This annual water quality report explains how drinking water provided The City of Poway is committed in continuing investments for planned by the City of Poway meets or exceeds all state and federal water quality standards for your drinking water. We conduct approximately 65,000 tests annually on the drinking water quality; many of the tests for our customers now and generations to come, the City of Poway is go beyond what is required by regulations. This report includes results of water quality tests performed between January 1, and December 31, 2021. It also includes notes, background information and clearwell (water storage reservoir) at the water treatment plant and definitions helpful for interpreting the data, as well as an explanation of where your water comes from.

The City of Poway routinely monitors the water supplies for a range of elements that could potentially impact the quality of your water. If a potential problem is detected, our water treatment personnel take measures to restore the quality of the water.

replacements and upgrades to our water treatment and distribution systems. With the goal of increasing the reliability of drinking water undertaking the largest capital improvement program (CIP) in the city's 40-year history. The CIP will include replacing the 10 million gallon obtaining a new San Diego County Water Authority (SDCWA) treated

Learn more about these projects at poway.org/water-projects. For additional information on the water quality testing results in this report, please call Jesse Bartlett-May, Water Treatment Plant Manager at the City of Poway Lester J. Berglund Water Treatment Plant at

> ESPAÑOL: Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.

ADDITIONAL PUBLIC INFORMATION:

dance with the mandate of the Safe Drinking Water Act (SDWA), the California ater Resources Control Board (SWRCB) has developed the Drinking Water wells in California. The source is most likely from leaking underground gasoline State Water Resources Control Board (SWRCB) has developed the Drinking Water Source Assessment and Protection (DWSAP) Program to evaluate watershed vulnerability to potential contamination sources. The City of Poway completed its Watershed Sanitary Survey (WSS) update in December 2020. The WSS includes an updated assessment of potential contamination sources and source protection activities. The 2020 WSS can be viewed upon request from the Poway City Clerk's Office. (858) 668-4530.

METROPOLITAN WATER DISTRICT (MWD) SOURCE WATER ASSESSMENT:

MWD of Southern California completed its source water assessments - watershed sanitary surveys of the Colorado River in December 2016, and the State Water Project EPA Drinking Water Website: http://water.epa.gov/drink/index.cfm

in 2017. Colorado River supplies are considered to be most vulnerable to recreation, urban/stormwater run-off, increasing urbanization in the watershed, and wastewater State Water Project supplies are considered to be most vulnerable to urban/ stormwater run-off, wildlife, agriculture, recreation, and wastewater. A copy of the assessment can be obtained by contacting Metropolitan by phone at (800) 354-4420.

UNREPORTED WATER QUALITY PARAMETERS:

Only "detected" parameters are included in this report, as required by the State. Over 75 additional water quality parameters were investigated, and not detected at the detection limits required by the State of California.

LEAD AND COPPER RULE:

Mandated by the EPA effective in 1992, the Rule monitors for lead and copper ontamination after the water has left the distribution system. Water is collected from selected representative household faucets every three years. The most recent sampling was in 2019. The next sampling is due in 2022.

METHYL TERT-BUTYL ETHER (MTBE):

storage tanks. Poway relies on surface water sources which are less vulnerable to MTBE contamination.

OPPORTUNITY FOR PUBLIC PARTICIPATION:

The City welcomes you and encourages your continued interest and involvement in the City's decision-making process.

The City Council meets on the 1st and 3rd Tuesday of each month at 7:00 P.M. in the Council Chambers at City Hall, located at 13325 Civic Center Drive.

INFORMATIVE WEB SITES:

EPA Drinking Water Website: https://www.epa.gov/dwreginfo/drinking-water-

State Water Rescources Control Board : http://www.swrcb.ca.gov/drinking_water/certlic/drinkingwater/NotificationLevels.html

IMPORTANT PHONE NUMBERS:

City of Poway Water Treatment Plant.....(858) 668-4751 EPA Safe Drinking Water Hotline....(800) 426-4791

SWRCB, Office of Drinking Water(916) 341-5254

REQUIRED HEALTH INFORMATION

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of

CITY OF POWAY

Water Quality Report

be used while the clearwell at the water treatment plant is replaced.

Two 1.4MG temporary storage tanks, located at the Lake Poway ballfield, will

SURFACE WATER SOURCES

The raw water is received from the Northern California Aqueduct and

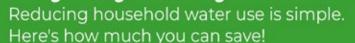
THE TREATMENT PROCESS

filtration, taste/odor control, corrosion control, and disinfection.

THE DISINFECTION PROCESS

The City of Poway employs two methods of disinfection. The first, chlorine, effectively eliminates water-borne diseases from the public water supply. The second, chloramines, a combination of chlorine and ammonia, further improves the quality of our water supply and reduces the formation of disinfection byproducts. This disinfection process chemically deactivates and physically removes bacteria, viruses and other contaminants. There is no evidence that the virus COVID-19 is transmitted through treated

WATER QUALITY MONITORING


The State Water Resources Control Board (SWRCB) is responsible for enforcing Drinking Water Quality Regulations, as set forth by the United States Environmental Protection Agency (USEPA).

The USEPA regulations are composed of primary and secondary standards: Primary standards relate to the protection of public health. These standards specify limits for substances in water that may be harmful to humans if consumed in excess of those limits.

Secondary standards relate to aesthetic qualities of water such as taste, odor, or clarity. These standards specify limits for substances that may influence consumer acceptance of the water.

Everyday Ways to Save

Check sprinkler system for leaks, overspray and broken sprinkler heads

and dishes

.

FOOTNOTES TO TABLE:

AL = Action Level

NA = Not Applicable

ND = None Detected

NS = No Standard

Turbidity Units

NTU = Nephelometric

pCi/L = picocuries per liter

ppb = parts per billion (ug/L)

NL = Notification Level

NC = Not Collected

ppm = parts per million

TON = Threshold Odor

umhos/cm = micromhos/

CFU/mL = Colony-Forming

centimeter

Units per Milliliter

(mg/L) TT = Treatment Technique

DEFINITIONS AND NOTES:

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Primary Drinking Water Standard (PDWS): MCLs, MRDLs and treatment techniques (TTs) for contaminants that affect health, along with their monitoring and reporting requirements.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed addition of a disinfectant is necessary for control of

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Locational Running Annual Averages (LRAA): The highest of all locations collected (LRAA) and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of naturally-occurring minerals and, in some cases, radioactive material, and can pick u substances resulting from the presence of animals or from human activity.

Contaminants that may be present

- in source water include:
 Microbial contaminants, such as viruses and bacteria, that may come from sewa treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater rundischarges, oil and gas production, mining or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture urban stormwater run-off, and residential
- Radioactive contaminants, that can be naturally occurring or a result of oil and gas production and mining activities.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and may also

run-off, agricultural application, and septic If present, elevated levels of lead can cause

serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and compounds associated with service lines and home plumbing. The City of Poway When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the State Water Resource Control Board prescribe regulations that limit the amount of certain contaminants

Department regulations also establish limit for contaminants in bottled water that mus

Poway treats an average of 8 million

gallons per day, close to 3 billion

allons per year

provide the same protection for public health

CITY OF POWAY ANNUAL WATER QUALITY REPORT 2021

	UNITS	STATE MCL [MRDL]	PHG (MCLG) [MRDLG]	TREATMENT PLANT EFFLUENT		DISTRIBUTION SYSTEM		LAKE POWAY WATER		IMPORTED WATER		SOURCES OF CONTAMINATIO	
PARAMETER				AVERAGE	RANGE	AVERAGE	RANGE	AVERAGE	RANGE	AVERAGE	RANGE	IN DRINKING WATER	
PRIMARY STANDARDS- I	/landator	y Health I	Related Star	ndards Estab	lished by the	State of Cali	fornia, State	Water Resou	irces Contro	l Board - Divi	sion of Drink	ing Water.	
CLARITY	NITH	0.2 (TT)	NIA	Himbook Doo	d:0.0C	0.100	-0.1 1.00	N1 /A	NIA	NA	NA	Soil runoff	
Turbidity (a)	NTU %	0.3 (TT) 95	NA NA	Highest Rea % < 0.3		0.160 NA	<0.1 - 1.80 NA	N/A NA	NA NA	NA NA	NA NA	Soil runott	
INORGANIC CHEMICALS	70	33	IVA	70 - 0.5	. 100 /0	IVA	TVA	IVA	INA	IVA	IVA		
Aluminum	ppm	1	0.6	0.126	0.0591- 0.234	NA	NA	<0.02	<0.02	0.052	0.052	Residue from treatment processes	
Arsenic	ppb	10	0.004	NA	NA	NA	NA	2.47	2.47	2.1	2.1	Erosion of natural deposits	
Fluoride (naturally- occurring)	ppm	2.0	1	NA	NA	NA	NA	ND<0.300	ND<0.300	0.3	0.3	Erosion of natural deposits	
Nitrate (as Nitrogen)	ppm	10	10	NA	NA	<0.40	<0.40 - 0.692	<0.40	<0.40	ND	ND	Run-off & leaching from fertilizer use	
Cross Alpha	nCi/I	15	(0)	NA	NA	NA	NA	2.16±1.72	2.16±1.72	ND	ND - 3.0	Exection of natural denocity	
Gross Alpha	pCi/L	50	(0)	NA NA	NA NA	NA NA	NA NA	2.75±1.72	2.75±1.72	ND	ND - 3.0	Erosion of natural deposits	
Gross Beta (b) Uranium	pCi/L	20	(0) 0.43	NA NA	NA NA	NA NA	NA NA	1.61	1.61	1.9	1.4 - 2.6	Decay of natural deposits Erosion of natural deposits	
MICROBIOLOGICAL	pci/L	20	0.43	INA	INA	INA	INA	1.01	1.01	1.9	1.4 - 2.0	Erosion of flatural deposits	
Total Coliform Bacteria	(c)	5.0%	(0)	0.00%	<1	Highest % p	ositive = 0%	950	52 - 2420	NA	NA	Naturally present in environment	
E. coli	(c)	(c)	(0)	# posit	ives = 0	# posit	ives = 0	5.27	ND - 22	NA	NA	Human and animal fecal was	
Heterotrophic Plate Count (HPC)	CFU/mL	TT	NA	0.08	ND - 4	11.9	ND - 50	NA	NA	NA	NA	Naturally present in environment	
DISINFECTION BYPRODU	CTS AND	DISINFEC	TANT RESID	UALS									
Total Trihalomethanes (TTHM's) (d)	ppb	80	NA	NA	NA	50	26.7 - 54.1	NA	NA	NA	NA	By-product of drinking wate disinfection	
Haloacetic acids (HAA5) (d)	ppb	60	NA	NA	NA	23.0	13.0 - 35.5	NA	NA	NA	NA	By-product of drinking wate disinfection	
Chlorine Residual as Chloramine (e)	ppm	[4]	[4]	NA	NA	3.15	1.38 - 3.60	NA	NA	NA	NA	Disinfectant added for treatment	
SECONDARY STANDARD	S- Aesthe	tic Stand	ards Establi	shed by the S	tate of Califo	ornia, State V	Vater Resour	ces Control E	Board - Divisi	on of Drinkir	ng Water.		
Aluminum	ppb	200	NA	126	59.1 - 234	NA	NA	<20	<20	ND	ND	Residue from treatment processes	
Chloride	ppm	500	NA	NA	NA	NA	NA	95.4	95	88	84 - 92	Runoff / leaching of natural deposits	
Color	units	15	NA	NA	NA	0.200	<1-2	7	7	4	3 - 5	Naturally occurring organic materials	
Odor Threshold	TON	3	NA	NA	NA	<1	<1	<1	<1	6	6	Naturally occurring organic materials	
Specific Conductance	umhos/ cm	1600	NA	NA	NA	NA	NA	891	891	890	852- 927	Substances that form ions in water	
Sulfate	ppm	500	NA	NA	NA	NA	NA	168	168	186	170 - 203	Runoff / leaching of natural deposits	
Total Dissolved Solids	ppm	1000	NA	NA	NA	NA	NA	532	532	560	508 - 611	Runoff / leaching of natural deposits	
Turbidity	NTU	5	NA	0.03	0.02 - 0.18	<0.1	0.18	0.18	<1	0.7	<0.1	Soil runoff	
UNREGULATED CONTAM	INANTS -	May beco	me regulat	ed in the futu	ıre								
Boron	ppb	NA	NL=1000	NA	NA	NA	NA	133	NA	140	140	Erosion of natural deposits	
Vanadium	ppb	NA	NL=50	NA	NA	NA	NA	3.28	NA	ND	ND	Erosion of natural deposits	
OTHER PARAMETERS				I					I	I	I		
Alkalinity	ppm	NA	NA	NA	NA	NA	NA	114	NA	128	125 - 131	Runoff / leaching of natural deposits	
Calcium	ppm	NA	NA	NA	NA	NA	NA	45.1	NA	64	59 - 69	Runoff / leaching of natural deposits	
Hardness as Calcium Carbonate	ppm	NA	NA	NA	NA	NA	NA	207	NA	258	242 -273	Leaching from natural depo	
Magnesium	ppm	NA	NA	NA	NA	NA	NA	20.4	NA	24	22 - 25	Runoff / leaching of natural deposits	
Potassium	ppm	NA	NA	NA	NA	NA	NA	4.51	NA	4.2	4.3	Leaching from natural depo	
Sodium	ppm	NA	NA	NA	NA	NA	NA	76.2	NA	86	81 - 91	Runoff / leaching of natural deposits	
Total Organic Carbon	ppm	TT	NA	NA	NA	NA	NA	3.72	3.19 - 4.04	3.1	2.9 - 3.2	Natural and manmade depo	
LEAD AND COPPER RULI							0.005 -						
Copper	ppm	AL=1.3 AL=15	0.3	N		0.060	0.319 <1 - 78	0.0026	NA NA			Internal corrosion of househ plumbing systems	

PWSID # CA3710015