2020 Consumer Confidence Report Certification Form (to be submitted with a copy of the CCR)

(To certify electronic delivery of the CCR, use the certification form on the State Board's website at

http://ww	ww.swrcb.ca	.gov/drinking wa	ater/certlic/drin	kingwater/CCR	shtml)
Water System Name:	SJU	Micke	GIOVE	Park	
Water System Number:	3900	511			

The water system named above hereby certifies that its Consumer Confidence Report was distributed on (*date*) to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the State Water Resources Control Board, Division of Drinking Water.

B		
Certified by:	Name:	Charles Kuiz
	Signature:	That bus
	Title:	PAR Maintenance Superisco
	Phone Number:	(209) 953-7030 Date: 7-19-2021

To summarize report delivery used and good-faith efforts taken, please complete the below by checking all items that apply and fill-in where appropriate:

CCR was distributed by mail or other direct delivery methods. Specify other direct delivery methods used:

Good faith" efforts were used to reach non-bill paying consumers. Those efforts included the following methods:

Posting the CCR on the Internet at www.

Mailing the CCR to postal patrons within the service area (attach zip codes used)

Advertising the availability of the CCR in news media (attach copy of press release)

Publication of the CCR in a local newspaper of general circulation (attach a copy of the published notice, including name of newspaper and date published)

Posted the CCR in public places (attach a list of locations)

Delivery of multiple copies of CCR to single-billed addresses serving several persons, such as apartments, businesses, and schools.

Delivery to community organizations (attach a list of organizations)

Other (attach a list of other methods used)

For systems serving at least 100,000 persons: Posted CCR on a publicly accessible internet site at the following address: www._____

For investor-owned utilities: Delivered the CCR to the California Public Utilities Commission

This form is provided as a convenience for use to meet the certification requirement of the California Code of Regulations, section 64483(c).

2020 Consumer Confidence Report

Water System Name: SJC MICKE GROVE PARK

Report Date:

May 2021

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2020.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: According to SWRCB records, NORTHWEST WELL is Groundwater. This Assessment was done using the Default Groundwater System Method. This info is not available for SOUTH WELL as this water system does not have a completed assessment on file for this source. Please see the Drinking Water Source Assessment Information section located at the end of this report for more details.

Your water comes from 2 source(s): Northwest Well and South Well

and from 4 treated location(s): GAC Filters - Northwest Well -, GAC Filters - South Well - Tre, Sample Port @ 25% and Sample Port @ 75%

Opportunities for public participation in decisions that affect drinking water quality: Regularly-scheduled water board or city/county council meetings currently are not held.

For more information about this report, or any questions relating to your drinking water, please call (209) 838 - 7842 and ask for Quality Service, Inc..

TERMS U	SED IN THIS REPORT
Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs)	Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.
as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.	Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency	Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
(USEPA). Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California	Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Environmental Protection Agency.	ND: not detectable at testing limit
Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a	mg/L: milligrams per liter or parts per million (ppm)
disinfectant is necessary for control of microbial contaminants.	ug/L: micrograms per liter or parts per billion (ppb)
Maximum Residual Disinfectant Level Goal	ppt: parts per trillion or nanograms per liter (ng/L)
(MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.	pCi/L: picocuries per liter (a measure of radiation)
Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.	
The sources of drinking water (both tan water an	d hottled water) include rivers lakes streams nonds reservoirs

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants,* such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants,* such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants,* that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 6 and 7 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA					
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Sources of Contaminant
Total Coliform Bacteria	3/mo. (2020)	2	no more than 1 positive monthly sample	0	Naturally present in the environment.

Table 2 - DETEC	Table 2 - DETECTION OF CONTAMINANTS WITH A <u>PRIMARY</u> DRINKING WATER STANDARD						
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant	
Arsenic (ug/L)	(2018 - 2019)	3	2 - 3	10	0.004	Erosion of natural deposits; runoff from orchards, glass and electronics production wastes	
Barium (mg/L)	(2018 - 2019)	ND	ND - 0.11	1	2	Discharge from oil drilling wastes and from metal refineries; erosion of natural deposits	
Cadmium (ug/L)	(2018 - 2019)	ND	ND - 1.3	5.0	0.04	Internal corrosion of galvanized pipes; erosion of natural deposits; discharge from electroplating and industrial chemical factories, and from metal refineries; runoff from waste batteries and paints	
Fluoride (mg/L)	(2019)	0.1	ND - 0.2	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.	

Hexavalent Chromium (ug/L)	(2014)	5.21	4.61 - 5.8		0.02	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits.
Nitrate as N (mg/L)	(2020)	1.5	1.4 - 1.6	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Gross Alpha (pCi/L)	(2016)	2.99	1.30 - 4.68	15	(0)	Erosion of natural deposits.
Uranium (pCi/L)	(2016)	2.52	n/a	20	0.43	Erosion of natural deposits
Dibromochloropropane (DBCP) (ppt)	(2020)	353	ND - 540	200	1.7	Banned nematocide that may still be present in soils due to runoff/leaching from former use on soybeans, cotton, vineyards, tomatoes, and tree fruit

Table 3 - TREATED DETECTION OF CONTAMINANTS WITH A <u>PRIMARY</u> DRINKING WATER STANDARD						
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant
Dibromochloropropane (DBCP) (ppt)	(2020)	21	ND - 130	200	1.7	Banned nematocide that may still be present in soils due to runoff/leaching from former use on soybeans, cotton, vineyards, tomatoes, and tree fruit

Table 4 - DETECTION OF UNREGULATED CONTAMINANTS					
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant
Vanadium (mg/L)	(2018 - 2019)	0.027	0.026 - 0.027	0.05	Vanadium exposures resulted in developmental and reproductive effects in rats.

		Table 5 - ADD	ITIONAL DETECTIO	ONS	
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant
pH (units)	(2018)	7.8	7.7 - 7.8	n/a	n/a

Table 6 - DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE							
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL (MRDL)	PHG (MCLG)	Violation	Typical Sources of Contaminant
Chlorine (mg/L)	(2020)	0.00	n/a	4.0	4.0	No	Drinking water disinfectant added for treatment.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-

compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Micke Grove Park WS* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION 0	OF A MCL,MRDL,AL,TT, OR M	IONITORING A	AND REPORTING	REQUIREMENT
Violation	Explanation	Duration	Actions Taken To Correct the Violation	Health Effects Language
Total Coliform Bacteria				Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.
Dibromochloropropane (DBCP)				Some people who use water containing DBCP in excess of the MCL over many years may experience reproductive difficulties and may have an increased risk of getting cancer.

2020 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A source water assessment was conducted for the NORTHWEST WELL (REPEAT #4) of the SJ COUNTY - MICKE

GROVE PARK water system in May, 2002. A source water assessment has not been completed for the SOUTHWEST WELL of the SJC MICKE GROVE PARK water system.

Northwest Well	- is most vulnerable to the following activities associated with contaminants detected in the water supply: Known Contaminant Plumes
	is considered most vulnerable to the following activities not associated with any detected contaminants: Drinking water treatment plants Parks Transportation corridors - Railroads
South Well	 info is not available, as this water system does not have a completed assessment on file. Please see the Drinking Water Source Assessment Information section located at the end of this report for more details.

Discussion of Vulnerability

Dibromochloropropane (DBCP) has been detected at levels over the Maximum Contaminant Level at the Northwest Well. All drinking fountains have been disconnected and bottled water has been provided. The three residences, the pro shop, Funderwoods and Tree Top Cafe have point of use treatment devices that completely remove all traces of DBCP before water is served. A centralized treatment system is being planned at the Northwest and South wellheads. An Assessment Summary for the Southwest Well is currently not available.

Assessment summaries are not available for some sources. This is because:

The Assessment has not been completed. Contact the local Department of Health Services (DHS) Drinking Water field office or the water system to find out when the Assessment is scheduled to be done.

The source is not active. It may be out of service, or new and not yet in service.

The Assessment was not submitted electronically. The site used to obtain Assessments only provides access to Assessment summaries submitted electronically.

Acquiring Information

A copy of the complete assessment may be viewed at: San Joaquin County Environmental Health Department 304 E. Weber Ave, 3rd Floor Stockton, CA 95202

You may request a summary of the assessment be sent to you by contacting: Small Public Water Systems SJ Co Environmental Health Department (209) 468-3420

For more info you may visit http://swap.ice.ucdavis.edu/TSinfo/TSintro.asp or contact the health department in the county to which the water system belongs.

Micke Grove Park WS Analytical Results By FGL - 2020

MICROBIOLOGICAL CONTAMINANTS										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)	
Total Coliform Bacteria			0	5%	n/a			2	1 - 4.2	
Breakroom Trailer	STK2032937-2					2020-03-03	<1.0			
East Side of Zoo Hospital	STK2053582-2					2020-09-23	<1.0			
Eff of Carbon Trtmt System@NW	STK2056614-3					2020-12-01	<1.0			
Eff of Carbon Trtmt System@NW	STK2053582-5					2020-09-23	<1.0			
Eff of Carbon Trtmt System@So.	STK2053582-6					2020-09-23	<1.0			
Effluent Carbon Treatment @ N	STK2052574-5					2020-09-02	<1.0			
Effluent Carbon Treatment @ N	STK2052258-5					2020-08-27	<1.0			
Effluent Carbon Treatment @ N	STK2051057-5					2020-08-06	<1.0			
Effluent Carbon Treatment @ So	STK2052574-6					2020-09-02	<1.0			
Effluent Carbon Treatment @ So	STK2052258-6					2020-08-27	<1.0			
Effluent Carbon Treatment @ So	STK2051057-6					2020-08-06	4.2			
Golf Course Pro Shop	STK2054567-2					2020-10-13	Absent			
Golf Course Pro Shop	STK2053582-4					2020-09-23	<1.0			
Golf Course Pro Shop	STK2052574-4					2020-09-02	<1.0			
Golf Course Pro Shop	STK2052258-4					2020-08-27	<1.0			
Golf Course Pro Shop	STK2051057-4					2020-08-06	2			
Golf Course Pro Shop	STK2037857-2					2020-06-05	Absent			
Golf Course Pro Shop	STK2035891-1					2020-05-05	<1.0			
Golf Course Pro Shop	STK2031900-2					2020-02-07	Absent			
Memorial BLDG R.R.	STK2036070-1					2020-05-06	<1.0			
Memorial Bldg. Public Restroom	STK2056879-1					2020-12-04	Absent			
Memorial Bldg. Public Restroom	STK2056614-2					2020-12-01	<1.0			
Memorial Bldg. Public Restroom	STK2054567-1					2020-10-13	Absent			
Memorial Bldg. Public Restroom	STK2053582-3					2020-09-23	<1.0			
Memorial Bldg. Public Restroom	STK2052574-3					2020-09-02	<1.0			
Memorial Bldg. Public Restroom	STK2052258-3					2020-08-27	<1.0			
Memorial Bldg. Public Restroom	STK2051057-3					2020-08-06	<1.0			
Memorial Bldg. Public Restroom	STK2039834-2					2020-07-15	Absent			
Memorial Bldg. Public Restroom	STK2037857-1					2020-06-05	Absent			
Memorial Bldg. Public Restroom	STK2037010-2					2020-05-21	<1.0			
Memorial Bldg. Public Restroom	STK2036464-1					2020-05-13	1			
Memorial Bldg. Public Restroom	STK2034756-1					2020-04-09	Absent			
Memorial Bldg. Public Restroom	STK2032934-2					2020-03-03	Absent			
Memorial Bldg. Public Restroom	STK2031900-1					2020-02-07	Absent			
Memorial Stage RR	STK2036875-2					2020-05-19	2			
Mokelumne River	STK2032937-1					2020-03-03	<1.0			
North Well	STK2056614-4					2020-12-01	<1.0			
NW Well	STK2052574-7					2020-09-02	<1.0			
Sample Tap @ N.R.R. Pressure S	STK2036070-2					2020-05-06	<1.0			
ST@ N. Bathroom Pressure MS	STK2056614-1					2020-12-01	<1.0			
ST@ N. Bathroom Pressure MS	STK2055700-1					2020-11-06	Absent			
ST@ N. Bathroom Pressure MS	STK2053582-1					2020-09-23	<1.0			
ST@ N. Bathroom Pressure MS	STK2052258-1					2020-08-27	<1.0			
ST@ N. Bathroom Pressure MS	STK2051697-1					2020-08-14	<1.0			
ST@ N. Bathroom Pressure MS	STK2051057-1					2020-08-06	<1.0			
ST@ N. Bathroom Pressure MS	STK2037010-1					2020-05-21	<1.0			
ST@ N. Bathroom Pressure MS	STK2036875-1					2020-05-19	<1.0			
ST@ N. Bathroom Pressure MS	STK2036464-2					2020-05-13	3.1			
ST@ N. Bathroom Pressure MS	STK2036268-1					2020-05-08	Absent			
ST@ N. Bathroom Pressure MS	STK2034756-2					2020-04-09	Absent			
ST@ N. Bathroom Pressure MS	STK2030481-1					2020-01-10	Absent			
ST@ N. Bathroom Pressure Stati	STK2052574-1					2020-09-02	<1.0			

Zoo Employee Restroom	STK2052574-2			2020-09-02	2	
Zoo Employee Restroom	STK2052258-2			2020-08-27	1	
Zoo Employee Restroom	STK2051057-2			2020-08-06	<1.0	
Zoo Employee Restroom	STK2039834-1			2020-07-15	Present	
Zoo Employee Restroom	STK2036268-2			2020-05-08	Absent	
Zoo Employee Restroom	STK2035891-2			2020-05-05	<1.0	
Zoo Employee Restroom	STK2032934-1			2020-03-03	Absent	
Zoo Employee Restroom	STK2030481-2			2020-01-10	Absent	

PRIMARY DRINKING WATER STANDARDS (PDWS)											
	Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)			
Arsenic		ug/L		10	0.004			3	2 - 3		
Northwest Well	STK1939915-1	ug/L				2019-07-09	3				
South Well	STK1839350-1	ug/L				2018-07-05	2				
Barium		mg/L	2	1	2			ND	ND - 0.11		
Northwest Well	STK1939915-1	mg/L				2019-07-09	ND				
South Well	STK1839350-1	mg/L				2018-07-05	0.11				
Cadmium		ug/L		5.0	0.04			ND	ND - 1.3		
Northwest Well	STK1939915-1	ug/L				2019-07-09	1.3				
South Well	STK1839350-1	ug/L				2018-07-05	ND				
Fluoride		mg/L		2	1			0.1	ND - 0.2		
Northwest Well	STK1930549-1	mg/L				2019-01-10	ND				
South Well	STK1930549-2	mg/L				2019-01-10	0.2				
Hexavalent Chromium		ug/L			0.02			5.21	4.61 - 5.8		
Northwest Well	STK1452754-1	ug/L				2014-12-17	5.8				
South Well	STK1450247-2	ug/L				2014-10-07	4.61				
Nitrate as N		mg/L		10	10			1.5	1.4 - 1.6		
Northwest Well	STK2030794-1	mg/L				2020-01-16	1.4				
South Well	STK2030794-2	mg/L				2020-01-16	1.6				
Gross Alpha		pCi/L		15	(0)			2.99	1.30 - 4.68		
Northwest Well	STK1632399-1	pCi/L				2016-03-03	1.30				
South Well	STK1632399-2	pCi/L				2016-03-03	4.68				
Uranium		pCi/L		20	0.43			2.52	2.52 - 2.52		
South Well	STK1632399-2	pCi/L				2016-03-03	2.52				
Dibromochloropropane (DBCP)		ppt		200	1.7			353	ND - 540		
Northwest Well	STK2052073-1	ppt				2020-08-20	540				
Northwest Well	STK2030488-1	ppt				2020-01-10	520				
South Well	STK2030488-2	ppt				2020-01-10	ND				

TREATED PRIMARY DRINKING WATER STANDARDS (PDWS)											
	Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)			
Dibromochloropropane (DBCP)		ppt		200	1.7			21	ND - 130		
GAC Filters - Northwest Well -	STK2056880-1	ppt				2020-12-04	130				
GAC Filters - Northwest Well -	STK2055699-1	ppt				2020-11-06	130				
GAC Filters - Northwest Well -	STK2054568-1	ppt				2020-10-13	ND				
GAC Filters - Northwest Well -	STK2053580-1	ppt				2020-09-23	70				
GAC Filters - Northwest Well -	STK2051698-1	ppt				2020-08-14	60				
GAC Filters - Northwest Well -	STK2039985-1	ppt				2020-07-17	50				
GAC Filters - Northwest Well -	STK2039691-1	ppt				2020-07-10	60				
GAC Filters - Northwest Well -	STK2037939-1	ppt				2020-06-05	20				
GAC Filters - Northwest Well -	STK2036163-1	ppt				2020-05-08	ND				
GAC Filters - Northwest Well -	STK2034757-1	ppt				2020-04-09	ND				
GAC Filters - Northwest Well -	STK2032935-1	ppt				2020-03-03	ND				
GAC Filters - Northwest Well -	STK2031902-1	ppt				2020-02-07	ND				
GAC Filters - Northwest Well -	STK2030482-1	ppt				2020-01-10	ND				
GAC Filters - South Well - Tre	STK2056881-1	ppt				2020-12-04	ND				
GAC Filters - South Well - Tre	STK2055737-1	ppt				2020-11-06	ND				
GAC Filters - South Well - Tre	STK2054569-1	ppt				2020-10-13	ND				

GAC Filters - South Well - Tre	STK2053581-1	ppt		2020-09-23	ND	
GAC Filters - South Well - Tre	STK2051700-1	ppt		2020-08-14	ND	
GAC Filters - South Well - Tre	STK2039986-1	ppt		2020-07-17	ND	
GAC Filters - South Well - Tre	STK2037940-1	ppt		2020-06-05	ND	
GAC Filters - South Well - Tre	STK2036161-1	ppt		2020-05-08	ND	
GAC Filters - South Well - Tre	STK2034758-1	ppt		2020-04-09	ND	
GAC Filters - South Well - Tre	STK2032936-1	ppt		2020-03-03	ND	
GAC Filters - South Well - Tre	STK2031929-1	ppt		2020-02-07	ND	
GAC Filters - South Well - Tre	STK2030489-1	ppt		2020-01-10	ND	
Sample Port @ 25%	STK2055736-1	ppt		2020-11-06	10	
Sample Port @ 25%	STK2051748-1	ppt		2020-08-14	ND	
Sample Port @ 25%	STK2036162-1	ppt		2020-05-08	ND	
Sample Port @ 25%	STK2031928-1	ppt		2020-02-07	ND	
Sample Port @ 75%	STK2055698-1	ppt		2020-11-06	100	
Sample Port @ 75%	STK2051699-1	ppt		2020-08-14	60	
Sample Port @ 75%	STK2036164-1	ppt		2020-05-08	ND	
Sample Port @ 75%	STK2031901-1	ppt		2020-02-07	ND	

UNREGULATED CONTAMINANTS											
Units MCLG CA-MCL PHG Sampled Result Avg. Result(a)								Range (b)			
Vanadium		mg/L		NS	n/a			0.027	0.026 - 0.027		
Northwest Well	STK1939915-1	mg/L				2019-07-09	0.027				
South Well	mg/L				2018-07-05	0.026					

ADDITIONAL DETECTIONS											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
pH		units			n/a			7.8	7.7 - 7.8		
S Well Vessel B	STK1834851-2	units				2018-04-13	7.8				
South Well ST STK1834851-1						2018-04-13	7.7				

	DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Chlorine		mg/L		4.0	4.0			0.00	ND -		
Northwest Well	STK2053582-7	mg/L				2020-09-23	ND				
Northwest Well	STK2052258-7	mg/L				2020-08-27	ND				
Northwest Well	STK2051057-7	mg/L				2020-08-06	ND				
Average Northwest Well								0			
NW Well	STK2052574-7	mg/L				2020-09-02	ND				
Average NW Well								0			
South Well	STK2053582-8	mg/L				2020-09-23	ND				
South Well	STK2052574-8	mg/L				2020-09-02	ND				
South Well	STK2052258-8	mg/L				2020-08-27	ND				
South Well	STK2051057-8	mg/L				2020-08-06	ND				
Average South Well								0			

Micke Grove Park WS CCR Login Linkage - 2020

FGL Code	Lab ID	Date_Sampled	Method	Description	Property
CuPb-ss01	STK2053133-1	2020-09-08	Metals, Total	Auditorium-Kitchen Sink	Copper & Lead Monitoring
Breakroom Trail	STK2032937-2	2020-03-03	Coliform	Breakroom Trailer	QSI-Line Break
CuPb-ss02	STK2053133-2	2020-09-08	Metals, Total	Calavers-Picnic Shelter	Copper & Lead Monitoring
CuPb-ss03	STK2053133-3	2020-09-08	Metals, Total	Camanche-Picnic Shelter	Copper & Lead Monitoring
CuPb-ss05	STK2053133-5	2020-09-08	Metals, Total	DeltaShelter-Kitchen Sink	Copper & Lead Monitoring
Bacti-RPT 2A	STK2053582-2	2020-09-23	Coliform	East Side of Zoo Hospital	Bacteriological Repeat Sampling
Bacti-RPT 5A	STK2053582-5	2020-09-23	Coliform	Eff of Carbon Trtmt System@NW	Bacteriological Repeat Sampling
Bacti-1RPT 5	STK2056614-3	2020-12-01	Coliform	Eff of Carbon Trtmt System@NW	Bacteriological -1 Repeat Sampling
Bacti-RPT 6A	STK2053582-6	2020-09-23	Coliform	Eff of Carbon Trtmt System@So.	Bacteriological Repeat Sampling
Eff.Carbon Trtm	STK2051057-5	2020-08-06	Coliform	Effluent Carbon Treatment @ N	Water Monitoring
	STK2052258-5	2020-08-27	Coliform	Effluent Carbon Treatment @ N	Water Monitoring
Effluent Carbon	STK2052574-5	2020-09-02	Coliform	Effluent Carbon Treatment @ N	Water Monitoring
Eff.Carbon T. S	STK2051057-6	2020-08-06	Coliform	Effluent Carbon Treatment @ So	Water Monitoring
	STK2052258-6	2020-08-27	Coliform	Effluent Carbon Treatment @ So	Water Monitoring
Effluent Carbon	STK2052574-6	2020-09-02	Coliform	Effluent Carbon Treatment @ So	Water Monitoring
WELL- NW Trtd	STK2030482-1	2020-01-10	EPA 504.1	GAC Filters - Northwest Well -	North GAC Filter Plant
	STK2031902-1	2020-02-07	EPA 504.1	GAC Filters - Northwest Well -	North GAC Filter Plant
	STK2032935-1	2020-03-03	EPA 504.1	GAC Filters - Northwest Well -	North GAC Filter Plant
	STK2034757-1	2020-04-09	EPA 504.1	GAC Filters - Northwest Well -	North GAC Filter Plant
	STK2036163-1	2020-05-08	EPA 504.1	GAC Filters - Northwest Well -	North GAC Filter Plant
	STK2037939-1	2020-06-05	EPA 504.1	GAC Filters - Northwest Well -	North GAC Filter Plant
	STK2039691-1	2020-07-10	EPA 504.1	GAC Filters - Northwest Well -	North GAC Filter Plant
	STK2039985-1	2020-07-17	EPA 504.1	GAC Filters - Northwest Well -	North GAC Filter Plant
	STK2051698-1	2020-08-14	EPA 504.1	GAC Filters - Northwest Well -	North GAC Filter Plant
	STK2053580-1	2020-09-23	EPA 504.1	GAC Filters - Northwest Well -	North GAC Filter Plant
	STK2054568-1	2020-10-13	EPA 504.1	GAC Filters - Northwest Well -	North GAC Filter Plant
	STK2055699-1	2020-11-06	EPA 504.1	GAC Filters - Northwest Well -	North GAC Filter Plant
	STK2056880-1	2020-12-04	EPA 504.1	GAC Filters - Northwest Well -	North GAC Filter Plant
WELL- S Trtd	STK2030489-1	2020-01-10	EPA 504.1	GAC Filters - South Well - Tre	South GAC Filter Plant
	STK2031929-1	2020-02-07	EPA 504.1	GAC Filters - South Well - Tre	South GAC Filter Plant
	STK2032936-1	2020-03-03	EPA 504.1	GAC Filters - South Well - Tre	South GAC Filter Plant
	STK2034758-1	2020-04-09	EPA 504.1	GAC Filters - South Well - Tre	South GAC Filter Plant
	STK2036161-1	2020-05-08	EPA 504.1	GAC Filters - South Well - Tre	South GAC Filter Plant
	STK2037940-1	2020-06-05	EPA 504.1	GAC Filters - South Well - Tre	South GAC Filter Plant
	STK2039986-1	2020-07-17	EPA 504.1	GAC Filters - South Well - Tre	South GAC Filter Plant
	STK2051700-1	2020-08-14	EPA 504.1	GAC Filters - South Well - Tre	South GAC Filter Plant
	STK2053581-1	2020-09-23	EPA 504.1	GAC Filters - South Well - Tre	South GAC Filter Plant
	STK2054569-1	2020-10-13	EPA 504.1	GAC Filters - South Well - Tre	South GAC Filter Plant
	STK2055737-1	2020-11-06	EPA 504.1	GAC Filters - South Well - Tre	South GAC Filter Plant
	STK2056881-1	2020-12-04	EPA 504.1	GAC Filters - South Well - Tre	South GAC Filter Plant
Bacti-Rout-2B	STK2031900-2	2020-02-07	Coliform	Golf Course Pro Shop	Bacteriological Monitoring - 2
	STK2035891-1	2020-05-05	Coliform	Golf Course Pro Shop	Bacteriological Sampling
	STK2037857-2	2020-06-05	Coliform	Golf Course Pro Shop	Bacteriological Monitoring - 2
	STK2051057-4	2020-08-06	Coliform	Golf Course Pro Shop	Bacteriological Sampling-2
	STK2052258-4	2020-08-27	Coliform	Golf Course Pro Shop	Bacteriological Sampling-2
Golf Course Pro	STK2052574-4	2020-09-02	Coliform	Golf Course Pro Shop	Bacteriological Sampling-2
Bacti-Rout-4A	STK2053582-4	2020-09-23	Coliform	Golf Course Pro Shop	Bacteriological Sampling-4
Bacti-Rout-2B	STK2054567-2	2020-10-13	Coliform	Golf Course Pro Shop	Bacteriological Monitoring - 2
Memorial BLDG R	STK2036070-1	2020-05-06	Coliform	Memorial BLDG R.R.	North Well Pressure Loss Others
Bacti-Rout-2A	STK2031900-1	2020-02-07	Coliform	Memorial Bldg. Public Restroom	Bacteriological Monitoring - 2
Bacti-Rout-3B	STK2032934-2	2020-03-03	Coliform	Memorial Bldg. Public Restroom	Bacteriological Sampling-3
Bacti-Rout-2A	STK2034756-1	2020-04-09	Coliform	Memorial Bldg. Public Restroom	Bacteriological Sampling-2
Bacti-Rout-3B	STK2036464-1	2020-05-13	Coliform	Memorial Bldg. Public Restroom	Bacteriological Sampling
	STK2037010-2	2020-05-21	Coliform	Memorial Bldg. Public Restroom	Bacteriological Sampling-3
Bacti-Rout-2A	STK2037857-1	2020-06-05	Coliform	Memorial Bldg. Public Restroom	Bacteriological Monitoring - 2

Bacti-Rout-3B	STK2039834-2	2020-07-15	Coliform	Memorial Bldg. Public Restroom	Bacteriological Sampling-3
	STK2051057-3	2020-08-06	Coliform	Memorial Bldg. Public Restroom	Bacteriological Sampling-3
Bacti-Rout-2A	STK2052258-3	2020-08-27	Coliform	Memorial Bldg. Public Restroom	Bacteriological Sampling-2
Memorial Bldg.	STK2052574-3	2020-09-02	Coliform	Memorial Bldg. Public Restroom	Bacteriological Sampling-2
Bacti-Rout-2A	STK2053582-3	2020-09-23	Coliform	Memorial Bldg. Public Restroom	Bacteriological Sampling-2
	STK2054567-1	2020-10-13	Coliform	Memorial Bldg. Public Restroom	Bacteriological Monitoring - 2
Bacti-1RPT 3	STK2056614-2	2020-12-01	Coliform	Memorial Bldg. Public Restroom	Bacteriological -1 Repeat Sampling
Bacti-Rout-2A	STK2056879-1	2020-12-04	Coliform	Memorial Bldg. Public Restroom	Bacteriological Monitoring - 2
Micke Gro-MEM S	STK2036875-2	2020-05-19	Coliform	Memorial Stage RR	Bacteriological Sampling-Micke Grove
Mokelumne River	STK2032937-1	2020-03-03	Coliform	Mokelumne River	QSI-Line Break
N. WELL	STK2056614-4	2020-12-01	Coliform	North Well	Bacteriological Sampling
Micke Grove NW	STK1452754-1	2014-12-17	Wet Chemistry	Northwest Well	Chrome 6 Monitoring
WELL- NW	STK1632399-1	2016-03-03	Radio Chemistry	Northwest Well	Gross Alpha Radiological
	STK1930549-1	2019-01-10	Wet Chemistry	Northwest Well	Water Ouality Monitoring
	STK1939915-1	2019-07-09	Metals, Total	Northwest Well	North Well NO2 & IOC
	STK2030488-1	2020-01-10	EPA 504.1	Northwest Well	Water Quality Monitoring
	STK2030794-1	2020-01-16	Wet Chemistry	Northwest Well	Water Quality Monitoring
	STK2051057-7	2020-08-06	Field Test	Northwest Well	SIC MICKE GROVE PARK
	STK2052073-1	2020-08-20	FPA 504 1	Northwest Well	Special Testing-Media Exchange
1	STK2052075-1	2020-00-20	Field Test	Northwest Well	SIC MICKE CROVE PARK
Bacti PPT 7B	STK2052250-7	2020-00-27	Field Test	Northwest Well	Bactoriological Repeat Sampling
NW Woll	STK2053502-7	2020-09-23	Coliform		Water Menitoring
	STK2052574-7		Field Test	NW Well	Water Monitoring
C Woll Vessel D	STK2032374-7	2020-09-02	Met Chemietry	S Well Vessel B	Mielte Crowe
5 Well Vessel D	51K1054051-2	2010-04-13	wet Chemistry	S well vessel b	Micke Grove
Sample Port @	STK2031928-1	2020-02-07	EPA 504.1	Sample Port @ 25%	Monitoring
	STK2036162-1	2020-05-08	EPA 504.1	Sample Port @ 25%	South Plant - Quarterly Media Monitoring
SamplePort@25 %	STK2051748-1	2020-08-14	EPA 504.1	Sample Port @ 25%	South Plant - Quarterly Media Monitoring
S. Well 25%	STK2055736-1	2020-11-06	EPA 504.1	Sample Port @ 25%	Water Monitoring
Sample Port @ 7	STK2031901-1	2020-02-07	EPA 504.1	Sample Port @ 75%	Northwest Plant - Quarterly Media Monitoring
Sample Port @	STK2036164-1	2020-05-08	EPA 504.1	Sample Port @ 75%	Northwest Plant - Quarterly Media Monitoring
SamplePort@75%	STK2051699-1	2020-08-14	EPA 504.1	Sample Port @ 75%	Northwest Plant - Quarterly Media Monitoring
Sample Port @ 7	STK2055698-1	2020-11-06	EPA 504.1	Sample Port @ 75%	Northwest Plant - Quarterly Media Monitoring
Sample Tap @ N.	STK2036070-2	2020-05-06	Coliform	Sample Tap @ N.R.R. Pressure S	North Well Pressure Loss Others
Micke Grove S.	STK1450247-2	2014-10-07	Wet Chemistry	South Well	Chrome 6 Monitoring
WELL- S	STK1632399-2	2016-03-03	Radio Chemistry	South Well	Gross Alpha Radiological
	STK1839350-1	2018-07-05	Metals, Total	South Well	South Well NO2 & IOC Monitoring
	STK1930549-2	2019-01-10	Wet Chemistry	South Well	Water Quality Monitoring
	STK2030488-2	2020-01-10	EPA 504.1	South Well	Water Quality Monitoring
	STK2030794-2	2020-01-16	Wet Chemistry	South Well	Water Quality Monitoring
	STK2051057-8	2020-08-06	Field Test	South Well	Water Monitoring
	STK2052258-8	2020-08-27	Field Test	South Well	SJC MICKE GROVE PARK
South Well	STK2052574-8	2020-09-02	Field Test	South Well	Water Monitoring
Bacti-RPT 8A	STK2053582-8	2020-09-23	Field Test	South Well	Bacteriological Repeat Sampling
S Well ST	STK1834851-1	2018-04-13	Wet Chemistry	South Well ST	Micke Grove
Bacti-Rout-1A	STK2030481-1	2020-01-10	Coliform	ST@ N. Bathroom Pressure MS	Bacteriological Monitoring -1
Bacti-Rout-4B	STK2034756-2	2020-04-09	Coliform	ST@ N. Bathroom Pressure MS	Bacteriological Sampling-4
Bacti-Rout-1A	STK2036268-1	2020-05-08	Coliform	ST@ N. Bathroom Pressure MS	Bacteriological Monitoring -1
	STK2036464-2	2020-05-13	Coliform	ST@ N. Bathroom Pressure MS	Bacteriological Sampling
	STK2036875-1	2020-05-19	Coliform	ST@ N. Bathroom Pressure MS	Bacteriological Sampling
	STK2037010-1	2020-05-21	Coliform	ST@ N. Bathroom Pressure MS	Bacteriological Sampling-1
	STK2051057-1	2020-08-06	Coliform	ST@ N. Bathroom Pressure MS	Bacteriological Sampling-1
	STK2051697-1	2020-08-14	Coliform	ST@ N. Bathroom Pressure MS	Bacteriological Sampling-1
	STK2052258-1	2020-08-27	Coliform	ST@ N. Bathroom Pressure MS	Bacteriological Sampling 1
	STK2053582-1	2020-09-23	Coliform	ST@ N_Bathroom Pressure MS	Bacteriological Monitoring
U	511200002-1				-action group internet

	STK2055700-1	2020-11-06	Coliform	ST@ N. Bathroom Pressure MS	Bacteriological Monitoring
Bacti-1RPT 1	STK2056614-1	2020-12-01	Coliform	ST@ N. Bathroom Pressure MS	Bacteriological -1 Repeat Sampling
ST@ N. Bathroom	STK2052574-1	2020-09-02	Coliform	ST@ N. Bathroom Pressure Stati	Bacteriological Sampling-1
CuPb-ss04	STK2053133-4	2020-09-08	Metals, Total	Stanislaus-Picnic Shelter	Copper & Lead Monitoring
Bacti-Rout-1B	STK2030481-2	2020-01-10	Coliform	Zoo Employee Restroom	Bacteriological Monitoring -1
Bacti-Rout-3A	STK2032934-1	2020-03-03	Coliform	Zoo Employee Restroom	Bacteriological Sampling-3
Bacti-Rout-1B	STK2035891-2	2020-05-05	Coliform	Zoo Employee Restroom	Bacteriological Sampling
	STK2036268-2	2020-05-08	Coliform	Zoo Employee Restroom	Bacteriological Monitoring -1
Bacti-Rout-3A	STK2039834-1	2020-07-15	Coliform	Zoo Employee Restroom	Bacteriological Sampling-3
Bacti-Rout-1B	STK2051057-2	2020-08-06	Coliform	Zoo Employee Restroom	Bacteriological Sampling-1
	STK2052258-2	2020-08-27	Coliform	Zoo Employee Restroom	Bacteriological Sampling-1
Zoo Employee Re	STK2052574-2	2020-09-02	Coliform	Zoo Employee Restroom	Bacteriological Sampling-1