Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR)

(to certify electronic delivery of the CCR, use the certification form on the State Water Board's website at http://www.swrcb.ca.gov/drinking_water/certific/drinkingwater/CCR.shtml)

Water System Name:	LODI USD-TURNER ACADEMY
Water System Number:	CA3901032

The water system named above hereby certifies that its Consumer Confidence Report was distributed on 4/21/22

4/21/22 (date) to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the State Water Resources Control Board, Division of Drinking Water.

Certified By:	Name:	Joe Patty		
	Signature:	JAC .		-
	Title:	Mechanical Supervisor		
	Phone Number:	(209-) 712-6363	Date: 4/21/22	

To summarize report delivery used and good-faith efforts taken, please complete the form below by checking all items that apply and fill-in where appropriate:

CCR was distributed by mail or other direct delivery methods. Specify other direct delivery methods used:

	Posted the CCR on the internet at http://
	Mailed the CCR to postal patrons within the service area (attach zip codes used)
	Advertised the availability of the CCR in news media (attach a copy of press release)
	Publication of the CCR in a local newspaper of general circulation (attach a copy of the published notice, including name of the newspaper and date published)
X	Posted the CCR in public places (attach a list of locations)
	Delivery of multiple copies of CCR to single bill addresses serving several persons, such as apartments, businesses, and schools
	Delivery to community organizations (attach a list of organizations)
	Other (attach a list of other methods used)
For s	ystems serving at least 100,000 persons: Posted CCR on a publicly-accessible internet site
at the	following address: http://
For in	westor-owned utilities: Delivered the CCR to the California Public Utilities Commission
	(This form is provided as a convenience and may be used to meet the certification requirement of section 64483(c). California Code of Regulations)

2021 Consumer Confidence Report

Water System Name: LODI USD-TURNER ACADEMY

Report Date:

April 2022

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2021.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: Ground water is sourced from the unadjudicated Eastern San Joaquin Valley Sub basin (NO. 5-022.01). Well No. 3901085-001 is located on the North side of parcel APN#: 085-17-020.

Your water comes from 1 source(s): TS-Well #2 and from 1 treated location(s): TS-Arsenic Treatment Plant

Opportunities for public participation in decisions that affect drinking water quality: Please call Maintenance & Operations if you have questions regarding the water.

For more information about this report, or any questions relating to your drinking water, please call (209) 331-7181 and ask for LodiUSD M&O or visit our website at <u>www.lodiusd.net</u>.

TERMS USED IN THIS REPORTMaximum Contaminant Level (MCL): The highest
level of contaminant that is allowed in drinking water.Treatment Technique (T
the level of a contaminant is
the level of a contaminant is<br/

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

 $\mathbf{ND:}$ not detectable at testing limit

mg/L: milligrams per liter or parts per million (ppm)

ug/L: micrograms per liter or parts per billion (ppb)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants,* such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants,* such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants,* that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3 and 4 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Tabl	Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER									
Lead and Copper (complete if lead or copper detected in last sample set)	Sample Date	No. of Samples	90th percentile level detected	No. Sites Exceeding AL	AL	PHG	Typical Sources of Contaminant			
Copper (mg/L)	(2021)	5	0.09	0	1.3	.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives			

Table 2 - 1	Table 2 - DETECTION OF CONTAMINANTS WITH A <u>PRIMARY</u> DRINKING WATER STANDARD										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant					
Arsenic (ug/L)	(2021)	25	22 - 26	10	0.004	Erosion of natural deposits; runoff from orchards, glass and electronics production wastes					
Barium (mg/L)	(2021)	0.22	n/a	1	2	Discharge from oil drilling wastes and from metal refineries; erosion of natural deposits					
Fluoride (mg/L)	(2021)	0.1	n/a	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.					
Gross Alpha (pCi/L)	(2016)	1.6	n/a	15	(0)	Erosion of natural deposits.					

Table 3 - TREA	Table 3 - TREATED DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant				
Arsenic (ug/L)	(2021)	ND	n/a	10	0.004	Erosion of natural deposits; runoff from orchards, glass and electronics production wastes				

Table	Table 4 - DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL (MRDL)	PHG (MCLG)	Violation	Typical Sources of Contaminant				
Total Trihalomethanes (TTHMs) (ug/L)	(2018 - 2021)	22	6 - 22	80	n/a	No	By-product of drinking water disinfection				
Chlorine (mg/L)	(2021)	0.00	n/a	4.0	4.0	No	Drinking water disinfectant added for treatment.				
Haloacetic Acids (five) (ug/L)	(2018 - 2021)	20	2 - 20	60	n/a	No	By-product of drinking water disinfection				

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Lodi Unified School District* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

About your Arsenic: The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

VIOLATION OF	A MCL,MRDL,AL,TT, OR M	MONITORING A	AND REPORTING	REQUIREMENT
Violation	Explanation	Duration	Actions Taken To Correct the Violation	Health Effects Language
Total Coliform Bacteria				Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.
Arsenic				Some people who drink water containing arsenic in excess of the MCL over many years could experience skin damage or problems with their circulatory system, and may have an increased risk of getting cancer.

2021 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A source water assessment was conducted for the WELL #2 of the LODI USD-TURNER SCHOOL of the water system in October, 2002.

Discussion of Vulnerability

There have been no contaminants detected in the water supply, however the source is still considered vulnerable to activities located near the drinking water source.

Acquiring Information

A copy of the complete assessment may be viewed at: San Joaquin County Environmental Health Department 1868 E Hazelton Ave, Stockton, CA 95202

You may request a summary of the assessment be sent to you by contacting: Small Public Water Systems SJ Co Environmental Health Department (209) 468-3420

Lodi Unified School District Analytical Results By FGL - 2021

LEAD AND COPPER RULE											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	90th Percentile	# Samples		
Copper		mg/L		1.3	.3			0.085	5		
TS-Custodial Room	STK2150378-2	mg/L				2021-07-19	0.07				
TS-D/F North Side Outside	STK2150378-4	mg/L				2021-07-19	0.05				
TS-D/F on Southside	STK2150378-1	mg/L				2021-07-19	0.06				
TS-D/F West Side	STK2150378-3	mg/L				2021-07-19	0.10				
TS-Office Sink Teachers Room	STK2150378-5	mg/L				2021-07-19	ND				

PRIMARY DRINKING WATER STANDARDS (PDWS)										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)	
Arsenic		ug/L		10	0.004			25	22 - 26	
TS-Well #2	STK2157569-1	ug/L				2021-12-09	26			
TS-Well #2	STK2153314-1	ug/L				2021-09-17	22			
TS-Well #2	STK2138941-1	ug/L				2021-06-28	24			
TS-Well #2	STK2133686-1	ug/L				2021-03-18	26			
Barium		mg/L	2	1	2			0.22	0.22 - 0.22	
TS-Well #2	STK2133686-1	mg/L				2021-03-18	0.22			
Fluoride		mg/L		2	1			0.1	0.1 - 0.1	
TS-Well #2	STK2135297-1	mg/L				2021-04-20	0.1			
Gross Alpha		pCi/L		15	(0)			1.60	1.60 - 1.60	
TS-Well #2	STK1633759-1	pCi/L				2016-04-07	1.60			

	TREATED PRIMARY DRINKING WATER STANDARDS (PDWS)											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)			
Arsenic		ug/L		10	0.004			ND	ND - ND			
TS-Arsenic Treatment Plant	STK2157568-1	ug/L				2021-12-09	ND					
TS-Arsenic Treatment Plant	STK2156589-1	ug/L				2021-11-16	ND					
TS-Arsenic Treatment Plant	STK2155360-1	ug/L				2021-10-26	ND					
TS-Arsenic Treatment Plant	STK2153313-1	ug/L				2021-09-17	ND					
TS-Arsenic Treatment Plant	STK2151953-1	ug/L				2021-08-23	ND					
TS-Arsenic Treatment Plant	STK2150362-1	ug/L				2021-07-26	ND					
TS-Arsenic Treatment Plant	STK2138940-1	ug/L				2021-06-28	ND					
TS-Arsenic Treatment Plant	STK2136960-1	ug/L				2021-05-19	ND					
TS-Arsenic Treatment Plant	STK2135298-1	ug/L				2021-04-20	ND					
TS-Arsenic Treatment Plant	STK2133685-1	ug/L				2021-03-18	ND					
TS-Arsenic Treatment Plant	STK2132460-1	ug/L				2021-02-18	ND					
TS-Arsenic Treatment Plant	STK2130844-1	ug/L				2021-01-20	ND					

DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)	
Total Trihalomethanes (TTHM	s)	ug/L		80	n/a			22	6 - 22	
TS-Northside Bldg A	STK2138938-1	ug/L				2021-06-28	22			
Average TS-Northside Bldg A								22		
TS-South Side Buidling A	STK1838601-1	ug/L				2018-06-19	6			
Average TS-South Side Buidling A								6		
Chlorine		mg/L		4.0	4.0			0.00	ND -	
TS-Wellhead	STK2157567-2	mg/L				2021-12-09	ND			
TS-Wellhead	STK2156588-2	mg/L				2021-11-16	ND			
TS-Wellhead	STK2155359-2	mg/L				2021-10-26	ND			
TS-Wellhead	STK2153312-2	mg/L				2021-09-17	ND			

TS-Wellhead	STK2151952-2	mg/L			2021-08-23	ND		
TS-Wellhead	STK2150361-2	mg/L			2021-07-26	ND		
TS-Wellhead	STK2138939-2	mg/L			2021-06-28	ND		
TS-Wellhead	STK2136959-2	mg/L			2021-05-19	ND		
TS-Wellhead	STK2135296-2	mg/L			2021-04-20	ND		
TS-Wellhead	STK2133684-2	mg/L			2021-03-18	ND		
TS-Wellhead	STK2132459-2	mg/L			2021-02-18	ND		
TS-Wellhead	STK2130843-2	mg/L			2021-01-20	ND		
Average TS-Wellhead							0	
Haloacetic Acids (five)		ug/L	60	n/a			20	2 - 20
TS-Northside Bldg A	STK2138938-1	ug/L			2021-06-28	20		
Average TS-Northside Bldg A							20	
TS-South Side Buidling A	STK1838601-1	ug/L			2018-06-19	2		
Average TS-South Side Buidling A							2	

Lodi Unified School District CCR Login Linkage - 2021

FGL Code	Lab ID	Date Sampled	Method	Description	Property
1TS-As Trt.Plan	STK1432372-1	2014-03-18	Sampling	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
	STK1432372-1	2014-03-18	Field Test	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
	STK1432372-1	2014-03-18	Metals, Total	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
	STK1432681-1	2014-03-27	Sampling	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
	STK1432681-1	2014-03-27	Field Test	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
	STK1432681-1	2014-03-27	Metals, Total	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
	STK1433005-1	2014-04-04	Field Test	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
	STK1433005-1	2014-04-04	Metals, Total	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
	STK1433005-1	2014-04-04	Sampling	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
TS-AS TRMT	STK1634210-1	2016-04-14	Metals, Total	TS-Arsenic Treatment Plant	Turner Rd-Arsenic Treatment
TS-CombEffTrtmn	STK1635923-1	2016-05-18	Metals, Total	TS-Arsenic Treatment Plant	Turner Academy Weekly Arsenic Pilot Mode
	STK1635923-1	2016-05-18	Field Test	TS-Arsenic Treatment Plant	Turner Academy Weekly Arsenic Pilot Mode
1TS-As Trt.Plan	STK1636255-1	2016-05-25	Sampling	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
	STK1636967-1	2016-06-08	Field Test	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
	STK1636967-1	2016-06-08	Sampling	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
	STK1958435-1	2019-12-18	Sampling	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
	STK1958435-1	2019-12-18	Metals, Total	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
	STK2130844-1	2021-01-20	Metals, Total	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
	STK2132460-1	2021-02-18	Metals, Total	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
	STK2133685-1	2021-03-18	Metals, Total	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
	STK2135298-1	2021-04-20	Metals, Total	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
	STK2136960-1	2021-05-19	Metals, Total	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
	STK2138940-1	2021-06-28	Metals, Total	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
	STK2150362-1	2021-07-26	Metals, Total	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
	STK2151953-1	2021-08-23	Metals, Total	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
	STK2153313-1	2021-09-17	Metals, Total	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
	STK2155360-1	2021-10-26	Metals, Total	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
	STK2156589-1	2021-11-16	Metals, Total	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
	STK2157568-1	2021-12-09	Field Test	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
	STK2157568-1	2021-12-09	Metals, Total	TS-Arsenic Treatment Plant	Turner - Arsenic Treatment Plant
TS-BactiBckwshT	STK1634210-2	2016-04-14	Field Test	TS-Backwash Tank	Turner Rd-Arsenic Treatment
	STK1634210-2	2016-04-14	Coliform	TS-Backwash Tank	Turner Rd-Arsenic Treatment
	STK1634220-1	2016-04-15	Coliform	TS-Backwash Tank	Turner Rd School Treatment
	STK1634220-1	2016-04-15	Field Test	TS-Backwash Tank	Turner Rd School Treatment
TS-CombEffTrtmn	STK1635588-1	2016-05-12	Metals, Total	TS-Combined Effluent Treatment	Water Monitoring
	STK1635588-1	2016-05-12	Field Test	TS-Combined Effluent Treatment	Water Monitoring
	STK1635588-1	2016-05-12	Sampling	TS-Combined Effluent Treatment	Water Monitoring
	STK1636508-1	2016-06-01	Sampling	TS-Combined Effluent Treatment	Turner - Arsenic Treatment Plant
TS-Comb. Trtd	STK1632819-1	2016-03-14	Field Test	TS-Combined Treated	Turner Rd School
	STK1632819-1	2016-03-14	Coliform	TS-Combined Treated	Turner Rd School
	STK1632819-1	2016-03-14	Metals, Total	TS-Combined Treated	Turner Rd School
CA3901032	STK2150378-2	2021-07-19	Metals, Total	TS-Custodial Room	Turner - Copper & Lead Monitoring
	STK2150378-4	2021-07-19	Metals, Total	TS-D/F North Side Outside	Turner - Copper & Lead Monitoring
	STK2150378-1	2021-07-19	Metals, Total	TS-D/F on Southside	Turner - Copper & Lead Monitoring
	STK2150378-3	2021-07-19	Metals, Total	TS-D/F West Side	Turner - Copper & Lead Monitoring
TS-Inf.Combine	STK1633405-1	2016-03-31	Coliform	TS-Influent Combine	Turner Rd School
	STK1633405-1	2016-03-31	Field Test	TS-Influent Combine	Turner Rd School
	STK1633761-1	2016-04-07	Coliform	TS-Influent Combine	Turner School
	STK1633761-1	2016-04-07	Field Test	TS-Influent Combine	Turner School
TS-Even	STK1958434-1	2019-12-18	Coliform	TS-Northside Bldg A	Turner School - Bacteriological-Even
	STK1958434-1	2019-12-18	Field Test	TS-Northside Bldg A	Turner School - Bacteriological-Even
	STK2132459-1	2021-02-18	Coliform	TS-Northside Bldg A	Turner School - Bacteriological-Even
	STK2135296-1	2021-04-20	Coliform	TS-Northside Bldg A	Turner School - Bacteriological-Even
	STK2138938-1	2021-06-28	EPA 551.1	TS-Northside Bldg A	Turner School

	STK2138939-1	2021-06-28	Coliform	TS-Northside Bldg A	Turner School - Bacteriological-Even
	STK2138938-1	2021-06-28	EPA 552.2	TS-Northside Bldg A	Turner School
	STK2151952-1	2021-08-23	Coliform	TS-Northside Bldg A	Turner School - Bacteriological-Even
	STK2155359-1	2021-10-26	Coliform	TS-Northside Bldg A	Turner School - Bacteriological-Even
	STK2157567-1	2021-12-09	Coliform	TS-Northside Bldg A	Turner School - Bacteriological-Even
CA3901032	STK2150378-5	2021-07-19	Metals, Total	TS-Office Sink Teachers Room	Turner - Copper & Lead Monitoring
South Side Buid	STK1838601-1	2018-06-19	EPA 551.1	TS-South Side Buidling A	Turner - DBP Monitoring-Turner School Academy
	STK1838601-1	2018-06-19	EPA 552.2	TS-South Side Buidling A	Turner - DBP Monitoring-Turner School Academy
TS-STORGE TANK	STK1634766-1	2016-04-27	Field Test	TS-Storage Tank	Turner School -
TS-Vessel 1 EFF	STK1632945-2	2016-03-16	Coliform	TS-Vessel 1 Effluent	Turner Rd School
	STK1632945-2	2016-03-16	Field Test	TS-Vessel 1 Effluent	Turner Rd School
TS-Vessel 1 Inf	STK1632945-1	2016-03-16	Field Test	TS-Vessel 1 Influent	Turner Rd School
	STK1632945-1	2016-03-16	Coliform	TS-Vessel 1 Influent	Turner Rd School
TS-Vessel 2 EFF	STK1632945-4	2016-03-16	Field Test	TS-Vessel 2 Effluent	Turner Rd School
	STK1632945-4	2016-03-16	Coliform	TS-Vessel 2 Effluent	Turner Rd School
TS-Vessel 2 INF	STK1632945-3	2016-03-16	Field Test	TS-Vessel 2 Influent	Turner Rd School
	STK1632945-3	2016-03-16	Coliform	TS-Vessel 2 Influent	Turner Rd School
TS-Vessel A EFF	STK1633405-2	2016-03-31	Heterotrophic	TS-Vessel A Effluent	Turner Rd School
	STK1633405-2	2016-03-31	Field Test	TS-Vessel A Effluent	Turner Rd School
	STK1633405-2	2016-03-31	Coliform	TS-Vessel A Effluent	Turner Rd School
	STK1633761-2	2016-04-07	Coliform	TS-Vessel A Effluent	Turner School - Bacteriological
	STK1633761-2	2016-04-07	Field Test	TS-Vessel A Effluent	Turner School - Bacteriological
TS-Vessel B EFF	STK1633405-3	2016-03-31	Heterotrophic	TS-Vessel B Effluent	Turner Rd School
	STK1633405-3	2016-03-31	Field Test	TS-Vessel B Effluent	Turner Rd School
	STK1633405-3	2016-03-31	Coliform	TS-Vessel B Effluent	Turner Rd School
	STK1633761-3	2016-04-07	Coliform	TS-Vessel B Effluent	Turner School - Bacteriological
TS-BactiWellhea	STK1432371-2	2014-03-18	Coliform	TS-Well #2	Turner School - Bacteriological-Odd
	STK1432371-2	2014-03-18	Field Test	TS-Well #2	Turner School - Bacteriological-Odd
1TS-Well 02	STK1632945-6	2016-03-16	Field Test	TS-Well #2	LODI USD-TURNER ACADEMY
	STK1632945-6	2016-03-16	Coliform	TS-Well #2	LODI USD-TURNER ACADEMY
	STK1633405-4	2016-03-31	Coliform	TS-Well #2	LODI USD-TURNER ACADEMY
	STK1633405-4	2016-03-31	Field Test	TS-Well #2	LODI USD-TURNER ACADEMY
	STK1633758-1	2016-04-07	Sampling	TS-Well #2	Turner School-3 Year
	STK1633758-1	2016-04-07	EPA 504.1	TS-Well #2	Turner School-3 Year
	STK1633759-1	2016-04-07	Radio Chemistry	TS-Well #2	Turner School - Radio Monitoring
	STK1633758-1	2016-04-07	Metals, Total	TS-Well #2	Turner School-3 Year
	STK1633758-1	2016-04-07	Wet Chemistry	TS-Well #2	Turner School-3 Year
	STK1633761-4	2016-04-07	Field Test	TS-Well #2	LODI USD-TURNER ACADEMY
	STK1633761-4	2016-04-07	Coliform	TS-Well #2	LODI USD-TURNER ACADEMY
	STK1637213-1	2016-06-15	Sampling	TS-Well #2	Turner School-3 Year
	STK1958436-1	2019-12-18	Metals, Total	TS-Well #2	Turner School-3 Year
	STK2057385-1	2020-12-16	Sampling	TS-Well #2	Turner School-3 Year
	STK2133686-1	2021-03-18	Metals, Total	TS-Well #2	Turner School-3 Year
	STK2135297-1	2021-04-20	Wet Chemistry	TS-Well #2	Turner School-3 Year
	STK2138941-1	2021-06-28	Metals, Total	TS-Well #2	Turner School-3 Year
	STK2153314-1	2021-09-17	Metals, Total	TS-Well #2	Turner School-3 Year
	STK2157569-1	2021-12-09	Sampling	TS-Well #2	Turner School-3 Year
	STK2157569-1	2021-12-09	Metals, Total	TS-Well #2	Turner School-3 Year
TS-BactiWellhea	STK1958434-2	2019-12-18	Coliform	TS-Wellhead	Turner School - Bacteriological-Even
	STK2130843-2	2021-01-20	Coliform	TS-Wellhead	Turner School - Bacteriological-Odd
	STK2130843-2	2021-01-20	Field Test	TS-Wellhead	Turner School - Bacteriological-Odd
	STK2132459-2	2021-02-18	Coliform	TS-Wellhead	Turner School - Bacteriological-Even
	STK2132459-2	2021-02-18	Field Test	TS-Wellhead	Turner School - Bacteriological-Even
	STK2133684-2	2021-03-18	Coliform	TS-Wellhead	Turner School - Bacteriological-Odd
	STK2133684-2	2021-03-18	Field Test	TS-Wellhead	Turner School - Bacteriological-Odd
	STK2135296-2	2021-04-20	Coliform	TS-Wellhead	Turner School - Bacteriological-Even
	STK2135296-2	2021-04-20	Field Test	TS-Wellhead	Turner School - Bacteriological-Even
	STK2136959-2	2021-05-19	Coliform	TS-Wellhead	Turner School - Bacteriological-Odd

	STK2136959-2	2021-05-19	Field Test	TS-Wellhead	Turner School - Bacteriological-Odd
	STK2138939-2	2021-06-28	Coliform	TS-Wellhead	Turner School - Bacteriological-Even
	STK2138939-2	2021-06-28	Field Test	TS-Wellhead	Turner School - Bacteriological-Even
	STK2150361-2	2021-07-26	Coliform	TS-Wellhead	Turner School - Bacteriological-Odd
	STK2150361-2	2021-07-26	Field Test	TS-Wellhead	Turner School - Bacteriological-Odd
	STK2151952-2	2021-08-23	Coliform	TS-Wellhead	Turner School - Bacteriological-Even
	STK2151952-2	2021-08-23	Field Test	TS-Wellhead	Turner School - Bacteriological-Even
	STK2153312-2	2021-09-17	Coliform	TS-Wellhead	Turner School - Bacteriological-Odd
	STK2153312-2	2021-09-17	Field Test	TS-Wellhead	Turner School - Bacteriological-Odd
	STK2155359-2	2021-10-26	Coliform	TS-Wellhead	Turner School - Bacteriological-Even
	STK2155359-2	2021-10-26	Field Test	TS-Wellhead	Turner School - Bacteriological-Even
	STK2156588-2	2021-11-16	Field Test	TS-Wellhead	Turner School - Bacteriological-Odd
	STK2156588-2	2021-11-16	Coliform	TS-Wellhead	Turner School - Bacteriological-Odd
	STK2157567-2	2021-12-09	Field Test	TS-Wellhead	Turner School - Bacteriological-Even
	STK2157567-2	2021-12-09	Coliform	TS-Wellhead	Turner School - Bacteriological-Even
TS-Odd	STK1632945-5	2016-03-16	Coliform	TS-Westside Bldg. A & C	Turner Rd School
	STK1632945-5	2016-03-16	Field Test	TS-Westside Bldg. A & C	Turner Rd School
	STK2130843-1	2021-01-20	Coliform	TS-Westside Bldg. A & C	Turner School - Bacteriological-Odd
	STK2133684-1	2021-03-18	Coliform	TS-Westside Bldg. A & C	Turner School - Bacteriological-Odd
	STK2136959-1	2021-05-19	Coliform	TS-Westside Bldg. A & C	Turner School - Bacteriological-Odd
	STK2150361-1	2021-07-26	Coliform	TS-Westside Bldg. A & C	Turner School - Bacteriological-Odd
	STK2153312-1	2021-09-17	Coliform	TS-Westside Bldg. A & C	Turner School - Bacteriological-Odd
	STK2156588-1	2021-11-16	Coliform	TS-Westside Bldg. A & C	Turner School - Bacteriological-Odd

Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR)

(to certify electronic delivery of the CCR, use the certification form on the State Water Board's website at http://www.swrcb.ca.gov/drinking_water/certific/drinkingwater/CCR.shtml)

Water System Name:	LODI USD-TOKAY COLONY SCHOOL
Water System Number:	CA3900848

The water system named above hereby certifies that its Consumer Confidence Report was distributed on

<u>4/21/22</u> (date) to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the State Water Resources Control Board, Division of Drinking Water.

Certified By:	Name:	Joe Patty		
	Signature:			
	Title:	Mechanical Supervisor		
	Phone Number:	(209) 712-6363	Date: 4/21/22	

To summarize report delivery used and good-faith efforts taken, please complete the form below by checking all items that apply and fill-in where appropriate:

CCR was distributed by mail or other direct delivery methods. Specify other direct delivery methods used:

	Posted the CCR on the internet at http://
	Mailed the CCR to postal patrons within the service area (attach zip codes used)
	Advertised the availability of the CCR in news media (attach a copy of press release)
	Publication of the CCR in a local newspaper of general circulation (attach a copy of the published notice, including name of the newspaper and date published)
×	Posted the CCR in public places (attach a list of locations)
	Delivery of multiple copies of CCR to single bill addresses serving several persons, such as apartments, businesses, and schools
	Delivery to community organizations (attach a list of organizations)
	Other (attach a list of other methods used)
For sy	stems serving at least 100,000 persons: Posted CCR on a publicly-accessible internet site
at the	following address: http://
For in	vestor-owned utilities: Delivered the CCR to the California Public Utilities Commission
	(This form is provided as a convenience and may be used to meet the certification requirement of section 64483(c), California Code of Regulations.)

ſ

2021 Consumer Confidence Report

Water System Name: LODI USD-TOKAY COLONY SCHOOL

Report Date:

April 2022

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2021.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: Ground water is sourced from the unadjudicated Eastern San Joaquin Valley Sub basin (NO. 5-022.01). Well No. 3901085-001 is located on the North side of parcel APN#: 085-17-020.

Your water comes from 1 source(s): TCS-Wellhead

Opportunities for public participation in decisions that affect drinking water quality: Please call Maintenance & Operations if you have questions regarding the water.

For more information about this report, or any questions relating to your drinking water, please call (209) 331-7181 and ask for LodiUSD M&O or visit our website at <u>www.lodiusd.net</u>.

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

mg/L: milligrams per liter or parts per million (ppm)

ug/L: micrograms per liter or parts per billion (ppb)

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants,* such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants,* such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants,* that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2 and 3 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Tabl	Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER											
Lead and Copper (complete if lead or copper detected in last sample set)	Sample Date	No. of Samples	90th percentile level detected	No. Sites Exceeding AL	AL	PHG	Typical Sources of Contaminant					
Copper (mg/L)	(2021)	5	0.18	0	1.3	.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives					

Table 2 -	DETECTION	OF CONTA	MINANTS W	ITH A PR	<u>IMARY</u> DRI	NKING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant
Arsenic (ug/L)	(2021)	2	n/a	10	0.004	Erosion of natural deposits; runoff from orchards, glass and electronics production wastes
Hexavalent Chromium (ug/L)	(2014)	3.6	n/a		0.02	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits.
Nitrate as N (mg/L)	(2021)	1	n/a	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits

	Table 3 - DETECTION OF UNREGULATED CONTAMINANTS								
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant				

					Vanadium exposures resulted in
Vanadium (ug/L)	(2021)	15	n/a	50	developmental and reproductive
					effects in rats.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Lodi Unified School District* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

2021 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A source water assessment was conducted for the WELL 01 of the LODI USD-TOKAY COLONY SCHOOL of the water system in April, 2002.

TCS-Wellhead - is considered most vulnerable to the following activities not associated with any detected contaminants: Animal Feeding Operations as defined in federal regulation 2 Concentrated Animal Feeding Operations [CAFOs] as defined in Septic systems - high density [>1/acre] Wastewater treatment plants Historic gas stations Historic waste dumps/landfills Injection wells/dry wells/ sumps Known Contaminant Plumes Landfills/dumps Metal plating/ finishing/fabricating Mining operations -Historic Underground Injection of Commercial/Industrial Discharges Underground storage tanks -Confirmed leaking tanks

Discussion of Vulnerability

There have been no contaminants detected in the water supply, however the source is still considered vulnerable to activities located near the drinking water source.

Acquiring Information

A copy of the complete assessment may be viewed at: San Joaquin County Environmental Health Department 1868 E Hazelton Ave, Stockton, CA 95202

You may request a summary of the assessment be sent to you by contacting:

Small Public Water Systems SJ Co Environmental Health Department (209) 468-3420

Lodi Unified School District Analytical Results By FGL - 2021

LEAD AND COPPER RULE													
UnitsMCLGCA-MCLPHGSampledResult90th Percentile# Samp													
Copper		mg/L		1.3	.3			0.175	5				
TCS-D/F by Rms. 01 & 02	STK2150379-1	mg/L				2021-07-19	ND						
TCS-D/F East Between Restrooms	STK2150379-3	mg/L				2021-07-19	0.15						
TCS-Room 02	STK2150379-2	mg/L				2021-07-19	0.13						
TCS-Room 04	STK2150379-5	mg/L				2021-07-19	0.17						
TCS-Teachers Room	STK2150379-4	mg/L				2021-07-19	0.18						

PRIMARY DRINKING WATER STANDARDS (PDWS)									
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Arsenic		ug/L	()	10	0.004	í ,	()	2	2 - 2
TCS-Wellhead	STK2133681-1	ug/L				2021-03-18	2		
Hexavalent Chromium		ug/L			0.02			3.60	3.60 - 3.60
TCS-Wellhead	STK1450337-1	ug/L				2014-10-08	3.60		
Nitrate as N		mg/L		10	10	['		1.0	1 - 1
TCS-Wellhead	STK2133681-1	mg/L	(2021-03-18	1	[]	

UNREGULATED CONTAMINANTS									
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Vanadium		ug/L		NS	n/a			15	15 - 15
TCS-Wellhead	STK2133681-1	ug/L				2021-03-18	15		

Lodi Unified School District CCR Login Linkage - 2021

FGL Code	Lab ID	Date_Sampled	Method	Description	Property	
TCS-Even	STK1631777-1	2016-02-16	Sampling	TCS-Bldg.A EastSide by DF	Tokay Colony School - Bacteriological- Even	
	STK1631777-1	2016-02-16	Coliform	TCS-Bldg.A EastSide by DF	Tokay Colony School - Bacteriological- Even	
	STK1633960-1	2016-04-12	Sampling	TCS-Bldg.A EastSide by DF	Tokay Colony School - Bacteriological- Even	
	STK2132148-1	2021-02-12	Coliform	TCS-Bldg.A EastSide by DF	Tokay Colony School - Bacteriological- Even	
	STK2135350-1	2021-04-21	Coliform	TCS-Bldg.A EastSide by DF	Tokay Colony School - Bacteriological- Even	
	STK2138059-1	2021-06-08	Coliform	TCS-Bldg.A EastSide by DF	Tokay Colony School - Bacteriological- Even	
	STK2151733-1	2021-08-18	Coliform	TCS-Bldg.A EastSide by DF	Tokay Colony School - Bacteriological- Even	
	STK2155203-1	2021-10-21	Coliform	TCS-Bldg.A EastSide by DF	Tokay Colony School - Bacteriological- Even	
	STK2157483-1	2021-12-08	Coliform	TCS-Bldg.A EastSide by DF	Tokay Colony School - Bacteriological- Even	
TCS-Odd	STK1530360-1	2015-01-08	Sampling	TCS-Bldg.B EastSide by DF	Tokay Colony School - Bacteriological- Odd	
	STK1630135-1	2016-01-05	Coliform	TCS-Bldg.B EastSide by DF	Tokay Colony School - Bacteriological- Odd	
	STK1630135-1	2016-01-05	Sampling	TCS-Bldg.B EastSide by DF	Tokay Colony School - Bacteriological- Odd	
	STK1632565-1	2016-03-08	Coliform	TCS-Bldg.B EastSide by DF	Tokay Colony School - Bacteriological- Odd	
	STK1632565-1	2016-03-08	Sampling	TCS-Bldg.B EastSide by DF	Tokay Colony School - Bacteriological- Odd	
	STK1635337-1	2016-05-05	Coliform	TCS-Bldg.B EastSide by DF	Tokay Colony School - Bacteriological- Odd	
	STK1730211-1	2017-01-05	Coliform	TCS-Bldg.B EastSide by DF	Tokay Colony School - Bacteriological- Odd	
	STK1730211-1	2017-01-05	Sampling	TCS-Bldg.B EastSide by DF	Tokay Colony School - Bacteriological- Odd	
	STK2130951-1	2021-01-21	Coliform	TCS-Bldg.B EastSide by DF	Tokay Colony School - Bacteriological- Odd	
	STK2133682-1	2021-03-18	Coliform	TCS-Bldg.B EastSide by DF	Tokay Colony School - Bacteriological- Odd	
	STK2136583-1	2021-05-12	Coliform	TCS-Bldg.B EastSide by DF	Tokay Colony School - Bacteriological- Odd	
	STK2150223-1	2021-07-21	Coliform	TCS-Bldg.B EastSide by DF	Tokay Colony School - Bacteriological- Odd	
	STK2153113-1	2021-09-14	Coliform	TCS-Bldg.B EastSide by DF	Tokay Colony School - Bacteriological- Odd	
	STK2156376-1	2021-11-12	Coliform	TCS-Bldg.B EastSide by DF	Tokay Colony School - Bacteriological- Odd	
CA3900848_LCR	STK2150379-1	2021-07-19	Metals, Total	TCS-D/F by Rms. 01 & 02	Tokay Colony - Copper & Lead Monitoring	
	STK2150379-3	2021-07-19	Metals, Total	TCS-D/F East Between Restrooms	Tokay Colony - Copper & Lead Monitoring	
	STK2150379-2	2021-07-19	Metals, Total	TCS-Room 02	Tokay Colony - Copper & Lead Monitoring	
	STK2150379-5	2021-07-19	Metals, Total	TCS-Room 04	Tokay Colony - Copper & Lead Monitoring	
	STK2150379-4	2021-07-19	Metals, Total	TCS-Teachers Room	Tokay Colony - Copper & Lead Monitoring	
1TCS-Wellhead	STK1450337-1	2014-10-08	Wet Chemistry	TCS-Wellhead	Tokay - Chrome 6	
	STK1632564-1	2016-03-08	Wet Chemistry	TCS-Wellhead	Tokay Colony School-3 Year	
	STK1632564-1	2016-03-08	Sampling	TCS-Wellhead	Tokay Colony School-3 Year	
	STK1632563-1	2016-03-08	Radio Chemistry	TCS-Wellhead	Tokay Colony School - Radio Monitoring	
	STK1632563-1	2016-03-08	Sampling	TCS-Wellhead	Tokay Colony School - Radio Monitoring	

STK2133681-1	2021-03-18	Metals, Total	TCS-Wellhead	Tokay Colony School-3 Year
STK2133681-1	2021-03-18	Wet Chemistry	TCS-Wellhead	Tokay Colony School-3 Year