Consumer Confidence Report Certification Form (to be submitted with a copy of the CCR) (to certify electronic delivery of the CCR, use the certification form on the State Water Board's website at http://www.swrcb.ca.gov/drinking_water/certlic/drinkingwater/CCR.shtml) | Water | System Name: | BIG WHEEL N | MOBILE HOME PARK | |-------------|--|---------------------------------------|--| | Water | System Number | : CA3900637 | | |
certifi | (c
es that the inform | late) to customer
nation contained | certifies that its Consumer Confidence Report was distributed on s (and appropriate notices of availability have been given). Further, the system in the report is correct and consistent with the compliance monitoring data Resources Control Board, Division of Drinking Water. | | Certi | Title | nature: | Jim Wunderlich
Jim Wunderlich
JCDO
(209) 403-1547 Date: 4-28-2022 | | | oply and fill-in wh | ere appropriate: | good-faith efforts taken, please complete the form below by checking all items other direct delivery methods. Specify other direct delivery methods used: | | | Territoria de la companya della companya della companya de la companya della comp | | | | | | | | | | methods: | e CCR on the int | | | | | | patrons within the service area (attach zip codes used) | | | Publication | on of the CCR in | of the CCR in news media (attach a copy of press release) a local newspaper of general circulation (attach a copy of the g name of the newspaper and date published) | | | Posted th | e CCR in public | places (attach a list of locations) Post in Mallboxes | | | S-011-V3 | 100 | s of CCR to single bill addresses serving several persons,
nesses, and schools | | | Delivery | to community orç | ganizations (attach a list of organizations) | | | Other (at | tach a list of othe | er methods used) | | | | | 000 persons: Posted CCR on a publicly-accessible internet site | | | For investor-own | ned utilities: Deli | vered the CCR to the California Public Utilities Commission | (This form is provided as a convenience and may be used to meet the certification requirement of section 64483(c), California Code of Regulations.) ## 2021 Consumer Confidence Report Water System Name: BIG WHEEL MOBILE HOME PARK Report Date: April 2022 We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2021. Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien. Type of water source(s) in use: According to SWRCB records, this Source is Groundwater. This Assessment was done using the Default Groundwater System Method. Your water comes from 2 source(s): NORTH WELL and SOUTH WELL Opportunities for public participation in decisions that affect drinking water quality: Regularly-scheduled water board or city/county council meetings currently are not being held. For more information about this report, or any questions relating to your drinking water, please call (209)462-8939 and ask for Betty Warford. ### TERMS USED IN THIS REPORT Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA). Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. **Primary Drinking Water Standards (PDWS):** MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. **Secondary Drinking Water Standards (SDWS):** MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. **Treatment Technique (TT):** A required process intended to reduce the level of a contaminant in drinking water. **Regulatory Action Level (AL):** The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. **Level 1 Assessment:** A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. **Level 2 Assessment:** A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. mg/L: milligrams per liter or parts per million (ppm) ug/L: micrograms per liter or parts per billion (ppb) pCi/L: picocuries per liter (a measure of radiation) umhos/cm: micro mhos per centimeter The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. ## Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems. - Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health. Tables 1, 2, 3, 4, 5, 6, 7 and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report. | Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA | | | | | | | | | | | |---|---------------------------|-------------------------------|--|------|---------------------------------------|--|--|--|--|--| | Microbiological
Contaminants
(complete if bacteria detected) | Highest No. of Detections | No. of Months
in Violation | MCL | MCLG | Typical Sources of
Contaminant | | | | | | | Total Coliform Bacteria | 1/year
(2021) | 0 | no more than 1
positive monthly
sample | | Naturally present in the environment. | | | | | | | | Table 2 | - SAMPLING | RESULTS FO | R SOL | DIUM AND | HARDNESS | |---|-------------|------------------------------|------------------------|-------|---------------|--| | Chemical or
Constituent
(and reporting units) | Sample Date | Average
Level
Detected | Range of
Detections | MCL | PHG
(MCLG) | Typical Sources of Contaminant | | Sodium (mg/L) | (2021) | 20 | n/a | none | none | Salt present in the water and is generally naturally occurring | | Hardness (mg/L) | (2021) | 222 | 221 - 223 | none | none | Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring | | Table 3 - | DETECTION | OF CONTA | MINANTS W | ITH A PF | RIMARY DR | INKING WATER STANDARD | |---|-------------|------------------------------|------------------------|---------------|--------------------------|--| | Chemical or
Constituent
(and reporting units) | Sample Date | Average
Level
Detected | Range of
Detections | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Sources of Contaminant | | Arsenic (ug/L) | (2021) | 4 | n/a | 10 | 0.004 | Erosion of natural deposits; runoff from orchards, glass and electronics production wastes | | Barium (mg/L) | (2021) | 0.15 | n/a | 1 | 2 | Discharge from oil drilling wastes and from metal refineries; erosion of natural deposits | | Hexavalent
Chromium (ug/L) | (2014) | 4.56 | 4.18 - 4.94 | | 0.02 | Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits. | |----------------------------------|---------------|-------|--------------|----|------|--| | Fluoride (mg/L) | (2021) | 0.1 | n/a | 2 | 1 | Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories. | | Nitrate as N (mg/L) | (2021) | 6 | 5.2 - 7.3 | 10 | 10 | Runoff and leaching from fertilizer use;
leaching from septic tanks and sewage;
erosion of natural deposits | | Nitrate + Nitrite as
N (mg/L) | (2021) | 5.7 | n/a | 10 | 10 | Runoff and leaching from fertilizer use;
leaching from septic tanks and sewage;
erosion of natural deposits | | Gross Alpha (pCi/L) | (2020 - 2021) | 8.31 | 6.51 - 10.1 | 15 | (0) | Erosion of natural deposits. | | Uranium (pCi/L) | (2020 - 2021) | 3.844 | 3.60 - 4.087 | 20 | 0.43 | Erosion of natural deposits | | Table 4 - DETI | Table 4 - DETECTION OF CONTAMINANTS WITH A <u>SECONDARY</u> DRINKING WATER STANDARD | | | | | | | | | | | |---|---|------------------------------|------------------------|------|---------------|---|--|--|--|--|--| | Chemical or
Constituent
(and reporting units) | Sample Date | Average
Level
Detected | Range of
Detections | MCL | PHG
(MCLG) | Typical Sources of Contaminant | | | | | | | Chloride (mg/L) | (2021) | 12 | n/a | 500 | n/a | Runoff/leaching from natural deposits; seawater influence | | | | | | | Specific Conductance
(umhos/cm) | (2021) | 526 | 521 - 530 | 1600 | n/a | Substances that form ions when in water; seawater influence | | | | | | | Sulfate (mg/L) | (2021) | 24.8 | n/a | 500 | n/a | Runoff/leaching from natural deposits; industrial wastes | | | | | | | Total Dissolved Solids
(mg/L) | (2021) | 355 | 350 - 360 | 1000 | n/a | Runoff/leaching from natural deposits | | | | | | | | Table 5 - DETECTION OF UNREGULATED CONTAMINANTS | | | | | | | | | | | |---|---|---------------------------|------------------------|-----------------------|--|--|--|--|--|--|--| | Chemical or
Constituent
(and reporting units) | Sample Date | Average Level
Detected | Range of
Detections | Notification
Level | Typical Sources of Contaminant | | | | | | | | Vanadium (ug/L) | (2021) | 24 | n/a | 50 | Vanadium exposures resulted in developmental and reproductive effects in rats. | | | | | | | | Table 6 - ADDITIONAL DETECTIONS | | | | | | | | | | | |--|-------------|---------------------------|------------------------|--------------------|-----------------------------------|--|--|--|--|--| | Chemical or Constituent
(and reporting units) | Sample Date | Average Level
Detected | Range of
Detections | Notification Level | Typical Sources of
Contaminant | | | | | | | Calcium (mg/L) | (2021) | 50 | 49 - 50 | n/a | n/a | | | | | | | Magnesium (mg/L) | (2021) | 24 | n/a | n/a | n/a | | | | | | | pH (units) | (2021) | 7.2 | n/a | n/a | n/a | | | | | | | Alkalinity (mg/L) | (2021) | 210 | n/a | n/a | n/a | | | | | | | Aggressiveness Index | (2021) | 11.6 | n/a | n/a | n/a | | | | | | | Langelier Index | (2021) | -0.2 | n/a | n/a | n/a | | | | | | | Table 7 - DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE | | | | | | | | | | | |---|-------------|------------------------------|------------------------|---------------|---------------|-----------|--|--|--|--| | Chemical or
Constituent
(and reporting units) | Sample Date | Average
Level
Detected | Range of
Detections | MCL
(MRDL) | PHG
(MCLG) | Violation | Typical Sources of
Contaminant | | | | | Chlorine (mg/L) | (2021) | 0.00 | n/a | 4.0 | 4.0 | No | Drinking water
disinfectant added for
treatment. | | | | ## **Additional General Information on Drinking Water** Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Big Wheel Mobile Home Park* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead. # Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement | VIOLATION O | F A MCL,MRDL,AL,TT, OR I | MONITORING A | AND REPORTING | REQUIREMENT | |-------------------------|--------------------------|--------------|--|---| | Violation | Explanation | Duration | Actions Taken To
Correct the
Violation | Health Effects Language | | Total Coliform Bacteria | | | | Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments. | **About your Nitrate as N:** Nitrate above 5 mg/L as nitrogen (50 percent of the MCL), but below 10 mg/L as nitrogen (the MCL); Nitrate in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider. # **2021 Consumer Confidence Report** ## **Drinking Water Assessment Information** #### **Assessment Information** A source water assessment was conducted for the NORTH WELL and for the SOUTH WELL of the BIG WHEEL MOBILE HOME PARK water system in July, 2002. NORTH WELL - is considered most vulnerable to the following activities not associated with any detected contaminants: Railroad yards/maintenance/fueling areas SOUTH WELL - is considered most vulnerable to the following activities not associated with any detected contaminants: Automobile - Gas stations ## **Discussion of Vulnerability** North Well - There have been no contaminants detected in the water supply, however the source is still considered vulnerable to activities located near the drinking water source. South Well - There have been no contaminants detected in the water supply, however the source is still considered vulnerable to activities located near the drinking water source ### **Acquiring Information** A copy of the complete assessment may be viewed at: San Joaquin County Environmental Health Department 304 E. Weber Ave, 3rd Floor Stockton, CA 95202 You may request a summary of the assessment be sent to you by contacting: Small Public Water Systems SJ Co Environmental Health Department (209) 468-3420 # **Big Wheel Mobile Home Park** Analytical Results By FGL - 2021 | | | MICROE | BIOLOGIC | AL CONTAI | MINANT | 'S | | | | |-------------------------|--------------|--------|----------|-----------|--------|------------|---------|-------------------|-----------| | | | Units | MCLG | CA-MCL | PHG | Sampled | Result | Avg.
Result(a) | Range (b) | | Total Coliform Bacteria | a | | 0 | 5% | n/a | | | 0 | | | Site #12 | STK2158308-2 | | | | | 2021-12-23 | <1.0 | | | | Site #63 | STK2158308-1 | | | | | 2021-12-23 | <1.0 | | | | Site #63 | STK2158071-1 | | | | | 2021-12-21 | Present | | | | Site #63 | STK2156142-1 | | | | | 2021-11-09 | Absent | | | | Site #63 | STK2154800-1 | | | | | 2021-10-14 | Absent | | | | Site #63 | STK2153319-1 | | | | | 2021-09-16 | Absent | | | | Site #63 | STK2152072-1 | | | | | 2021-08-24 | Absent | | | | Site #63 | STK2150090-1 | | | | | 2021-07-19 | Absent | | | | Site #63 | STK2138302-1 | | | | | 2021-06-14 | Absent | | | | Site #63 | STK2137004-1 | | | | | 2021-05-20 | Absent | | | | Site #63 | STK2135023-1 | | | | | 2021-04-15 | Absent | | | | Site #63 | STK2133310-1 | | | | | 2021-03-10 | Absent | | | | Site #63 | STK2132246-1 | | | | | 2021-02-16 | Absent | | | | Site #63 | STK2130772-1 | | | | | 2021-01-18 | Absent | | | | | SAMPLING RESULTS FOR SODIUM AND HARDNESS | | | | | | | | | | | | |------------|--|-------|------|--------|------|------------|--------|-------------------|-----------|--|--|--| | | | Units | MCLG | CA-MCL | PHG | Sampled | Result | Avg.
Result(a) | Range (b) | | | | | Sodium | | mg/L | | none | none | | | 20 | 20 - 20 | | | | | North Well | STK2132249-1 | mg/L | | | | 2021-02-16 | 20 | | | | | | | South Well | STK2132248-1 | mg/L | | | | 2021-02-16 | 20 | | | | | | | Hardness | | mg/L | | none | none | | | 222 | 221 - 223 | | | | | North Well | STK2132249-1 | mg/L | | | | 2021-02-16 | 223 | | | | | | | South Well | STK2132248-1 | mg/L | | | | 2021-02-16 | 221 | | | | | | | | PRIM | ARY DRI | NKING W | ATER STAN | DARDS | (PDWS) | | | | |------------------------|--------------|---------|---------|-----------|---------|------------|--------|-------------------|-------------| | | | Units | MCLG | CA-MCL | PHG | Sampled | Result | Avg.
Result(a) | Range (b) | | Arsenic | | ug/L | | 10 | 0.004 | | | 4 | 4 - 4 | | North Well | STK2132249-1 | ug/L | | | | 2021-02-16 | 4 | | | | South Well | STK2132248-1 | ug/L | | | | 2021-02-16 | 4 | | | | Barium | | mg/L | 2 | 1 | 2 | | | 0.15 | 0.15 - 0.15 | | North Well | STK2132249-1 | mg/L | | | | 2021-02-16 | 0.15 | | | | South Well | STK2132248-1 | mg/L | | | | 2021-02-16 | 0.15 | | | | Hexavalent Chromium | | ug/L | | | 0.02 | | | 4.56 | 4.18 - 4.94 | | North Well | STK1450793-1 | ug/L | | | | 2014-10-20 | 4.18 | | | | South Well | STK1450793-2 | ug/L | | | | 2014-10-20 | 4.94 | | | | Fluoride | | mg/L | | 2 | 1 | | | 0.1 | 0.1 - 0.1 | | North Well | STK2132249-1 | mg/L | | | | 2021-02-16 | 0.1 | | | | South Well | STK2132248-1 | mg/L | | | | 2021-02-16 | 0.1 | | | | Nitrate as N | | mg/L | | 10 | 10 | | | 6.0 | 5.2 - 7.3 | | North Well | STK2156140-1 | mg/L | | | | 2021-11-09 | 5.2 | | | | North Well | STK2153318-1 | mg/L | | | | 2021-09-16 | 5.22 | | | | North Well | STK2137002-1 | mg/L | | | | 2021-05-20 | 5.4 | | | | North Well | STK2132249-1 | mg/L | | | | 2021-02-16 | 5.7 | | | | South Well | STK2156141-1 | mg/L | | | | 2021-11-09 | 7.0 | | | | South Well | STK2152071-1 | mg/L | | | | 2021-08-24 | 7.3 | | | | South Well | STK2137003-1 | mg/L | | | | 2021-05-20 | 6.8 | | | | South Well | STK2132248-1 | mg/L | | | | 2021-02-16 | 5.7 | | | | Nitrate + Nitrite as N | | mg/L | | 10 | 10 | | 84920 | 5.7 | 5.7 - 5.7 | | North Well | STK2132249-1 | mg/L | | C1504 | 108980/ | 2021-02-16 | 5.7 | o issinates | | | South Well | STK2132248-1 | mg/L | | | | 2021-02-16 | 5.7 | | | | Gross Alpha | | pCi/L | 15 | (0) | | | 8.31 | 6.51 - 10.1 | |-------------|--------------|-------|----|------|------------|-------|-------|--------------| | North Well | STK2031186-1 | pCi/L | | | 2020-01-22 | 6.51 | | | | South Well | STK2133724-1 | pCi/L | | | 2021-03-22 | 10.1 | | | | Uranium | | pCi/L | 20 | 0.43 | | | 3.844 | 3.60 - 4.087 | | North Well | STK2031186-1 | pCi/L | | | 2020-01-22 | 4.087 | | | | South Well | STK2133724-1 | pCi/L | | | 2021-03-22 | 3.60 | | | | SECON | DARY DRIN | KING WA | TER STAN | DARDS | (SDWS) | | | | |------------------------|--|---|--|--|--|--|---|--| | | Units | MCLG | CA-MCL | PHG | Sampled | Result | Avg.
Result(a) | Range (b) | | Chloride | | | 500 | n/a | | | 12 | 12 - 12 | | STK2132249-1 | mg/L | | | | 2021-02-16 | 12 | | 1000 | | STK2132248-1 | mg/L | | | | 2021-02-16 | 12 | | | | Specific Conductance | | | 1600 | n/a | | | 526 | 521 - 530 | | STK2132249-1 | umhos/cm | | | | 2021-02-16 | 521 | | | | STK2132248-1 | umhos/cm | | | | 2021-02-16 | 530 | | | | | mg/L | | 500 | n/a | | | 24.8 | 24.8 - 24.8 | | STK2132249-1 | mg/L | | | | 2021-02-16 | 24.8 | | | | STK2132248-1 | mg/L | | | | 2021-02-16 | 24.8 | | | | Total Dissolved Solids | | | 1000 | n/a | | | 355 | 350 - 360 | | STK2132249-1 | mg/L | | | | 2021-02-16 | 350 | | | | STK2132248-1 | mg/L | | | | 2021-02-16 | 360 | | | | | STK2132249-1
STK2132248-1
STK2132249-1
STK2132248-1
STK2132249-1
STK2132248-1 | Units mg/L STK2132249-1 mg/L STK2132248-1 mg/L umhos/cm STK2132249-1 umhos/cm STK2132248-1 umhos/cm Mg/L STK2132249-1 mg/L STK2132248-1 mg/L STK2132248-1 mg/L STK2132249-1 mg/L | Units MCLG mg/L mg/L STK2132249-1 mg/L STK2132248-1 mg/L umhos/cm umhos/cm STK2132249-1 umhos/cm STK2132248-1 mg/L STK2132249-1 mg/L STK2132248-1 mg/L STK2132249-1 mg/L STK2132249-1 mg/L | Units MCLG CA-MCL mg/L 500 STK2132249-1 mg/L STK2132248-1 mg/L umhos/cm 1600 STK2132249-1 umhos/cm STK2132248-1 umhos/cm sTK2132249-1 mg/L STK2132248-1 mg/L STK2132248-1 mg/L sTK2132249-1 mg/L sTK2132249-1 mg/L mg/L 1000 STK2132249-1 mg/L | Units MCLG CA-MCL PHG mg/L 500 n/a STK2132249-1 mg/L STK2132248-1 mg/L umhos/cm 1600 n/a STK2132249-1 umhos/cm STK2132248-1 umhos/cm STK2132249-1 mg/L 500 n/a STK2132248-1 mg/L STK2132249-1 mg/L STK2132249-1 mg/L STK2132249-1 mg/L | mg/L 500 n/a STK2132249-1 mg/L 2021-02-16 STK2132248-1 mg/L 2021-02-16 umhos/cm 1600 n/a STK2132249-1 umhos/cm 2021-02-16 STK2132248-1 umhos/cm 2021-02-16 mg/L 500 n/a STK2132249-1 mg/L 2021-02-16 STK2132248-1 mg/L 2021-02-16 STK2132249-1 mg/L 2021-02-16 STK2132249-1 mg/L 2021-02-16 STK2132249-1 mg/L 2021-02-16 | Units MCLG CA-MCL PHG Sampled Result STK2132249-1 mg/L 500 n/a 2021-02-16 12 STK2132248-1 mg/L 2021-02-16 12 12 STK2132249-1 umhos/cm 1600 n/a 2021-02-16 521 STK2132249-1 umhos/cm 2021-02-16 530 10 10 STK2132249-1 mg/L 500 n/a 2021-02-16 24.8 STK2132248-1 mg/L 2021-02-16 24.8 2021-02-16 24.8 STK2132249-1 mg/L 1000 n/a 2021-02-16 350 STK2132249-1 mg/L 2021-02-16 350 | Units MCLG CA-MCL PHG Sampled Result Avg. Result(a) mg/L 500 n/a 12 STK2132249-1 mg/L 2021-02-16 12 STK2132248-1 mg/L 2021-02-16 12 umhos/cm 1600 n/a 526 STK2132249-1 umhos/cm 2021-02-16 521 STK2132248-1 umhos/cm 2021-02-16 530 mg/L 500 n/a 24.8 STK2132249-1 mg/L 2021-02-16 24.8 STK2132248-1 mg/L 2021-02-16 24.8 STK2132249-1 mg/L 2021-02-16 24.8 STK2132249-1 mg/L 2021-02-16 350 | | | | UNRE | GULATED | CONTAMI | NANTS | | | | | |------------|--------------|-------|---------|---------|-------|------------|--------|-------------------|-----------| | | | Units | MCLG | CA-MCL | PHG | Sampled | Result | Avg.
Result(a) | Range (b) | | Vanadium | | ug/L | | NS | n/a | | | 24 | 24 - 24 | | North Well | STK2132249-1 | ug/L | | | | 2021-02-16 | 24 | | | | South Well | STK2132248-1 | ug/L | | | | 2021-02-16 | 24 | | | | | ADDITIONAL DETECTIONS | | | | | | | | | | | |----------------------|-----------------------|-------|------|--------|-----|------------|--------|-------------------|-------------|--|--| | | | Units | MCLG | CA-MCL | PHG | Sampled | Result | Avg.
Result(a) | Range (b) | | | | Calcium | | mg/L | | | n/a | | | 50 | 49 - 50 | | | | North Well | STK2132249-1 | mg/L | | | | 2021-02-16 | 50 | | | | | | South Well | STK2132248-1 | mg/L | | | | 2021-02-16 | 49 | | | | | | Magnesium | | mg/L | | | n/a | | | 24 | 24 - 24 | | | | North Well | STK2132249-1 | mg/L | | | | 2021-02-16 | 24 | | | | | | South Well | STK2132248-1 | mg/L | | | | 2021-02-16 | 24 | | | | | | pН | | units | | | n/a | | | 7.2 | 7.2 - 7.2 | | | | North Well | STK2132249-1 | units | | | | 2021-02-16 | 7.2 | | | | | | South Well | STK2132248-1 | units | | | | 2021-02-16 | 7.2 | | | | | | Alkalinity | | mg/L | | | n/a | | | 210 | 210 - 210 | | | | North Well | STK2132249-1 | mg/L | | | | 2021-02-16 | 210 | | | | | | South Well | STK2132248-1 | mg/L | | | | 2021-02-16 | 210 | | | | | | Aggressiveness Index | | | | | n/a | | | 11.6 | 11.6 - 11.6 | | | | North Well | STK2132249-1 | | | | | 2021-02-16 | 11.6 | | | | | | South Well | STK2132248-1 | | | | | 2021-02-16 | 11.6 | | | | | | Langelier Index | | | | | n/a | | | -0.2 | -0.20.2 | | | | North Well | STK2132249-1 | | | | | 2021-02-16 | -0.2 | | | | | | South Well | STK2132248-1 | | | | | 2021-02-16 | -0.2 | | | | | | DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE | | | | | | | | | | | | |---|--------------|-------|------|--------|-----|------------|--------|-------------------|------------|--|--| | | | Units | MCLG | CA-MCL | PHG | Sampled | Result | Avg.
Result(a) | Range (b) | | | | Chlorine | 27/ | mg/L | | 4.0 | 4.0 | | | 0.00 | ND - | | | | NORTH WELL | STK2158308-3 | mg/L | | | | 2021-12-23 | ND | | 960/1004/7 | | | | Average NORTH WELL | | | | | | | | 0 | | | | | SOUTH WELL | STK2158308-4 | mg/L | | | | 2021-12-23 | ND | | | | | | Average SOUTH WELL | | 2 2 2 | 0 | | |--------------------|--|-------|---|--| | | | | | | # Big Wheel Mobile Home Park CCR Login Linkage - 2021 | FGL Code | Lab ID | Date_Sampled | Method | Description | Property | |-----------------|------------------------------|--|-----------------------------|--------------------|--| | North Well | STK1450793-1 | 2014-10-20 | Wet Chemistry | North Well | Chrome 6 Monitoring | | | STK2031186-1 | 2020-01-22 | Metals, Total | North Well | North Well Radio Monitoring | | | STK2031186-1 | 2020-01-22 | Radio Chemistry | North Well | North Well Radio Monitoring | | | STK2132249-1 | 2021-02-16 | General Mineral | North Well | 3 Year Monitoring-Well #1 (North Well) | | | STK2132249-1 | 2021-02-16 | Metals, Total | North Well | 3 Year Monitoring-Well #1 (North Well) | | | STK2137002-1 | 2021-05-20 | Wet Chemistry | North Well | 3 Year Monitoring-Well #1 (North Well) | | | STK2153318-1 | 2021-09-16 | Wet Chemistry | North Well | 3 Year Monitoring-Well #1 (North Well) | | | STK2156140-1 | 2021-11-09 | Wet Chemistry | North Well | 3 Year Monitoring-Well #1 (North Well) | | | STK2158308-3 | 2021-12-23 | Field Test | NORTH WELL | BIG WHEEL MOBILE HOME PARK | | Bacti-Rpt-ss01 | STK2052194-4 | 2020-08-26 | Coliform | North Well/Well #1 | Repeat Bacteriological Monitoring | | Bacti-Rout-Even | STK2158308-2 | 2021-12-23 | Coliform | Site #12 | Routine Bacteriological Monitoring-Even | | Bacti-Rout-Odd | STK2130772-1 | 2021-01-18 | Coliform | Site #63 | Bacti Monitoring-Odd | | | STK2132246-1 | 2021-02-16 | Coliform | Site #63 | Bacti Monitoring-Odd | | | STK2133310-1 | 2021-03-10 | Coliform | Site #63 | Bacti Monitoring-Odd | | | STK2135023-1 | 2021-04-15 | Coliform | Site #63 | Bacti Monitoring-Odd | | | STK2137004-1 | 2021-05-20 | Coliform | Site #63 | Bacti Monitoring-Odd | | | STK2138302-1 | 2021-06-14 | Coliform | Site #63 | Bacti Monitoring-Odd | | | STK2150090-1 | 2021-07-19 | Coliform | Site #63 | Bacti Monitoring-Odd | | | STK2152072-1 | 2021-08-24 | Coliform | Site #63 | Bacti Monitoring-Odd | | | STK2153319-1 | 2021-09-16 | Coliform | Site #63 | Bacti Monitoring-Odd | | | STK2154800-1 | 2021-10-14 | Coliform | Site #63 | Bacti Monitoring-Odd | | | STK2156142-1 | 2021-11-09 | Coliform | Site #63 | Bacti Monitoring-Odd | | | STK2158071-1 | 2021-12-21 | Coliform | Site #63 | Bacti Monitoring-Odd Bacti Monitoring-Odd | | | STK2158308-1 | 2021-12-23 | Coliform | Site #63 | | | South Well | STK1450793-2 | | Wet Chemistry | South Well | Routine Bacteriological Monitoring-Odd Chrome 6 Monitoring | | goddii iron | STK2132248-1 | 2021-02-16 | Metals, Total | South Well | | | | STK2132248-1 | 2021-02-16 | General Mineral | South Well | 3 Year Monitoring-Well #2 (South Well) | | | STK2132246-1 | 2021-02-10 | Radio Chemistry | South Well | 3 Year Monitoring-Well #2 (South Well) | | | STK2133724-1 | The second secon | Metals, Total | | South Well Radio Monitoring | | | STK2137003-1 | AND DESCRIPTION OF THE PROPERTY PROPERT | | South Well | South Well Radio Monitoring | | | STK2157003-1 | | Wet Chemistry Wet Chemistry | South Well | 3 Year Monitoring-Well #2 (South Well) | | | STK2152071-1
STK2156141-1 | | | South Well | 3 Year Monitoring-Well #2 (South Well) | | | | | Wet Chemistry | South Well | 3 Year Monitoring-Well #2 (South Well) | | Bacti-Rpt-ss02 | STK2158308-4 | 2021-12-23 | Field Test | SOUTH WELL | BIG WHEEL MOBILE HOME PARK | | SP, 12 | STK2052119-5 | SCHOOL CARDING | Coliform | South Well/Well #2 | Repeat Bacteriological Monitoring | | | STK2050352-2 | an acceptance of the part t | Coliform | Space #12 | Bacti Monitoring | | CA3900637_LCR | | | Metals, Total | Space #14 | Water Monitoring | | | STK2138460-4 | DAY AND CONTROL OF STREET | Metals, Total | Space #15 | Water Monitoring | | | STK2138460-2 | AND THE RESERVE AND THE PARTY OF O | Metals, Total | Space #50 | Water Monitoring | | | STK2138460-1 | | Metals, Total | Space #61 | BIG WHEEL MOBILE HOME PARK | | 6 48 | STK2138460-5 | | Metals, Total | Space #63 | Bacti Monitoring | | Space 13 | STK2154535-1 | | Metals, Total | Space 13 | Copper & Lead Monitoring | | Space 14 | STK2154535-2 | | Metals, Total | Space 14 | Copper & Lead Monitoring | | Space 2 | STK2154535-3 | | Metals, Total | Space 2 | Copper & Lead Monitoring | | Space 50 | STK2154535-4 | Two Consultations of the Consultation C | Metals, Total | Space 50 | Copper & Lead Monitoring | | Space 63 | STK2154535-5 | 2021-10-08 | Metals, Total | Space 63 | Copper & Lead Monitoring |