"Good meth		to reach non-bill paying customers. Th	ose efforts included the following						
	X	Posted the CCR on the i	nternet at http://www.ww.	vaterboards. Ca. gov.						
		Mailed the CCR to posta	al patrons within the service area (atta	ch zip codes used)						
		Advertised the availabil	ity of the CCR in news media (attach a	copy of press release)						
	Publication of the CCR in a local newspaper of general circulation (attach a copy of the published notice, including name of the newspaper and date published)									
	X	Posted the CCR in publi	c places (attach a list of locations)	e above						
		Delivery of multiple copies of CCR to single bill addresses serving several persons, such as apartments, businesses, and schools								
		Delivery to community	organizations (attach a list of organizat	cions)						
		Other (attach a list of ot	ther methods used)	17						
	For sy	ystems serving at least 10	0,000 persons: Posted CCR on a public	cly-accessible internet site						
	at the	e following address: http://	/							
	For in	nvestor-owned utilities: De	elivered the CCR to the California Publ	ic Utilities Commission						

2020 Consumer Confidence Report

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2020.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: According to SWRCB records, WELL B is Groundwater. This Assessment was done using the Default Groundwater System Method. This info is not available for WELL D or WELL E, as they do not have a completed assessment on file. Please see the Drinking Water Source Assessment Information section located at the end of this report for more details.

Your water comes from 3 source(s): Well B, Well D and Well E and from 2 treated location(s): Inplant Relish Water and Lab Sink

Opportunities for public participation in decisions that affect drinking water quality: Regularly-scheduled water board or city/county council meetings currently are not held.

For more information about this report, or any questions relating to your drinking water, please call (209)941-8515 and ask for Robert Chelli, General Manager or visit our website at www.sdwis.waterboards.ca.gov.

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

mg/L: milligrams per liter or parts per million (ppm)

ug/L: micrograms per liter or parts per billion (ppb)

ppt: parts per trillion or nanograms per liter (ng/L)

NTU: Nephelometric Turbidity Units

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5 and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Tabl	Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER										
Lead and Copper (complete if lead or copper detected in last sample set)	Sample Date	No. of Samples	90th percentile level detected	No. Sites Exceeding AL	AL	PHG	Typical Sources of Contaminant				
Copper (mg/L)	(2018)	5	0.04	0	1.3	.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives				

Table 2 - DETEC	Table 2 - DETECTION OF CONTAMINANTS WITH A <u>PRIMARY</u> DRINKING WATER STANDARD									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant				
Aluminum (mg/L)	(2018)	ND	ND - 0.05	1	0.6	Erosion of natural deposits; residue from some surface water treatment processes				
Arsenic (ug/L)	(2018)	3	2 - 4	10	0.004	Erosion of natural deposits; runoff from orchards, glass and electronics production wastes				
Barium (mg/L)	(2018)	0.12	0.10 - 0.16	1	2	Discharge from oil drilling wastes and from metal refineries; erosion of natural deposits				
Chromium (ug/L)	(2018)	ND	ND - 13	50.0	n/a	Discharge from steel and pulp mills and chrome plating; erosion of natural deposits				
Fluoride (mg/L)	(2018)	0.1	0.1 - 0.2	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.				

Hexavalent Chromium (ug/L)	(2014)	4.6	4.3 - 4.8		0.02	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits.
Nitrate as N (mg/L)	(2020)	3.9	3.5 - 4.1	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Dibromochloropropane (DBCP) (ppt)	(2018 - 2020)	13	ND - 30	200	1.7	Banned nematocide that may still be present in soils due to runoff/leaching from former use on soybeans, cotton, vineyards, tomatoes, and tree fruit
1,2,3-Trichloropropane (1,2,3-TCP) (ug/L)	(2018)	ND	ND - 0.005	0.005	0.0007	Discharge from industrial and agricultural chemical factories; leaching from hazardous waste sites; used as cleaning and maintenance solvent, paint and varnish remover, and cleaning and degreasing agent; byproduct during the production of other compounds and pesticides.

Table 3 - TREA	Table 3 - TREATED DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant					
Aluminum (mg/L)	(2018)	ND	n/a	1	0.6	Erosion of natural deposits; residue from some surface water treatment processes					
Nitrate as N (mg/L)	(2020)	3.9	n/a	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits					

Table 4 - TREA	Table 4 - TREATED DETECTION OF CONTAMINANTS WITH A <u>SECONDARY</u> DRINKING WATER STANDARD										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant					
Turbidity (NTU)	(2020)	0.2	n/a	5	n/a	Soil runoff					

	Table 5 - DETECTION OF UNREGULATED CONTAMINANTS											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant							
Vanadium (ug/L)	(2018)	20	15 - 24	50	Vanadium exposures resulted in developmental and reproductive effects in rats.							

Table	Table 6 - DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL (MRDL)	PHG (MCLG)	Violation	Typical Sources of Contaminant					
Total Trihalomethanes (TTHMs) (ug/L)	(2020)	1	ND - 2	80	n/a		By-product of drinking water disinfection					
Chlorine (mg/L)	(2020)	0.00	n/a	4.0	4.0	No	Drinking water disinfectant added for treatment.					
Haloacetic Acids (five) (ug/L)	(2020)	1	ND - 2	60	n/a		By-product of drinking water disinfection					

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *S M S Briners Inc.* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION C	VIOLATION OF A MCL,MRDL,AL,TT, OR MONITORING AND REPORTING REQUIREMENT										
Violation	Explanation	Duration	Actions Taken To Correct the Violation	Health Effects Language							
1,2,3-Trichloropropane (1,2,3-TCP)				Some people who use water containing 1,2,3-trichloropropane in excess of the action level over many years may have an increased risk of getting cancer, based on studies in laboratory animals.							

2020 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A source water assessment was conducted for the WELL B of the SMS BRINERS INC water system in April, 2002. A source water assessment has not been completed for the WELL D and WELL E of the SMS BRINERS INC water system.

- $Well \ B \ is \ considered \ most \ vulnerable \ to \ the \ following \ activities \ not \ associated \ with \ any \ detected \ contaminants: \\ Injection \ wells/dry \ wells/sumps$
- Well D does not have a completed Source Water Assessment on file.
- Well E does not have a completed Source Water Assessment on file.

Discussion of Vulnerability

Assessment summaries are not available for some sources. This is because:

☐ The Assessment has not been completed. Contact the local DDW district office or the water system to find out when the Assessment is scheduled to be done.

☐ The source is not active. It may be out of service, or new and not yet in service.

☐ The Assessment was not submitted electronically. The site used to obtain Assessments only provides access to Assessment summaries submitted electronically.

Acquiring Information

A copy of the complete assessment may be viewed at: San Joaquin County Environmental Health Department 1868 E Hazelton Ave Stockton, CA 95202

You may request a summary of the assessment be sent to you by contacting: Small Public Water Systems SJ Co Environmental Health Department (209) 468-3420

For more info you may visit https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/DWSAP.html or contact the health department in the county to which the water system belongs as indicated on this following link: https://www.waterboards.ca.gov/drinking_water/programs/documents/ddwem/DDWdistrictofficesmap.pdf

S M S Briners Inc.

Analytical Results By FGL - 2020

	LEAD AND COPPER RULE										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	90th Percentile	# Samples		
Copper	Copper			1.3	.3			0.04	5		
CuPb-Breakroom Sink (Kruger)	STK1852849-4	mg/L				2018-09-05	0.08				
CuPb-Lab Sink (Kruger)	STK1852849-5	mg/L				2018-09-06	ND				
CuPb-OldOffice KtchnSink (SMS)	STK1852849-1	mg/L				2018-09-05	ND				
CuPb-OldOffice Men RR (SMS)	STK1852849-2	mg/L				2018-09-05	ND				
CuPb-OldOffice Women RR (SMS)	STK1852849-3	mg/L				2018-09-05	ND				

	PRIM	ARY DRI	NKING W	ATER STAN	NDARDS ((PDWS)			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Aluminum		mg/L		1	0.6			ND	ND - 0.05
Well B	STK1855199-1	mg/L				2018-10-19	0.05		
Well B	STK1855199-1	mg/L				2018-10-19	0.05		
Well D	STK1838318-2	mg/L				2018-06-14	ND		
Well D	STK1830504-1	mg/L				2018-01-10	ND		
Well E	STK1838318-3	mg/L				2018-06-14	ND		
Well E	STK1830504-2	mg/L				2018-01-10	ND		
Arsenic	•	ug/L		10	0.004			3	2 - 4
Well B	STK1855199-1	ug/L				2018-10-19	2		
Well D	STK1830504-1	ug/L				2018-01-10	4		
Well E	STK1830504-2	ug/L				2018-01-10	4		
Barium		mg/L	2	1	2			0.12	0.10 - 0.16
Well B	STK1855199-1	mg/L				2018-10-19	0.10		
Well D	STK1830504-1	mg/L				2018-01-10	0.10		
Well E	STK1830504-2	mg/L				2018-01-10	0.16		
Chromium		ug/L	100	50.0	n/a			ND	ND - 13
Well B	STK1855199-1	ug/L			,	2018-10-19	ND		
Well D	STK1830504-1	ug/L				2018-01-10	13		
Well E	STK1830504-2	ug/L				2018-01-10	11		
Fluoride		mg/L		2	1			0.1	0.1 - 0.2
Well B	STK1855199-1	mg/L		_		2018-10-19	0.2		
Well D	STK1830504-1	mg/L				2018-01-10	0.1		
Well E	STK1830504-2	mg/L				2018-01-10	0.1		
Hexavalent Chromium	011110000012	ug/L			0.02	2010 01 10	0.1	4.6	4.3 - 4.8
Well B	STK1452934-1	ug/L			0.02	2014-12-23	4.8	1.0	1.0 1.0
Well D	STK1452934-2	ug/L				2014-12-23	4.3		
Well E	STK1452934-3	ug/L				2014-12-23	4.7		
Nitrate as N	01111020010	mg/L		10	10	2011 12 20	1.,	3.9	3.5 - 4.1
Well B	STK2033694-1	mg/L		10	10	2020-03-18	3.5	5.5	5.5 1.1
Well D	STK20331164-1	mg/L				2020-01-22	4.0		
Well E	STK2031164-2	mg/L				2020-01-22	4.1		
Dibromochloropropane (DBCF		ppt		200	1.7	2020-01-22	7.1	13	ND - 30
Well B	STK2054107-1	ppt		200	1./	2020-10-06	10	10	110 - 30
Well D	STK1830504-1	ppt				2018-01-10	ND		
Well E	STK1830504-1	ppt				2018-01-10	30		
1,2,3-Trichloropropane (1,2,3-		ug/L		0.005	0.0007	2010 01-10	30	ND	ND - 0.005
Well B	STK1857658-1	ug/L		0.003	0.0007	2018-12-11	ND	1410	140 - 0.003
Well B	STK1853015-1	ug/L				2018-09-11	ND		
Well B	STK1838319-1	ug/L				2018-09-11	ND ND		1
Well B	STK1838319-1 STK1833415-1	ug/L ug/L				2018-03-20	0.005		
Well D	STK1857658-2	ug/L ug/L				2018-03-20	0.005 ND		
Well D	STK1853015-2					2018-09-11	ND ND		
Men D	31K1033U13-2	ug/L				2010-09-11	מא		1

Well D	STK1838319-2	ug/L		2018-06-14	ND	
Well D	STK1833415-2	ug/L		2018-03-20	ND	
Well E	STK1857658-3	ug/L		2018-12-11	ND	
Well E	STK1853015-3	ug/L		2018-09-11	ND	
Well E	STK1838319-3	ug/L		2018-06-14	ND	
Well E	STK1833415-3	ug/L		2018-03-20	ND	·

TREATED PRIMARY DRINKING WATER STANDARDS (PDWS)											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Aluminum		mg/L		1	0.6			ND	ND - ND		
Inplant Relish Water	STK1838318-1	mg/L				2018-06-14	ND				
Nitrate as N		mg/L		10	10			3.9	3.91 - 3.91		
Lab Sink	STK2033646-2	mg/L				2020-03-18	3.91				

TREATED SECONDARY DRINKING WATER STANDARDS (SDWS)										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)	
Turbidity		NTU		5	n/a			0.2	0.2 - 0.2	
Lab Sink	STK2035006-1	NTU				2020-04-15	0.2			

UNREGULATED CONTAMINANTS											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Vanadium		ug/L		NS	n/a			20	15 - 24		
Well B	STK1855199-1	ug/L				2018-10-19	20				
Well D	STK1830504-1	ug/L				2018-01-10	24				
Well E	STK1830504-2	ug/L				2018-01-10	15				

	DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Total Trihalomethanes (TTHN	(Is)	ug/L		80	n/a			1	ND - 2		
H.B. on N.Face of Plant,E.Side	STK2051210-1	ug/L				2020-08-10	2				
H.B. on N.Face of Plant,E.Side	STK2036930-1	ug/L				2020-05-21	ND				
H.B. on N.Face of Plant,E.Side	STK2032040-1	ug/L				2020-02-11	1				
Average H.B. on N.Face of Plant,E.Side								1			
Chlorine		mg/L		4.0	4.0			0.00	ND -		
Well D	STK2057029-1	mg/L				2020-12-09	ND				
Well D	STK2055927-1	mg/L				2020-11-12	ND				
Well D	STK2054106-1	mg/L				2020-10-06	ND				
Well D	STK2053012-1	mg/L				2020-09-14	ND				
Well D	STK2051209-1	mg/L				2020-08-10	ND				
Well D	STK2039588-1	mg/L				2020-07-20	ND				
Well D	STK2037930-1	mg/L				2020-06-09	ND				
Well D	STK2036929-1	mg/L				2020-05-21	ND				
Well D	STK2035284-1	mg/L				2020-04-21	ND				
Well D	STK2033692-1	mg/L				2020-03-18	ND				
Well D	STK2032038-1	mg/L				2020-02-11	ND				
Well D	STK2031163-1	mg/L				2020-01-22	ND				
Average Well D								0			
Well E	STK2057029-2	mg/L				2020-12-09	ND				
Well E	STK2055927-2	mg/L				2020-11-12	ND				
Well E	STK2054106-2	mg/L				2020-10-06	ND				
Well E	STK2053012-2	mg/L				2020-09-14	ND				
Well E	STK2051209-2	mg/L				2020-08-10	ND				
Well E	STK2039588-2	mg/L				2020-07-20	ND				
Well E	STK2037930-2	mg/L				2020-06-09	ND				
Well E	STK2036929-2	mg/L				2020-05-21	ND				

Well E	STK2035284-2	mg/L			2020-04-21	ND		
Well E	STK2033692-2	mg/L			2020-03-18	ND		
Well E	STK2032038-2	mg/L			2020-02-11	ND		
Well E	STK2031163-2	mg/L			2020-01-22	ND		
Average Well E							0	
Haloacetic Acids (five)		ug/L	60	n/a			1	ND - 2
H.B. on N.Face of Plant,E.Side	STK2051210-1	ug/L			2020-08-10	ND		
H.B. on N.Face of Plant,E.Side	STK2036930-1	ug/L			2020-05-21	2		
H.B. on N.Face of Plant,E.Side	STK2032040-1	ug/L			2020-02-11	1		
Average H.B. on N.Face of Plant,E.Side			-				1	

S M S Briners Inc.

CCR Login Linkage - 2020

FGL Code	Lab ID	Date Sampled	Method	Description	Property
CuPb-ss04	STK1852849-4	2018-09-05	Metals, Total	CuPb-Breakroom Sink (Kruger)	Copper & Lead Monitoring
CuPb-ss05	STK1852849-5	2018-09-06	Metals, Total	CuPb-Lab Sink (Kruger)	Copper & Lead Monitoring
CuPb-ss01	STK1852849-1	2018-09-05	Metals, Total	CuPb-OldOffice KtchnSink (SMS)	Copper & Lead Monitoring
CuPb-ss02	STK1852849-2	2018-09-05	Metals, Total	CuPb-OldOffice Men RR (SMS)	Copper & Lead Monitoring
CuPb-ss03	STK1852849-3	2018-09-05	Metals, Total	CuPb-OldOffice Women RR (SMS)	Copper & Lead Monitoring
HB N.Face of Pl	STK2032040-1	2020-02-11	EPA 551.1	H.B. on N.Face of Plant,E.Side	DBP Monitoring
	STK2032040-1	2020-02-11	EPA 552.2	H.B. on N.Face of Plant,E.Side	DBP Monitoring
	STK2036930-1	2020-05-21	EPA 551.1	H.B. on N.Face of Plant,E.Side	DBP Monitoring
	STK2036930-1	2020-05-21	EPA 552.2	H.B. on N.Face of Plant,E.Side	DBP Monitoring
	STK2051210-1	2020-08-10	EPA 552.2	H.B. on N.Face of Plant,E.Side	DBP Monitoring
	STK2051210-1	2020-08-10	EPA 551.1	H.B. on N.Face of Plant,E.Side	DBP Monitoring
Inplant Relish	STK1838318-1	2018-06-14	Metals, Total	Inplant Relish Water	S M S BRINERS INC
Bacti-Sub-ss01	STK1833541-1	2018-03-20		Inside Plant	Giardia & Cryptosporidium Monitoring
Bacti-Rout-Even	STK2032039-1	2020-02-11	Coliform	Kruger Office-E. Side - HB	Bacteriological Sampling-Even
	STK2035285-1	2020-04-21	Coliform	Kruger Office-E. Side - HB	Bacteriological Sampling-Even
	STK2037931-1	2020-06-09	Coliform	Kruger Office-E. Side - HB	Bacteriological Sampling-Even
	STK2051211-1	2020-08-10	Coliform	Kruger Office-E. Side - HB	Bacteriological Sampling-Even
	STK2054109-1	2020-10-06	Coliform	Kruger Office-E. Side - HB	Bacteriological Sampling-Even
	STK2057030-1	2020-12-09	Coliform	Kruger Office-E. Side - HB	Bacteriological Sampling-Even
Lab Sink	STK2033646-1	2020-03-18	Coliform	Lab Sink	Plant Audit Requirements
	STK2033646-2	2020-03-18	Wet Chemistry	Lab Sink	Plant Audit Requirements
	STK2033646-2	2020-03-18	Coliform	Lab Sink	Plant Audit Requirements
	STK2035006-1	2020-04-15	Wet Chemistry	Lab Sink	Plant Audit Requirements
Bacti-Rout-Odd	STK2031165-1	2020-01-22	Coliform	SMS Briners Office -Sample Tap	Bacteriological Sampling-Odd
	STK2033695-1	2020-03-18	Coliform	SMS Briners Office -Sample Tap	Bacteriological Sampling-Odd
	STK2036931-1	2020-05-21	Coliform	SMS Briners Office -Sample Tap	Bacteriological Sampling-Odd
	STK2050109-1	2020-07-20	Coliform	SMS Briners Office -Sample Tap	Bacteriological Sampling-Odd
	STK2053011-1	2020-09-14	Coliform	SMS Briners Office -Sample Tap	Bacteriological Sampling-Odd
	STK2055928-1	2020-11-12	Coliform	SMS Briners Office -Sample Tap	Bacteriological Sampling-Odd
Well B	STK1452934-1	2014-12-23	Wet Chemistry	Well B	Chrome 6 Monitoring
WELL B-002	STK1833415-1	2018-03-20	SRL 524M-TCP	Well B	TCP Monitoring
	STK1838319-1	2018-06-14	SRL 524M-TCP	Well B	TCP Monitoring
	STK1853015-1	2018-09-11	SRL 524M-TCP	Well B	TCP Monitoring
	STK1855199-1	2018-10-19	Metals, Total	Well B	Well B - 3 & 6 Year
	STK1855199-1	2018-10-19	Wet Chemistry	Well B	Well B - 3 & 6 Year
	STK1857658-1	2018-12-11	SRL 524M-TCP	Well B	TCP Monitoring
	STK2033694-1	2020-03-18	Wet Chemistry	Well B	Well B - Annual Nitrates
	STK2054107-1	2020-10-06	EPA 504.1	Well B	Well B - 3 & 6 Year
Well D	STK1452934-2	2014-12-23	Wet Chemistry	Well D	Chrome 6 Monitoring
WELL D-010	STK1830504-1	2018-01-10	EPA 504.1	Well D	Well D & E Monitoring
	STK1830504-1	2018-01-10	Wet Chemistry	Well D	Well D & E Monitoring
	STK1830504-1	2018-01-10	Metals, Total	Well D	Well D & E Monitoring
	STK1833415-2	2018-03-20	SRL 524M-TCP	Well D	TCP Monitoring
	STK1838319-2	2018-06-14	SRL 524M-TCP	Well D	TCP Monitoring
	STK1838318-2	2018-06-14	Metals, Total	Well D	S M S BRINERS INC
	STK1853015-2	2018-09-11	SRL 524M-TCP	Well D	TCP Monitoring
	STK1857658-2	2018-12-11	SRL 524M-TCP	Well D	TCP Monitoring
	STK2031163-1	2020-01-22	Field Test	Well D	Wells D & E - Raw Water Bacti
	STK2031164-1	2020-01-22	Wet Chemistry	Well D	Well D & E-Nitrate Monitoring
	STK2032038-1	2020-02-11	Field Test	Well D	Wells D & E - Raw Water Bacti
	STK2033692-1	2020-03-18	Field Test	Well D	Wells D & E - Raw Water Bacti
	STK2035284-1	2020-04-21	Field Test	Well D	Wells D & E - Raw Water Bacti
	STK2036929-1	2020-05-21	Field Test	Well D	Wells D & E - Raw Water Bacti
	STK2037930-1	2020-06-09	Field Test	Well D	Wells D & E - Raw Water Bacti
	STK2039588-1	2020-07-20	Field Test	Well D	Wells D & E - Raw Water Bacti

	STK2051209-1	2020-08-10	Field Test	Well D	Wells D & E - Raw Water Bacti
	STK2053012-1	2020-09-14	Field Test	Well D	Wells D & E - Raw Water Bacti
	STK2054106-1	2020-10-06	Field Test	Well D	Wells D & E - Raw Water Bacti
	STK2055927-1	2020-11-12	Field Test	Well D	Wells D & E - Raw Water Bacti
	STK2057029-1	2020-12-09	Field Test	Well D	Wells D & E - Raw Water Bacti
Well E	STK1452934-3	2014-12-23	Wet Chemistry	Well E	Chrome 6 Monitoring
WELL E-011	STK1830504-2	2018-01-10	EPA 504.1	Well E	Well D & E Monitoring
	STK1830504-2	2018-01-10	Wet Chemistry	Well E	Well D & E Monitoring
	STK1830504-2	2018-01-10	Metals, Total	Well E	Well D & E Monitoring
	STK1833415-3	2018-03-20	SRL 524M-TCP	Well E	TCP Monitoring
	STK1838319-3	2018-06-14	SRL 524M-TCP	Well E	TCP Monitoring
	STK1838318-3	2018-06-14	Metals, Total	Well E	S M S BRINERS INC
	STK1853015-3	2018-09-11	SRL 524M-TCP	Well E	TCP Monitoring
	STK1857658-3	2018-12-11	SRL 524M-TCP	Well E	TCP Monitoring
	STK2031164-2	2020-01-22	Wet Chemistry	Well E	Well D & E-Nitrate Monitoring
	STK2031163-2	2020-01-22	Field Test	Well E	Wells D & E - Raw Water Bacti
	STK2032038-2	2020-02-11	Field Test	Well E	Wells D & E - Raw Water Bacti
	STK2033692-2	2020-03-18	Field Test	Well E	Wells D & E - Raw Water Bacti
	STK2035284-2	2020-04-21	Field Test	Well E	Wells D & E - Raw Water Bacti
	STK2036929-2	2020-05-21	Field Test	Well E	Wells D & E - Raw Water Bacti
	STK2037930-2	2020-06-09	Field Test	Well E	Wells D & E - Raw Water Bacti
	STK2039588-2	2020-07-20	Field Test	Well E	Wells D & E - Raw Water Bacti
	STK2051209-2	2020-08-10	Field Test	Well E	Wells D & E - Raw Water Bacti
	STK2053012-2	2020-09-14	Field Test	Well E	Wells D & E - Raw Water Bacti
	STK2054106-2	2020-10-06	Field Test	Well E	Wells D & E - Raw Water Bacti
	STK2055927-2	2020-11-12	Field Test	Well E	Wells D & E - Raw Water Bacti
	STK2057029-2	2020-12-09	Field Test	Well E	Wells D & E - Raw Water Bacti