

Water Quality

REPORT

2024

2024 Water Quality Report

After more than 150 types of tests conducted by its wholesalers – the Metropolitan Water District of Southern California (MWD) and the San Diego County Water Authority (SDCWA) – along with additional testing by the City of Oceanside, Olivenhain Municipal Water District (OMWD), and Vallecitos Water District (VWD), the results confirm that your water met or exceeded all state and federal potable drinking water standards.

In addition to testing, your drinking water underwent a treatment process that included filtration and disinfection to ensure its quality. The results of our own testing, as well as those from the City of

Oceanside, OMWD, and our wholesalers, are presented in the tables of this report.

This report gives you a snapshot of last year's water quality. Inside, you'll find information about where your water comes from, what's in it, and how it measured up to state and federal safety standards.

Origins of Your Drinking Water

Since 2014, VWD customers have received 100% imported water from the San Diego County Water Authority (SDCWA), which sources water from Northern California and the Colorado River through the Metropolitan Water District (MWD).

To reduce reliance on imported water and improve supply reliability—especially during droughts and regulatory challenges— VWD began receiving desalinated ocean water in late 2015. This water comes from the Carlsbad Claude "Bud" Lewis Desalination

Claude "Bud" Lewis Desalination Plant in Carlsbad

Colorado River via the 242-mile Colorado River Aqueduct

Sacramento-San Joaquin Delta via the 444-mile CA Aqueduct

Plant, the largest of its kind in the Western Hemisphere. It draws water from the Agua Hedionda Lagoon, removes salt and nearly all minerals and impurities, and delivers it through a 10-mile pipeline to VWD customers.

By 2016, VWD started receiving water directly from the plant, offering customers a high-quality blend of desalinated and imported water.

No matter the source, your water remains safe and secure throughout its journey. Enhanced security at key facilities, increased sampling, and regular aerial and ground patrols help protect your water every step of the way. VWD also actively supports changes in public policy to further improve water quality. Each year, more than 5 billion gallons of this exceptional water are delivered through 19 storage reservoirs and 350 miles of pipeline to serve a 45-squaremile area, including San Marcos, Lake San Marcos, and parts of Escondido, Carlsbad, Vista, and nearby unincorporated communities.

The Water We Drink

The U.S. Congress has directed the U.S. Environmental Protection Agency (USEPA) to require water systems to report the quality of the drinking water they serve annually. Vallecitos supports this regulation and has provided Water Quality Reports and other water quality data to all of its customers for many years.

The Reason for Contaminants

water, may contain small amounts of some substances. This is normal and doesn't necessarily mean the water is unsafe. In fact, the presence of some contaminants doesn't always pose a health risk.

To keep your water safe, the U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board set strict rules about how much of certain substances can be in drinking water. VWD and its water suppliers treat your water to meet or exceed these safety standards.

Drinking water—whether it comes from a tap or a bottle—originates from natural sources like rivers, lakes, reservoirs, streams, and wells. As it moves through soil and rocks, it can naturally absorb minerals and even trace amounts of materials from animals or human activity.

For more information about water contaminants and potential health effects, you can call the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Contaminants possibly present in source water before treatment include:

- Organic chemical contaminants, including synthetic and volatile organic compounds that are by-products of industrial processes and petroleum production and can come from gas stations, urban stormwater runoff, agricultural application and septic systems.
- <u>Inorganic contaminants</u>, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- <u>Pesticides and herbicides</u>, which may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses.
- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- <u>Radioactive contaminants</u>, which can be naturally-occurring or the result of oil and gas production and mining activities

Health Advisories Regarding Your Water

Some people may be more sensitive to contaminants in drinking water than others. This includes individuals with weakened immune systems, such as those undergoing cancer treatment, people who've had organ transplants, individuals with HIV/AIDS or other immune disorders, some elderly individuals, and infants.

If you or someone in your household falls into one of these groups, it's a good idea to talk with a healthcare provider about drinking water safety.

For more guidance on how to reduce the risk of infection from microbial contaminants like Cryptosporidium, you can contact the Safe Drinking Water Hotline at (800) 426-4791, operated by the U.S. Environmental Protection Agency (USEPA) and the Centers for Disease Control and Prevention (CDC).

The tables below list all the drinking water contaminants tested for during the 2024 calendar year. Thousands of water quality tests were performed on your drinking water last year. Many more parameters were tested for and not found. The results in this report show that your water met, and in most cases exceeded, all of the stringent state (State Water Resources Control Board) and federal (U.S. Environmental Protection Agency) water quality standards relating to public health and aesthetics, such as taste, odor and color. Unless otherwise noted, the data in the following tables reflect testing from January 1, 2024, through December 31, 2024. The monitoring of certain contaminants is not required annually since they are not expected to vary significantly from year to year. Therefore, though representative of the water quality, some of the data may be more than one year old.

Summary of Vallecitos Water District's 2024 Water Quality Analysis

Parameter Units MCL (MCLG) Range Average NR 0 - 64 NR NA NA NR								
Parameter Units [MRDL] [MRDLG] Average Plant Plant Plant Plant Plant Percent State Project Water % NA NA Range Average NR 0 - 64 NR NA NR PRIMARY STANDARDS - Mandatory Health-Related Standards - Data provided by the San Diego County Water Authority (Twin Oaks Treatment Plant)	Drinking Water ont), the Metropolitan Water District							
Percent State NA NA Range Average NR 0 - 64 NR NA NR PRIMARY STANDARDS - Mandatory Health-Related Standards - Data provided by the San Diego County Water Authority (Twin Oaks Treatment Plan	nnt), the Metropolitan Water District							
Project Water								
PRIMARY STANDARDS - Mandatory Health-Related Standards - Data provided by the San Diego County Water Authority (Twin Oaks Treatment Plan								
	ination Plant), and the Olivenhain							
Municipal Water District (David C. McCollom Water Treatment Plant).								
CLARITY Combined Filter NTU 0.3 Highest 0.09 0.07 0.20 0.08 0.06								
	runoff							
MICROBIOLOGICAL								
Range ND 0 ND 0 NR								
Total Coliform Bacteria (b)	Naturally present in the environment							
Range ND 0 NR 0 NR								
E. coli (c) (c) (c) (0) Average ND 0 NR 0 NR	man and animal fecal waste							
Range NR ND NR NA NR								
Heterotrophic Plate (d) CFU/mL TT NA Average NR ND NR NA NR NANR NAU NR	Naturally present in the environment							
INORGANIC CHEMICALS								
Arsenic ppb 10 0.004 Range NR ND NA ND 2.2 Natura	Natural deposits erosion; runoff from orchards; glass and electronics production wastes							
Average NR ND ND ND 2.2 electro								
Barium ppm 1 2 Range 0.095 - 0.122 ND NA ND .11 Oil an	Oil and metal refineries discharges; natural deposits erosion							
Average 0.113 ND 0.1 ND .11	and motal remotion discharges, nataral deposits crosses							
Optimal Fluoride Control Range 0.6 - 1.2 NA NA NA NR	Erosion of natural deposits; water additive for dental health; discharge from fertilizer and aluminum factories							
Huoride Treatment-Related pom 2.0 1 Range 0.6 - 0.7 0.6 - 0.8 Not Added 0.6 - 0.8 0.2 - 0.8 discharge								
(e) Average 0.6 0.7 0.7 0.7								
INITIALE (AS N) (1) DDM 10 10 .	noff and leaching from fertilizer use; sewage; natural							
Average NR ND ND ND NR depos	osits erosion							
RADIOLOGICALS								
Gross Alpha pCi/L 15 (0) Range ND ND -4 NA ND NR Erosic	Erosion of natural deposits Decay of natural and man-made deposits							
Particle Activity								
pCi/L 50 (0) Decay								
Particle Activity (g)	Erosion of natural deposits							
Uranium pC/L 20 0.43 Rarige 1.7-2.0 NU 3 NV NU 1.7 Erosic Average 2.3 2 2.5 ND 1.7								
DISINFECTION BY-PRODUCTS PRECURSORS								
Range ND-85 ND-60 NR NA NR	By-product of drinking water ozonation							
Bromate (h) ppb 10 0.1 Nerge 1.7 1.5 NR NA NR 89-prc								
DBP Precursors Range								
DOI TO NA Average 2.2 2.6 NR NA 2.8 Various	ious natural and man-made sources							

This analysis report lists only the detected parameters which are required by law to be published. However, more than 150 parameters were monitored. If you would like a copy of the full reports, including the non-detected contaminants, call the District's Public Information Office at (760) 744-0460 or the reports can be viewed on our website at www.vwd.org.

Source Water Information

For information regarding the Source Water Assessment, the following contacts are provided:

For information on the Lake Skinner source water and a source water assessment, please contact Mic Stewart with MWD at (213) 217-5696 or mstewart@mwdh2o.com.

For information on SDCWA's water treatment plants, including the Twin Oaks Valley Water Treatment Plant or the Claude "Bud" Lewis Carlsbad Desalination Plant, please contact Chris Castaing with SDCWA at (760) 233-3279 or ccastaing@sdcwa.org, or visit SDCWA's website at www.sdcwa.org/water-quality.

For more information on OMWD's DCMWTP or distribution system, please contact OMWD's Operations Manager at (760) 753-6466 or waterquality@olivenhain.com.

For more information on Oceanside's Weese Treatment plant, please contact Contracted Plant Operator, Elijah Standingwarrior at (760) 908-6545 or Elijah07@cox.net. An additional Oceanside contact is William Reedy, Water Treatment Supervisor at (760) 801-0474 or wreedy@oceansideca.org.

Source water assessments for the Colorado River and SWP were completed in 2002. In 2022, watershed sanitary surveys were completed for the Colorado River and the State Water Project covering activities from 2016-2020. These sources are susceptible to contamination from stormwater runoff, recreational activities, wastewater discharges, wildlife, wildfires, and other watershed-related factors. Treating water to remove specific contaminants can be costly, which is why MWD and other agencies invest in watershed protection programs to help safeguard source water quality.

In 2025, the vulnerability of the Carlsbad Desalination Plant (CDP) to potential contamination sources was assessed during the update of the facility's Watershed Sanitary Survey. The CDP is part of the Agua Hedionda watershed, and the source water for the CDP is the outer basin of the Agua Hedionda Lagoon. The Agua Hedionda watershed is susceptible to contamination from stormwater runoff, recreational activities, agricultural drainage, hazardous material spills, wildlife, and other watershed-related factors. In addition to investing in watershed protection and monitoring programs to help safeguard source water quality, CDP increases the pathogen reduction requirements to mitigate the effects of certain contaminants, such as urban runoff.

Summary of Vallecitos Water District's 2024 Water Quality Analysis - Continued

		State or				Treati				
		Federal	PHG	Į.	Twin Oaks	Skinner	Weese	Carlsbad	Olivenhain	
		MCL	(MCLG)	Range	Treatment	Treatment	Treatment	Desalination		Major Sources in
Parameter	Units	[MRDL]	[MRDLG]	Average	Plant	Plant	Plant	Plant	Plant	Drinking Water
SECONDARY STANDARDS - Aesthetic Standards - Data provided by the San Diego County Water Authority, Metropolitan Water District, Olivenhain Municipal										
Water District, and the City of Oceanside.										
A1(1)		200		Range	ND - 160	ND - 160	ND	ND	NR	Residue from water treatment process; natural deposits erosion
Aluminum (i)	ppb	200	600	Average	50	74	ND	ND	NR	
Chloride	nnm	250	NA	Range	NR	92 - 100	77 - 100	48 - 110	92	Runoff/leaching from natural deposits; seawater influence
Chloride	ppm	250	INA	Average	NR	96	92	80	92	
Color		15	NA	Range	ND - 1	1 - 2	ND - 3	ND	2	Naturally occurring organic materials
Color	Units	15	INA	Average	ND	2	ND	ND	2	
Manganese ppb	50	NL = 500	Range	ND	ND	NA	ND	NR	Leaching from natural deposits	
	ppu	50	INL = 500	Average	ND	ND	NA	ND	NR	Leaching from natural deposits
Odor Threshold (j) TON	3	NA	Range	Single Sample	Single Sample	ND - 3	ND	1	Naturally occurring organic materials	
			Average	ND	1	ND	ND	1		
Silver		100	NA	Range	NR	ND	NR	ND	NR	Industrial discharges
Silvei	ppb	100	INA	Average	NR	ND	NR	ND	NR	
Specific Conductance	μS/cm	m 1.600	NA	Range	Single Sample	903 - 917	653 - 1070	242 - 551	880	Substances that form ions in water; seawater influence
Specific Conductance µ3/cm	1,000	INA	Average	827	910	887	430	880	oubstances that form fore in water, Seawater influence	
Sulfate ppm	om 500	NA	Range	152 - 217	195 - 203	100 - 210	12 - 17	190	Runoff/leaching from natural deposits; industrial wastes	
			Average	191	199	186	15	190		
Total Dissolved Solids	ppm	ppm 1.000	000 NA	Range	474 - 614	560 - 572 (k)	NA	149 - 311	530	Runoff/leaching from natural deposits
(TDS)	ppiii	1,000	IVA	Average	545	566	488	240	530	
Turbidity (a)	NTU	5	NA	Range	0 - 0.25	ND	0.1 - 1.8	ND - 0.37	0.01 - 0.05	Soil runoff
urbidity (a) NTU	110 5	INA	Average	ND	ND	0.15	0.06	0.02	Tooli Idiloli	

ABBREVIATIONS AND DEFINITIONS

A - Absent

CFU/mL - Colony-Forming Units per milliliter

DBP - Disinfection By-Products

MCL - Maximum Contaminant Level - The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste and appearance of drinking water.

MCLG - Maximum Contaminant Level Goal - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

MPN - Most Probable Number

MRDL - Maximum Residual Disinfectant Level - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG - Maximum Residual Disinfectant Level Goal - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

N - Nitrogen
NA - Not Applicable

NR - Not Reported

ND - Not Detected

NTU - Nephelometric Turbidity Units

 ${f NL}$ - Notification Level - The level at which notification of the public water system's

governing body is required.

pCi/L - picoCuries per liter

PHG - Public Health Goal - The level of a contaminant in drinking water below which
there is no known or expected risk to health. PHGs are set by the California
Evironmental Protection Agency.

ppb - parts per billion or micrograms per liter (μg/L)
 ppm - parts per million or milligrams per liter (mg/L)

RAA - Running Annual Average

SI - Saturation Index (Langelier)

TOC - Total Organic Carbon

 Treatment Technique - A required process intended to reduce the level of a contaminant in drinking water.

 $\pmb{\mu \text{S/cm}} \quad \text{-} \quad \text{microSiemen per centimeter; also equivalent to } \mu \text{mho/cm (micromho}$

per centimeter)

<u>Primary Standards</u> - (Primary Drinking Water Standards) - MCLs and MRDLs are set to provide the maxiumum feasable protection to public health. They regulate contaminant

levels based on toxicity and adverse health affects.

Secondary Standards

 (Secondary Drinking Water Standards) - Requirments that ensure appearance, taste and smell of drinking water are acceptable.

FOOTNOTES

- (a) The turbidity level of the filtered water shall be less than or equal to 0.3 NTU (0.1 NTU at Twin Oaks Treatment Plant) in 95% of the measurements taken each month and shall not exceed 1 NTU at anytime. The less than or equal to 0.3 NTU in 95% measurement values are Treatment Technique requirements Turbidity is a measure of the cloudiness of the water and is an indicator of treatment performance.
 The monthly averages and ranges of turbidity shown in the Secondary Standards section were based on the treatment plant effluents.
- (b) Total coliform MCLs: No more than 5.0% of the monthly samples may be total coliform-positive. Compliance is based on the combined distribution system sampling from all the treatment plants. The MCL was not violated.
- (c) E. coli MCLs: The occurrence of 2 consecutive total coliform-positive samples, one of which contains fecal coliform/E. coli constitutes an acute MCL violation. The MCL was not violated.
- (d) All distribution samples collected had detectable total chlorine residuals and no HPC was required. HPC reporting level is 1 CFU/mL.
- (e) MWD, SDCWA, and OMWD were in compliance with all provisions of the State's Fluoridation System Requirements.
- (f) State MCL is 45 mg/L as nitrate, which equals 10 mg/L as nitrogen.
- (g) SWRCB considers 50 pCi/L to be the level of concern for beta particles; the gross beta particle activity MCL is 4 millirem/year annual dose equivalent to the total body or any internal organ.
- (h) Reporting level is 3.0 ppb for Bromate.
- (i) Aluminum and copper both have primary and secondary standards.
- (j) Metropolitan utilizes a flavor-profile analysis method that can detect odor occurrences more accurately. Call MWD at (213) 217-6850 for more information.
- (k) Metropolitan's TDS compliance data are based on flow-weighted monthly composite samples collected twice per year (April and October). The 12-month statistical

Summary of Vallecitos Water District's 2024 Water Quality Analysis - Continued Other Detected Constituents That May be of Interest to Consumers

	State or					Troot				
					Treatment Plant Effluents					
		Federal	PHG		Twin Oaks	Skinner	Weese	Carlsbad	Olivenhain	
		MCL	(MCLG)	Range	Treatment	Treatment	Treatment	Treatment	Treatment	Major Sources In
Parameter	Units	[MRDL]	[MRDLG]	Average	Plant	Plant	Plant	Plant	Plant	Drinking Water
Alkalinity (a) ppm	NA	NA	Range	99 - 120	103 - 107	96 - 133	47 - 88	100 - 110	Runoff/leaching of natural deposits; carbonate, bicarbonate, hydroxide, and occasionally borate, silicate, and phosphate	
	INA		Average	112	105	115	66	106		
Boron		NL = 1.000	NA	Range	Single Sample	Single Sample	NA	440 - 920	NR	Runoff/leaching from natural deposits; industrial wastes; naturally occuring in ocean water
BOIOII	ppb	INL - 1,000	INA	Average	NR	130	NA	650	NR	
Calcium	ppm	NA	NA	Range	Single Sample	61 - 62	41 - 83	19 - 60	44 - 65	Runoff/leaching from natural deposits
Calcium	ppiii	INA	INA	Average	NR	62	63	23	58	Trunon/leading non natural deposits
Chlorate	ppb	NL = 800	NA	Range	220 - 380	Single Sample	NR	NA	NR	By-product of drinking water chlorination; industrial
Ciliorate	ррь	NL - 000	IVA	Average	291	80	NR	NA	NR	processes
Chromium VI (b)	ppb	NA	0.02	Range	ND - 0.32	ND	NR	ND	NR	Industrial waste discharge; could be naturally present as
Chromium vi (b)	ppb	INA	0.02	Average	0.03	ND	NR	ND	NR	well
Corrosivity (c)	Al	NA	NA	Range	Single Sample	12.3 - 12.4	NR	NR	NR	Elemental balance in water; affected by temperature, other
(Agressiveness Index)	Ai	INA	IVA	Average	NR	12.4	NR	NR	NR	factors
Corrosivity (d) (Saturation	SI	I NA	NA	Range	Single Sample	0.46 - 0.57	NR	NR	NR	Elemental balance in water; affected by temperature, other factors
Index)	51	INA	INA	Average	NR	0.52	NR	NR	NR	
Hardness	ppm	NA	NA	Range	Single Sample	242 - 243	170 - 310	60 - 75	255	The sum of naturally occurring poly-valent cations present in the water
i lai uliess	ppiii	INA	IVA	Average	NR	242	245	68	255	
Magnesium	ppm	NA	NA	Range	Single Sample	22 - 23	16 - 26	1.2 - 1.5	22	Runoff/leaching from natural deposits
iviagriesium	ppiii			Average	NR	22	21	1.4	22	
N-Nitrosodimethylamine	ne ppt NL = 1	NI - 10	3	Range	ND	Single Sample	NR	NA	NR	By-product of drinking water chloramination; industrial processes
(NDMA)		142 - 10	3	Average	ND	2.5	NR	NA	NR	
pH pH Units	nH Unito	Units NA	NA	Range	7.5 - 8.7	Single Sample	7.9 - 8.5	8.3 - 8.7	8.1 - 8.4	Inherent characteristic of water, naturally occurring
	pri Units	INA		Average	8.4	8.1	8.2	8.5	8.3	
Potassium pp	nnm	NA	NA	Range	Single Sample	4.6 - 4.9	NR	0.0 - 33.8	4.9	Salt present in the water; naturally-occurring
	ppiii			Average	NR	4.8	NR	7.5	4.9	
Sodium	nnm	NA	NA	Range	Single Sample	91 - 95	NA	54 - 61	80	The salt present in the water, generally naturally occurring
Sodium ppm	ppiii	INA		Average	NR	93	81	57	80	

ABBREVIATIONS, DEFINITIONS AND FOOTNOTES

Abbreviations and Definitions- (Please refer to main table for other abbreviations and definitions)

NR - Not Reported .

NL - Notification Level - The level at which notification of the public water system's governing body is required.

ppt - parts per trillion or nanograms per liter (ng/L).

FOOTNOTES

- (a) Alkalinity and hardness was based on CaCO₃
- (b) Reporting level is 0.03 ppb for Chromium VI.
- (c) AI <10.0 = Highly aggressive and very corrosive water Al ≥ 12.0 = Non-aggressive water
- AI (10.0 11.9) = Moderately aggressive water (d) - Positive SI index = non-corrosive; tendency to precipitate and/or deposit scale on pipes
 - Negative SI index = corrosive; tendency to dissolve calcium carbonate
- (e) Confirm requirement. Contaminant is not listed the Reference Manual 2024

Summary of Vallecitos Water District's 2024 Water Quality Analysis - Continued

		State or Federal	PHG		Within					
		MCL	(MCLG)	Range	VWD's	Major Sources in				
Parameter	Units	[MRDL]	[MRDLG]	Average	System	Drinking Water				
Summary of Water Quality Tests Within VWD's Distribution System - Data Provided by Vallecitos Water District										
Total Coliform Bacteria (a)	%	5.0 (a)	(0)	Range	ND	Naturally present in the environment				
Total Comorni Bacteria (a)	70	0.0 (u)	(0)	Average	ND	reading process in the distribution.				
Fecal Coliform & E. coli (b)	(b)	(b)	(0)	Range	ND	Human and animal fecal waste				
. coa. come a 2. co. (2)	(2)	(2)	(0)	Average	ND					
Total Trihalomethanes (TTHM) (c)	ppb	80	NA	Range	4.2 - 65	By-product of drinking water chlorination				
Total Tillalomonatares (TTTIM) (0)	ppb	00	14/5	Highest LRAA	40	7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,				
Haloacetic Acids (five) (HAA5) (d)	ppb	60	NA	Range	0.0 - 27	By-product of drinking water chlorination				
rialisassas risias (irro) (i ir s io) (a)	PP-			Highest LRAA	16	-, r				
Total Chlorine Residual (e)	ppm	[4.0]	[4.0]	Range	0.3 - 3.4	Drinking water disinfectant added for treatment				
(-)	FF	[]	[]	Highest RAA	1.8	Ů				
General Physical Sampling (f)	(f)	(f)	(f)	Secondary Standards (aesthetics) testing required by SWRCB within VWD's Distribution System						
MONITORED AT CUSTOMERS' TAP										
Copper (a)	ppm	AL = 1.3	0.3	90th	0.250	House pipes internal corrosion; erosion of natural deposits; leaching from wood				
Copper (g)				Percentile	0.250	preservatives				
Lead (g)	nnh	AL = 15	0.2	90th	1.7	House pipes internal corrosion; erosion of natural deposits; discharges from				
Leau (g)	ppb	AL - 15	0.2	Percentile	1.7	industrial manufacturers				

ABBREVIATIONS AND DEFINITIONS

AL - Action Level

HAA5 - Haloacetic Acids (five)

Part : Comment :

MCL - Maximum Contaminant Level - The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste and appearance of drinking water.

MCLG - Maximum Contaminant Level Goal - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

MRDL - Maximum Residual Disinfectant Level - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG - Maximum Residual Disinfectant Level Goal - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NL - Notification Level

PHG - Public Health Goal - The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

 \boldsymbol{ppb} - parts per billion or micrograms per liter (µg/L)

ppm - parts per million or milligrams per liter (mg/L)

TTHM - Total Trihalomethanes

RAA - Running Annual Average

LRAA - Locational Running Annual Average; highest LRAA is the highest of all Locational Running Annual Averages. Calculated as average of all samples collected within a 12-month period.

FOOTNOTES

- (a) The District tested more samples than required by the SWRCB. 1,590 samples were analyzed in 2024 and all samples tested negative for Total Coliform bacteria. The District was in compliance with the Total Coliform MCL for 2024.
- (b) The District tested more samples than required by the SWRCB. 1,590 samples were analyzed in 2024 and all samples tested negative for Fecal/E. coli bacteria. The District was in compliance with the Fecal/E. coli MCL for 2024.
- (c) The MCL for Total Trihalomethanes (TTHM) is determined by using a Locational Running Annual Average (LRAA) of the last four quarterly tests. The District was in compliance with the regulations concerning Total Trihalomethanes (TTHM) for 2024.
- (d) The MCL for Haloacetic Acids (HAA5) is determined by using a Locational Running Annual Average (LRAA) of the last four quarterly tests. The District was in compliance with the regulations concerning Haloacetic Acids (HAA5) for 2024.
- (e) Total chlorine is the sum of free and combined chlorine. Free chlorine is defined as the concentration of residual chlorine in water present as dissolved gas (Cl2), hypochlorous acid (HOCI), and/or hypochlorite ion (OCI-). Combined chlorine is defined as the residual chlorine existing in water in chemical combination with ammonia or organic amines which can be found in natural or polluted waters. Ammonia is sometimes deliberately added to chlorinated public water supplies to provide inorganic chloramines. This process is generally referred to as "chloramination". The water provided to you has had inorganic chloramines added as a disinfectant.
- (f) These samples were tested for turbidity, odor, and color. The District was in compliance with the Secondary Standards for these tests in 2024.
- (g) The federal and state standards for Lead and Copper are treatment techniques requiring agencies to optimize corrosion control treatment. The District is required to take 50 samples every three years. The data shown is from 50 samples taken during the 2024 period. Our next sample period is scheduled for June, 2027. The District was in compliance with the "Lead and Copper Rule" in 2024. In 2017, the District collected 73 samples from 19 schools and one daycare camp.

*If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Vallecitos is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 mintutes before using water for drinking or cooking. If you are concerned about lead in your drinking water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

201 Vallecitos de Oro San Marcos, CA 92069 (760) 744-0460 www.vwd.org

- Special Edition -2024 Water Quality Report

Management Staff

James Gumpel, General Manager
Jason Hubbard, Assistant General Manager
Denise Aviles, Human Resources & Risk Manager
Elizabeth Lopez, District Engineer
Wes Owen, Chief Financial Officer
Eric Bennett, Operations & Maintenance Manager

The public is welcome to attend the Vallecitos Board Meetings the first and third Wednesday of each month at 5:00 pm in the Administration building—201 Vallecitos de Oro in San Marcos.

Meetings are also aired on San Marcos TV on Cox Communications Channel 19, Time Warner Channel 24 or AT&T U-verse Channel 99, which air on the Monday following the Wednesday meeting at 6:30 pm. Visit www.san-marcos.net/smtv for programming schedule.

Parts per million (ppm) = One drop in a 10-gallon aquarium

Parts per billion (ppb) = One drop in a residential swimming pool

FOR MORE INFORMATION: This report is only a summary of the water quality activities during the past year. If you have any questions about your water quality or Vallecitos Water District, please visit our website at www.vwd.org or call (760) 744-0460 during business hours (Monday through Friday, 8 a.m. to 5 p.m.). The District's headquarters is located at 201 Vallecitos de Oro, San Marcos, CA 92069. Questions specific to water quality can be directed to Shawn Askine, Water Systems Supervisor, at (760) 744-0460, ext. 268. Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien. Para más información llame al (760) 744-0460. For additional information, contact:

- * U.S. Environmental Protection Agency (USEPA) (800) 426-4791 http://water.epa.gov/drink/index.cfm
- * National Center for Disease Control (404) 639-3311 www.cdc.gov
- * State Water Resources Control Board Division of Drinking Water (916) 449-5577 http://www.waterboards.ca.gov/drinking water/certlic/drinkingwater/CCR.shtml
- * Metropolitan Water District of Southern California (213) 217-6000 www.mwdh2o.com
- * San Diego County Water Authority (858)-522-6740 www.sdcwa.org