ANNUAL WATER OUALLTY REPORT

Reporting Year 2024

Presented By
Ramona Municipal Water District

Our Commitment

We are pleased to present to you this year's annual water quality report. This report is a snapshot of last year's water quality covering all testing performed between January 1 and December 31, 2024. Included are details about your sources of water, what it contains, and how it compares to standards set by regulatory agencies. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water and providing you with this information because informed customers are our best allies.

Where Does My Water Come From?

The San Diego County Water Authority purchases water from the Metropolitan Water District of Southern California (MWDSC). This water is a blend of surface water from the Colorado River and runoff from the Sierra Nevada Mountains in Northern California. It is treated at the Twin Oaks Valley treatment plant in San Diego County and the MWDSC Lake Skinner filtration plant located in Riverside County. The Carlsbad desalination plant provides San Diego County with a locally controlled, drought-proof supply of high-quality water. The Ramona Municipal Water District also periodically purchases water from the City of Poway.

Public Meetings

You are invited to attend our district board meetings. We meet the second Tuesday of each month at 6:00 p.m. at the Ramona Community Center, 434 Aqua Lane.

Board of Directors:

Jim Hickle, President, Division II
Jeff Lawler, Vice President, Division I
Jim Piva, Secretary, Division III
Jacob Zoria, Treasurer, Division IV
Princess Norman, Director, Division V
Erica Wolski, General Manager

The Benefits of Fluoridation

Our water system treats your water by adding fluoride to the naturally occurring level to help prevent dental caries in consumers. State regulations require the fluoride levels in the treated water be maintained within a range of 0.7-1.2 part per million (ppm) with an optimum dose of 0.7 ppm. Our monitoring showed that the fluoride levels in the treated water ranged from 0.6-0.8 ppm with an average of 0.7 ppm. Information about fluoridation, oral health, and current issues is available from swrcb.ca.gov/drinking_water/certlic/drinkingwater/Fluoridation.shtml.

Source Water Assessment

Every five years, MWDSC is required by the Division of Drinking Water (DDW) to examine possible sources of drinking water contamination in its State Water Project and Colorado River source waters. The most recent surveys are the Colorado River Watershed Sanitary Survey 2020 Update and the State Water Project Watershed Sanitary Survey 2021 Update.

State Water Project supplies are considered to be most vulnerable to urban/stormwater runoff, wildlife, agriculture, recreation, and wastewater. A copy of the assessment can be obtained by contacting the MWDSC at (800) 225-5693.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants, can be particularly at risk from infections. These people should seek advice

about drinking water from their health-care providers. U.S. Environmental Protection Agency (U.S. EPA)/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or epa.gov/safewater.

QUESTIONS?

For more information about this report, or for any questions relating to your drinking water, please call Sarah Yorba, Water Quality Lab Analyst, at (760) 789-1330.

Substances That Could Be in Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic Contaminants, such as salts and metals, that can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and Herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

Radioactive Contaminants, which can be naturally occurring or the result of oil and gas production and mining activities.

To ensure that tap water is safe to drink, the U.S. EPA and the State Water Resources Control Board (SWRCB) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA Safe Drinking Water Hotline at (800) 426-4791.

Benefits of Chlorination

Disinfection, a chemical process used to control disease-causing microorganisms by killing or inactivating them, is unquestionably the most important step in drinking water treatment. By far, the most common method of disinfection in North America is chlorination.

Before communities began routinely treating drinking water with chlorine (starting with Chicago and Jersey City in 1908), cholera, typhoid fever, dysentery, and hepatitis A killed thousands of US residents annually. Drinking water chlorination and filtration have helped to virtually eliminate these diseases in the US. Significant strides in public health are directly linked to the adoption of drinking water chlorination. In fact, the filtration of drinking water and the use of chlorine are probably the most significant public health advancements in human history.

How chlorination works:

- Potent germicide: reduction of many diseasecausing microorganisms in drinking water to almost immeasurable levels.
- Taste and odor: reduction of many disagreeable tastes and odors from foul-smelling algae secretions, sulfides, and decaying vegetation.
- Biological growth: elimination of slime bacteria, molds, and algae that commonly grow in water supply reservoirs, on the walls of water mains, and in storage tanks.
- Chemical: removal of hydrogen sulfide (which has a rotten egg odor), ammonia, and other nitrogenous compounds that have unpleasant tastes and hinder disinfection. It also helps to remove iron and manganese from raw water.

Lead in Home Plumbing

Land young children. Lead in drinking water is primarily from materials and parts used in service lines and in home plumbing. Ramona Municipal Water District is responsible for providing high-quality drinking water and removing lead pipes but cannot control the variety of materials used in the plumbing in your home. Because lead levels may vary over time, lead exposure is possible even when your tap sampling results do not detect lead at one point in time. You can help protect yourself and your family by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Using a filter certified by an American National Standards Institute-accredited certifier to reduce lead is effective in reducing lead exposures. Follow the instructions provided with the filter to ensure it is used properly. Use only cold water for drinking, cooking, and making baby formula. Boiling does not remove lead from water.

Before using tap water for drinking, cooking, or making baby formula, flush your pipes for several minutes. You can do this by running your tap, taking a shower, or doing laundry or a load of dishes. If you have a lead or galvanized service line requiring replacement, you may need to flush your pipes for a longer period. If you are concerned about lead and wish to have your water tested, contact our office at (760) 789-1330. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at epa.gov/safewater/lead.

To address lead in drinking water, public water systems were required to develop and maintain an inventory of service line materials by October 16, 2024. Developing an inventory and identifying the location of lead service lines (LSL) is the first step for beginning LSL replacement and protecting public health. The lead service inventory may be viewed at https://www.rmwd.org/home/showpublisheddocument/4469/638700326667900000. Please contact us if you would like more information about the inventory or any lead sampling that has been done.

Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule, and the water we deliver must meet specific health standards. Here, we only show those substances that were detected in our water (a complete list of all our analytical results is available upon request). Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The state recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data is included, along with the year in which the sample was taken.

We participated in the fifth stage of the US EPA's Unregulated Contaminant Monitoring Rule (UCMR5) program by performing additional tests on our drinking water. All analytes tested had results below the laboratory detection limit. UCMR5 sampling benefits the environment and public health by providing the U.S. EPA with data on the occurrence of contaminants suspected to be in drinking water to determine if it needs to introduce new regulatory standards to improve drinking water quality. Unregulated contaminant monitoring data is available to the public, so please feel free to contact us if you are interested in obtaining that information. If you would like more information on the U.S. EPA's Unregulated Contaminant Monitoring Rule, please call the Safe Drinking Water Hotline at (800) 426-4791.

REGULATED SUBSTANCES													
					Municipal District	Metropolitan Water District Skinner Plant		San Diego County Water Authority		Carlsbad Desalination Plant			
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	PHG (MCLG) [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Arsenic (ppb)	2024	10	0.004	NA	NA	ND	NA	NA	NA	ND	NA	No	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Barium (ppm)	2024	1	2	NA	NA	ND¹	NA	113	95–122	ND	NA	No	Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits
Bromate (ppb)	2024	10	0.1	NA	NA	1.5	ND-6	1.7	ND-8.5	NA	NA	No	By-product of drinking water disinfection
Chloramines (ppm)	2024	[4.0 (as Cl2)]	[4 (as Cl2)]	1.44	0.09-2.27	NA	NA	NA	NA	NA	NA	No	Drinking water disinfectant added for treatment
Fluoride (ppm)	2024	2.0	1	NA	NA	0.72	0.6–0.8 ²	0.643	0.6–0.7³	0.692	0.606– 0.790	No	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories
Gross Alpha Particle Activity (pCi/L)	2024	15	(0)	NA	NA	ND	ND-4	ND	NA	ND	NA	No	Erosion of natural deposits
Gross Beta Particle Activity (pCi/L)	2024	50 ⁴	(0)	NA	NA	4	ND-5	4.23	NA	ND	NA	No	Decay of natural and human-made deposits
HAA5 [sum of 5 haloacetic acids] (ppb)	2024	60	NA	5.35⁵	ND-12.0	NA	NA	NA	NA	NA	NA	No	By-product of drinking water disinfection

REGULATED SUBSTANCES															
					Municipal District		Water District er Plant		County Water hority	Carlsbad Des	salination Plant				
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	PHG (MCLG) [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT RANGE DETECTED LOW-HIGH		VIOLATION	TYPICAL SOURCE		
Hexavalent Chromium (ppb)	2024	10	20	NA	NA	ND	NA	0.03	ND-0.32	ND	NA	No	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits		
TTHMs [total trihalomethanes] (ppb)	2024	80	NA	24.755	8.7–46	NA	NA	NA	NA	NA	NA	No	By-product of drinking water disinfection		
Turbidity (NTU)	2024	TT	NA	NA	NA	0.07/100%	Highest/ %<-0.3NTU	0.03/100%	Highest/ %<-0.3NTU	0.08/100%	Highest/ %<-0.3NTU	No	Soil runoff		
Uranium (pCi/L)	2024	20	0.43	NA	NA	2	ND-3	2.3	1.7–2.8	ND	NA	No	Erosion of natural deposits		
Tap water samples wer	e collected fo	r lead and	copper anal	yses from sam	ple sites throuç	hout the commu	nity								
AMOUNT SITES ABOVE SUBSTANCE YEAR PHG DETECTED AL/TOTAL (UNIT OF MEASURE) SAMPLED AL (MCLG) (90TH %ILE) SITES VIOLATION TYPICAL SOURCE															
Copper (ppm)	2022	1.3	0.3	0.180		0/32	No I	No Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives							
Lead (ppb)	2022	15	0.2	2.2		0/32	No I	Internal corrosion of household plumbing systems; discharges from industrial manufacturers; erosion of natural deposits							
SECONDARY SUBSTANCES															
					Metropolita District Skin		San Diego Cou Water Authori		ad Desalination Plant						

	Metropolitan Water District Skinner Plant		San Diego County Water Authority		Carlsbad Desalination Plant						
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	SMCL	PHG (MCLG)	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Chloride (ppm)	2024	500	NS	96	92–100	NA	NA	80	48–110	No	Runoff/leaching from natural deposits; seawater influence
Color (units)	2024	15	NS	2	1–2	ND	ND-1	ND	NA	No	Naturally occurring organic materials
Odor, Threshold (TON)	2024	3	NS	1	NA	ND	NA	ND	NA	No	Naturally occurring organic materials
Specific Conductance (µS/cm)	2024	1,600	NS	910	903–917	8271	NA	430.8	242.3–551.4	No	Substances that form ions when in water; seawater influence
Sulfate (ppm)	2024	500	NS	199	195–203	191	152–217	14.8	12.0–17.0	No	Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids (ppm)	2024	1,000	NS	566	560-572	545	474–614	240	149_311	No	Runoff/leaching from natural deposits

What Causes the Pink Stain on Bathroom Fixtures?

The reddish-pink color frequently noted in bathrooms on shower stalls, tubs, tile, toilets, sinks, and toothbrush holders and on pets' water bowls is caused by the growth of the bacterium Serratia marcescens. Serratia is commonly isolated from soil, water, plants, insects, and vertebrates (including humans). The bacteria can be introduced into the house through any of these sources. The bathroom provides a perfect environment (moist and warm) for bacteria to thrive.

The best solution to this problem is to clean and dry these surfaces to keep them free from bacteria. Chlorine-based compounds work best, but keep in mind that abrasive cleaners may scratch fixtures, making them more susceptible to bacterial growth. Chlorine bleach can be used periodically to disinfect the toilet and help eliminate the occurrence of the pink residue. Keeping bathtubs and sinks wiped down using a solution that contains chlorine will also help to minimize its occurrence. Serratia will not survive in chlorinated drinking water.

UNREGULATED SUBSTANCES ⁶												
		itan Water kinner Plant	San Dieg Water A			Desalination lant						
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	TYPICAL SOURCE				
Alkalinity (ppm)	2024	105	103–107	112	99–120	66	47–88	NA				
Boron (ppb)	2024	130	NA	NA	NA	0.65	0.44-0.92	NA				
Calcium (ppm)	2024	62	61–62	NA	NA	23.3	19.76–60.0	NA				
Chlorate (ppb)	2024	80	NA	291	220–380	NA	NA	NA				
Corrosivity [as aggressiveness] (units)	2024	12.4	12.3-12.4	NA	NA	NA	NA	NA				
Corrosivity {as saturation} (units)	2024	0.52	0.46-0.57	NA	NA	NA	NA	NA				
Hardness (ppm)	2024	242	242-243	NA	NA	68.1	60.4–75.2	NA				
Magnesium (ppm)	2024	22	22–23	NA	NA	1.4	1.2 -1.5	NA				
N-Nitrosodimethylamine [NDMA] (ppt)	2024	3.2	NA	ND	NA	NA	NA	NA				
Potassium (ppm)	2024	4.8	4.6–4.9	NA	NA	7.501	ND-33.892	NA				
Sodium (ppm)	2024	93	91–95	NA	NA	57.0	54.6–61.5	NA				
Total Organic Carbon [TOC] (ppm)	2024	2.6	2.3-3.0	2.2	2.0-2.4	NA	NA	NA				

¹ Single sample taken.

²This water system treats your water by adding fluoride to the naturally occurring level to help prevent dental caries in consumers. State regulations require the fluoride levels in the treated water be maintained within a range of 0.6

- 1.2 ppm, with an optimal dose of 0.7 ppm.

³This water system treats your water by adding fluoride to the naturally occurring level to help prevent dental caries in consumers. State regulations require the fluoride levels in the treated water be maintained within a range of 0.6 - 1.2 ppm with an optimum dose of 0.7 ppm. This water system's monitoring showed that the fluoride levels in the treated water ranged from 0.6 - 0.8 ppm with an average of 0.7 ppm.

⁴The SWRCB considers 50 pCi/L to be the level of concern for beta particles.

⁵ Highest locational running annual average.

⁶ Unregulated contaminant monitoring helps the U.S. EPA and SWRCB determine where certain contaminants occur and whether the contaminants need to be regulated.

Definitions

90th %ile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

AL (**Regulatory Action Level**): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs (SMCLs) are set to protect the odor, taste, and appearance of drinking water.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. EPA.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal):

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

ND (Not Detected): Indicates that the substance was not found by laboratory analysis.

NS: No standard.

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

pCi/L (picocuries per liter): A measure of radioactivity.

PDWS (Primary Drinking Water Standard): MCLs and MRDLs for contaminants that affect health, along with their monitoring and reporting requirements, and water treatment requirements.

PHG (**Public Health Goal**): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

ppb (μg/L) (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (mg/L) (parts per million): One part substance per million parts water (or milligrams per liter).

ppt (**ng/L**) (**parts per trillion**): One part substance per trillion parts water (or nanograms per liter).

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.

μS/cm (microsiemens per centimeter): A unit expressing the amount of electrical conductivity of a solution.