

2018 WATER QUALITY REPORT

2018 Water Quality Report

For more than 60 years, the Vallecitos Water District (Vallecitos) has taken pride in the water it delivers to its now more than 102,000 residents. As a result of its commitment to excellence, Vallecitos is proud to provide the 2018 water quality test results for drinking water delivered to its customers.

After more than 150 types of tests conducted by its wholesalers – Metropolitan Water District of Southern California (MWD) and San Diego County Water Authority (SDCWA) – and additional tests performed by the City of Oceanside, Olivenhain Municipal Water District (OMWD) and Vallecitos, it has been concluded that your water either met or exceeded all state and federal potable drinking water standards. Along with these tests, your drinking water went through a treatment process that included filtering and disinfecting to ensure acceptable quality. Results of our own testing, along with the City of Oceanside's, OMWD's and our wholesalers' monitoring are found in the tables of this report.

This publication is a summary of last year's water quality. Included are details about where your water comes from, what it contains, and how it compares to state and federal standards.

Origins of Your Drinking Water

As of 2014, Vallecitos customers received 100 percent imported water from SDCWA, which purchased the water from MWD from Northern California and the Colorado River. In November of 2015, to reduce dependence on imported water and provide customers an increased level of reliability despite drought and other regulatory issues, Vallecitos customers began receiving ocean water from the Western Hemisphere's largest desalination treatment plant. The Carlsbad Claude "Bud" Lewis Desalination Plant provides superior quality water free of salt and

Claude "Bud" Lewis Desalination Plant in Carlsbad

Colorado River via the 242-mile Colorado River Aqueduct

Sacramento-San Joaquin Delta via the 444-mile CA Aqueduct

The Water We Drink

virtually any mineral, biological or organic compounds by taking water from Carlsbad's Agua Hedionda Lagoon, processing it, and then distributing it through a 54-inch pipeline 10 miles eastward before being delivered to your faucet. In 2015, Vallecitos began receiving a blend of desalinated and imported water from SDCWA. However, in 2016, Vallecitos began receiving water directly from the plant.

Whether imported or local, your water remains safe during its journey due to increased security at key facilities, increased water sampling, and aerial and ground patrols. Protecting your water doesn't end with the thousands of tests performed throughout the year. Vallecitos also supports regulatory changes in public policy to improve water quality.

The end result is more than 5 billion gallons of an exceptional product delivered annually through 19 operational storage reservoirs and 350 miles of pipeline to a 45-square-mile area that includes San Marcos; Lake San Marcos; portions of Escondido, Carlsbad, and Vista; and unincorporated areas in San Diego County.

The U.S. Congress has directed the U.S. Environmental Protection Agency (USEPA) to require water systems to report the quality of the drinking water they serve annually. Vallecitos supports this regulation and has provided Water Quality Reports and other water quality data to all of its customers for many years.

The Reason for Contaminants

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health

risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resources Control Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Vallecitos and its water wholesalers treat the water according to these regulations.

The sources of drinking water (both bottled and tap water) include rivers, lakes, streams, reservoirs, ponds, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or human activity.

Contaminants possibly present in source water before treatment include:

- <u>Microbial contaminants</u>, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- <u>Inorganic contaminants</u>, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- **<u>Pesticides and herbicides</u>**, which may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses.
- **Organic chemical contaminants**, including synthetic and volatile organic compounds that are by-products of industrial processes and petroleum production and can come from gas stations, urban stormwater runoff, agricultural application and septic systems.
- **<u>Radioactive contaminants</u>**, which can be naturally-occurring or the result of oil and gas production and mining activities.

Health Advisories Regarding Your Water

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, persons with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Center for Disease Control guidelines on the appropriate means to lessen the risk of infection by Cryptosporidium or other microbial contaminants are available from the **Safe Drinking Water Hotline (800) 426-4791.**

The tables below list all the drinking water contaminants tested for during the 2018 calendar year. Thousands of water quality tests were performed on your drinking water last year. Many more parameters were tested for and not found. The results in this report show that your water met, and in most cases exceeded, all of the stringent state (State Water Resources Control Board) and federal (U.S. Environmental Protection Agency) water quality standards relating to public health and aesthetics, such as taste, odor and color. Unless otherwise noted, the data in the following tables reflect testing from January 1, 2018, through December 31, 2018. The monitoring of certain contaminants is not required annually since they are not expected to vary significantly from year to year. Therefore, though representative of the water quality, some of the data may be more than one year old.

Summary of Vallecitos Water District's 2018 Water Quality Analysis

		State or				Treat	ment Plant Ef			
		Federal	PHG	I	Twin Oaks	Skinner	Weese	Carlsbad	Olivenhain	
		MCL	(MCLG)	Range	Treatment	Treatment	Treatment	Desalination	Treatment	Major Sources in
Parameter	Units	[MRDL]	[MRDLG]	Average	Plant	Plant	Plant	Plant	Plant	Drinking Water
Percent State	%	NA	NA	Range	NR	0 - 84	NR	NA	6- 74	NA
Project Water	70	IN/A	INA	Average	INIX	34	INFX	INA	36	NA
PRIMARY STANDARDS	- Mandator	y Health-R	elated Stan	dards - Data p	rovided by the	e San Diego C	ounty Water A	Authority (Twin	Oaks Treatme	nt Plant), the Metropolitan Water District
					int), San Diego	o County Wate	r Authority (C	laude "Bud" Le	wis Carlsbad	Desalination Plant), and the Olivenhain
Municipal Water District	(David C. I	McCollom V	Vater Treat	ment Plant).						
CLARITY	-	1								
Combined Filter	NTU	0.3	NA	Average	0.01 - 0.02	0.08	0.25	0.15	0.07	Soil runoff
Effluent Turbidity	%	95 (a)		% ≤ 0.1	100%	100%	100%	98%	100%	
MICROBIOLOGICAL	r	1								
Total Coliform Bacteria (b)	%	5.0	(0)	Range	ND	0 - 0.3	ND	ND	ND - 1.09	Naturally present in the environment
. ,			. ,	Average		0.1			ND	
E. coli (c)	(c)	(c)	(0)	Range	ND	ND	ND	ND	ND	Human and animal fecal waste
				Average						
Heterotrophic Plate (d)	CFU/mL	TT	NA	Range	ND	ND	ND	ND - 1.7	ND - 11	Naturally present in the environment
INORGANIC CHEMIC				Average				0.4	0.32	
INURGANIC CHEWICA	413			Range	NRA					
Arsenic	ppb	10	0.004	Average	3	ND	ND	ND	NR	Natural deposits erosion; runoff from orchards; glass and electronics production wastes
				Range	NRA		NRA			Oil and metal refineries discharges; natural deposits
Barium	ppb	1,000	2,000	Average	ND	ND	63	ND	NR	erosion
	0	ptimal Fluor	ide Control F	-	0.6 - 1.2	NA	NA	NA	NA	
Fluoride Treatment-Related				Range	0.6 - 0.9	0.6 - 0.9		0.60 - 0.83	0.53 - 0.93	Erosion of natural deposits; water additive for dental health; discharge from fertilizer and aluminum factories
(e)	ppm	2.0	1	Average	0.7	0.7	Not Added	0.72	0.74	discharge from fertilizer and aluminum factories
		10	10	Range	ND - 0.6	ND	0.07 - 0.43	ND		Runoff and leaching from fertilizer use; sewage; natural
Nitrate (as N) (f)	ppm	10	10	Average	0.4	ND	0.22	ND	NR	deposits erosion
RADIOLOGICALS										
Gross Alpha	pCi/L	15	(0)	Range	4 - 7	ND - 4	NRA	0 - 1.87	NR	Erosion of natural deposits
Particle Activity	pOI/L	15	(0)	Average	5	ND	2.1	0.924	INIX	
Gross Beta	pCi/L	50	(0)	Range	4 - 6	ND - 5	NA	1.21 - 2.64	NR	Decay of natural and man-made deposits
Particle Activity (g)	poi/L	50	(0)	Average	5	ND	NA .	1.85		
Uranium	pCi/L	20	0.43	Range	NRA	ND - 3	NRA	0 - 0.169	NR	Erosion of natural deposits
	•			Average	2.2	ND	2.0	0.077		
DISINFECTION BY-PR	ODUCTS	PRECURS	SORS							
Bromate (h)	ppb	10	0.1	Range	1 - 15	ND - 5.9	NR	NA	NR	By-product of drinking water ozonation
				Highest RAA	5	3.7				
DBP Precursors	ppm	TT	NA	Range	TT	2.0 - 2.7	NR	NA	NR	Various natural and man-made sources
Control (TOC)				Average		2.4				

This analysis report lists only the detected parameters which are required by law to be published. However, more than 150 parameters were monitored. If you would like a copy of the full reports, including the non-detected contaminants, call the District's Public Information Office at (760) 744-0460 or the reports can be viewed on our website at www.vwd.org.

Summary of Vallecitos Water District's 2018 Water Quality Analysis - Continued

		State or				Treatr	nent Plant E				
		Federal	PHG		Twin Oaks	Skinner	Weese	Carlsbad	Olivenhain		
		MCL	(MCLG)	Range	Treatment	Treatment	Treatment	Desalination	Treatment	Major Sources in	
Parameter	Units	[MRDL]	[MRDLG]	Average	Plant	Plant	Plant	Plant	Plant	Drinking Water	
SECONDARY STANDARI	DS - Aesth	etic Standa	ards - Data	provided by t	he San Diego	County Water	Authority, Me	tropolitan Wate	r District, Oliv	venhain Municipal	
Water District, and the Ci	ty of Ocea	nside.									
Aluminum (i)	ppb	200	600	Range	ND	ND - 100	44 - 170	ND	NR	Residue from water treatment process; natural deposits	
Aldmindin (I)	ppp	200	000	Average	ND	51	112	ND	NIX	erosion	
Chloride	ppm	500	NA	Range	NRA	90 - 93	56 - 92	55.2 - 118	NR	Runoff/leaching from natural deposits; seawater influence	
	ppin	000	107	Average	90	92	76	73.7			
Color	Units	15	NA	Range	ND	ND - 1	ND - 3	ND	ND - 4.0	Naturally occurring organic materials	
	Office	10	TWX	Average	i i b	ND	2		1.10		
Manganese	ppb	50	NL = 500	Range	ND	NRA	NR	ND	NR	Leaching from natural deposits	
manganooo	660			Average		22					
Odor Threshold (j)	TON	3	NA	Range	ND	NRA	ND	ND	ND	Naturally occurring organic materials	
0)				Average		3					
Silver	ppb	100	NA	Range	ND	ND	NR	ND	NR	Industrial discharges	
	P.P. 5			Average						, , , , , , , , , , , , , , , , , , ,	
Specific Conductance	µS/cm	1.600	NA	Range	NRA	841 - 851	NR	304 - 600	NR	Substances that form ions in water: seawater influence	
	P	.,		Average	810	846		418			
Sulfate	ppm	500	NA	Range	NRA	168 - 175	68 - 240	8.5 - 17.2	NR	Runoff/leaching from natural deposits: industrial wastes	
	pp			Average	160	172	159	12.2			
Total Dissolved Solids	ppm	1.000	NA	Range	NRA	510 - 526	308 - 583	119 - 333	NR	Runoff/leaching from natural deposits	
(TDS)	PP	.,000		Average	510	518	470	217			
Turbidity (a)	NTU	5	NA	Range	ND	ND	0.05 - 0.75	0.03 - 0.97	0.027 - 0.8	Soil runoff	
	NIO	,	11/2	Average			0.15	ND	0.05		

ABBREVIATIONS AND DEFINITIONS

EVIATIONS A		DEFINITIONS			
Α	-	Absent	NRA	-	No Running Average - Single Sample Collected
CFU/mL	-	Colony-Forming Units per milliliter	NR	-	Not Reported
DBP	-	Disinfection By-Products	ND	-	Not Detected
MCL	-	Maximum Contaminant Level - The highest level of a contaminant	NTU	-	Nephelometric Turbidity Units
		that is allowed in drinking water. Primary MCLs are set as close	NL	-	Notification Level - The level at which notification of the public water system's
		to the PHGs (or MCLGs) as is economically and technologically			governing body is required.
		feasible. Secondary MCLs are set to protect the odor,	pCi/L	-	picoCuries per liter
		taste and appearance of drinking water.	PHG	-	Public Health Goal - The level of a contaminant in drinking water below which
MCLG	-	Maximum Contaminant Level Goal - The level of a contaminant in			there is no known or expected risk to health. PHGs are set by the California
		drinking water below which there is no known or expected risk			Evironmental Protection Agency.
		to health. MCLGs are set by the U.S. Environmental Protection	ppb	-	parts per billion or micrograms per liter (µg/L)
		Agency.	ppm	-	parts per million or milligrams per liter (mg/L)
MPN	-	Most Probable Number	RAA	-	Running Annual Average
MRDL	-	Maximum Residual Disinfectant Level - The highest level	SI	-	Saturation Index (Langelier)
		of a disinfectant allowed in drinking water. There is	TOC	-	Total Organic Carbon
		convincing evidence that addition of a disinfectant is	TT	-	Treatment Technique - A required process intended to reduce the level of
		necessary for control of microbial contaminants.			a contaminant in drinking water.
MRDLG	-	Maximum Residual Disinfectant Level Goal - The level of a	μS/cm	-	microSiemen per centimeter; also equivalent to µmho/cm (micromho
		drinking water disinfectant below which there is no known			per centimeter)
		or expected risk to health. MRDLGs do not reflect the benefits	Primary Standards	-	(Primary Drinking Water Standards) - MCLs and MRDLs are set to provide the
		of the use of disinfectants to control microbial contaminants.			maxiumum feasable protection to public health. They regulate contaminant
N	-	Nitrogen			levels based on toxicity and adverse health affects.
NA	-	Not Applicable	Secondary Standards	-	(Secondary Drinking Water Standards) - Requirments that ensure
					appearance, taste and smell of drinking water are acceptable.

FOOTNOTES

(a) - The turbidity level of the filtered water shall be less than or equal to 0.3 NTU (0.1 NTU at Twin Oaks Treatment Plant) in 95% of the measurements taken each month and shall not exceed 1 NTU at anytime. The less than or equal to 0.3 NTU in 95% measurement values are Treatment Technique requirements. Turbidity is a measure of the cloudiness of the water and is an indicator of treatment performance.

The monthly averages and ranges of turbidity shown in the Secondary Standards section were based on the treatment plant effluents.

(b) - Total coliform MCLs: No more than 5.0% of the monthly samples may be total coliform-positive. Compliance is based on the combined distribution system sampling from all the treatment plants. The MCL was not violated.

(c) - E. coli MCLs: The occurrence of 2 consecutive total coliform-positive samples, one of which contains fecal coliform/E coli, constitutes an acute MCL violation. The MCL was not violated.

(d) - All distribution samples collected had detectable total chlorine residuals and no HPC was required. HPC reporting level is 1 CFU/mL.

- (e) MWD, SDCWA, and OMWD were in compliance with all provisions of the State's Fluoridation System Requirements.
- (f) State MCL is 45 mg/L as nitrate, which equals 10 mg/L as N.

(g) - SWRCB considers 50 pCi/L to be the level of concern for beta particles; the gross beta particle activity MCL is 4 millirem/year annual dose equivalent to the total body or any internal organ.

- (h) Reporting level is 3.0 ppb for Bromate.
- (i) Aluminum and copper both have primary and secondary standards.

(j) - Metropolitan utilizes a flavor-profile analysis method that can detect odor occurrences more accurately. Call MWD at (213) 217-6850 for more information.

Summary of Vallecitos Water District's 2018 Water Quality Analysis - Continued

Other Detected Constituents That May be of Interest to Consumers											
		State or				Trea	tment Plant Ef				
		Federal	PHG		Twin Oaks	Skinner	Weese	Carlsbad	Olivenhain		
		MCL	(MCLG)	Range	Treatment	Treatment	Treatment	Treatment	Treatment	Major Sources in	
Parameter	Units	[MRDL]	[MRDLG]	Average	Plant	Plant	Plant	Plant	Plant	Drinking Water	
Allealiaite		NIA	NA	Range	NRA	104 - 109	76 - 116	42 - 80	NR	Runoff/leaching of natural deposits; carbonate, bicarbonate,	
Alkalinity	ppm	NA	NA	Average	110	106	100	63.4	NR	hydroxide, and occasionally borate, silicate, and phosphate	
Boron	ppb	NL = 1.000	NA	Range	NRA	NRA	NA	372 - 923	NR	Runoff/leaching from natural deposits; industrial wastes;	
DOIOII	ppp	NL - 1,000	INA	Average	130	120	INA	606	INK	naturally occuring in ocean water.	
Calcium	ppm	NA	NA	Range	NRA	54 - 58	28 - 71	17.36 - 34.96	NR	Runoff/leaching from natural deposits	
Calcium	ppin	11/5	IN/A	Average	55	56	50	22.8	INIX	Individual deposits	
Chlorate	ppb	NL = 800	NA	Range	160 - 290	NRA	NR	NA	NR	By-product of drinking water chlorination; industrial processes	
oniorate	ppp	NL - 000	110	Average	219	43	NIX	na -	NIX		
Chromium VI (a)	ppb	10	0.02	Range	0.04 - 0.17	ND	NR	NA	NR	Industrial waste discharge; could be naturally present as well	
	PPS		0.02	Average	0.09						
Corrosivity (b) (Agressiveness	AI	NA	NA	Range	NRA	12.3 - 12.4	NR	11.56 - 12.33	NR	Elemental balance in water; affected by temperature, other factors	
Index)				Average	12	12.4		12.09			
Corrosivity (c) (Saturation	SI	NA	NA	Range	NRA	0.54 - 0.59	NR	0.05 - 0.53	NR	Elemental balance in water; affected by temperature, other	
Index)				Average	0.64	0.56		0.29		factors	
Hardness	ppm	NA	NA	Range	NRA	218 - 238	120 - 280	42.2 - 70.9	NR	The sum of naturally occurring poly-valent cations present in	
				Average	220	228	204	54		the water	
Magnesium	ppm	NA	NA	Range	NRA	21 - 22	12 - 27	0.464 - 1.100	NR	Runoff/leaching from natural deposits	
				Average	20	22	19	0.685		• ·	
N-Nitrosodimethylamine	ppt	NL = 10	3	Range	NRA	NRA	NR	NA	NR	By-product of drinking water chloramination; industrial processes	
(NDMA)				Average	2	4.1					
pН	pH Units	NA	NA	Range	7.1 - 8.5	8.1 - 8.2	7.7 - 8.5	8.01 - 8.66	NR	NA	
-				Average	8.2	8.2	8.0	8.54			
Potassium	ppm	NA	NA	Range	NRA	4.0 - 4.5	NR	1.04 - 3.70	NR	Salt present in the water; naturally-occurring	
	L			Average	4	4.2		2.44			
Sodium	ppm	NA	NA	Range	NRA	85 - 92	NRA	16.2 - 78.4	NR	The salt present in the water, generally naturally occurring	
				Average	82	88	66	54.2			

ABBREVIATIONS, DEFINITIONS AND FOOTNOTES

Abbreviations and Definitions- (Please refer to main table for other abbreviations and definitions)

NR - Not Reported

 ${\rm NL}\,$ - Notification Level - The level at which notification of the public water system's governing body is required.

ppt - parts per trillion or nanograms per liter (ng/L). NRA - No Running Average - Single Sample Collected

Footnotes:

(a) - Reporting level is 0.03 ppb for Chromium VI.

(b) - AI <10.0 = Highly aggressive and very corrosive water

AI \geq 12.0 = Non-aggressive water

AI (10.0 - 11.9) = Moderately aggressive water

(c) - Positive SI index = non-corrosive; tendency to precipitate and/or deposit scale on pipes Negative SI index = corrosive; tendency to dissolve calcium carbonate

Summary of Vallecitos Water District's 2018 Water Quality Analysis - Continued

Parameter	Units	State or Federal MCL [MRDL]	PHG (MCLG) [MRDLG]		Within VWD's System	Major Sources in Drinking Water	
Summary of Water Quality T	ests With	in VWD's D	istribution		Data Provid	ed by Vallecitos Water District	
Fotal Coliform Bacteria (a)	%	5.0 (a)	(0)	Range Average	ND	Naturally present in the environment	
Fecal Coliform & E. coli (b)	(b)	(b)	(0)	Range Average	ND	Human and animal fecal waste	
Total Trihalomethanes (TTHM) (c)	ppb	80	NA	Range Highest LRAA	15.0 - 45.0 36.3	By-product of drinking water chlorination	
Haloacetic Acids (five) (HAA5) (d)	ppb	60	NA	Range Highest LRAA	1.9 - 19.0 11.7	By-product of drinking water chlorination	
Fotal Chlorine Residual (e)	ppm	[4.0]	[4.0]	Range Highest RAA	0.2 - 4.0 2.26	Drinking water disinfectant added for treatment	
General Physical Sampling (f)	(f)	(f)	(f)	Secondary Standar	ds (aesthetics) testing	g required by SWRCB within VWD's Distribution System	
MONITORED AT CUSTOMER	S' TAP						
Copper (g)	ppb	AL = 1,300	300	90th Percentile	270	House pipes internal corrosion; erosion of natural deposits; leaching from wood preservatives	
_ead* (g)	ppb	AL = 15	0.2	90th Percentile	1.2	House pipes internal corrosion; erosion of natural deposits; discharges from industrial manufacturers	
MCL -	contaminant th MCLs are set is economical MCLs are set of drinking wa Maximum Con contaminant in known or exper U.S. Environn Maximum Res of a disinfecta convincing ev	ntaminant Level - hat is allowed in c as close to the P ly and technologie to protect the odd	trinking water. Pi HGs (or MCLGs cally feasible. Se or, taste and app Goal - The level of elow which there h. MCLGs are s Agency. It Level - The hig king water. Ther on of a disinfecta	rimary) as acondary earance of a e is no eet by the hest level e is ant is	PHG - ppb - ppm - TTHM - RAA -	drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. Notification Level Public Health Goal - The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. parts per billion or micrograms per liter (µg/L) parts per million or milligrams per liter (µg/L) Total Trihalomethanes Running Annual Average Locational Running Annual Average; highest LRAA is the highest of all Locational Running Annual Averages. Calculated as average of all samples collected within a 12-month period.	
(b) - (c) - (d) - (e) -	for Total Colifi The District te for Fecal/E. cc The MCL for T tests. The Dis Total Chlorine as dissolved g existing in wa sometimes de as "chloramin. These sampli tests in 2018. The federal an treatment. The	orm bacteria. The sted more sample of bacteria. The D Fotal Trihalometh strict was in comp Haloacetic Acids trict was in comp is the sum of free gas (CI2), hypoch iter in chemical co diberately added ation". The water es were tested for ad state standard e District is require	District was in co es than required District was in co anes (TTHM) is diance with the re (HAA5) is deterr iance with the re e and combined lorous acid (HO0 ombination with a to chlorinated pu provided to you r turbidity, odor, s for Lead and C ed to take 50 sa	sompliance with the by the SWRCB. mpliance with the determined by us egulations concernined by using a gulations concerned by using a gulations concerned by using a model of the constraint of	he Total Coliform 1,352 samples w Fecal/E. coli MC sing a Locational rning Total Trihale Locational Runni ning Haloacetic A lorine is defined a hlorite ion (OCI-). nic amines which es to provide inor c chloramines ad istrict was in com- nent techniques re e years. The data	vere analyzed in 2018 and all samples tested negative	

*If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Vallecitos is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 mintutes before using water for drinking or cooking. If you are concerned about lead in your drinking water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

201 Vallecitos de Oro San Marcos, CA 92069 (760) 744-0460 www.vwd.org

Board of Directors

Division 1: Betty Evans Division 2: Jim Hernandez Division 3: Craig Elitharp Division 4: Mike Sannella Division 5: Hal Martin

Management Staff

Glenn Pruim, General Manager Rhondi Emmanuel, Administrative Services Manager James Gumpel, District Engineer Ed Pedrazzi, Operations and Maintenance Manager Wes Owen, Finance Manager

The public is welcome to attend the Vallecitos Board Meetings the first and third Wednesday of each month at 5:00 pm in the Administration building—201 Vallecitos de Oro in San Marcos.

Meetings are also aired on San Marcos TV on Cox Communications Channel 19, Time Warner Channel 24 or AT&T U-verse Channel 99, which air on the Monday following the Wednesday meeting at 6:30 pm. Visit <u>www.san-marcos.net/smtv</u> for programming schedule.

Parts per million (ppm) = One drop in a 10-gallon aquarium

- Special Edition -

2018 Water Quality

Report

Parts per billion (ppb) = One drop in a residential swimming pool

FOR MORE INFORMATION: This report is only a summary of the water quality activities during the past year. If you have any questions about your water quality or Vallecitos Water District, please visit our web site at <u>www.vwd.org</u> or call (760) 744-0460 during business hours (Monday through Friday, 8 a.m. to 5 p.m.). The District's headquarters is located at 201 Vallecitos de Oro, San Marcos, CA 92069. Questions specific to water quality can be directed to Shawn Askine, Water Systems Supervisor, at (760) 744-0460, ext. 268. Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien. Para más información llame al (760) 744-0460. For additional information, contact:

* U.S. Environmental Protection Agency (USEPA) - (800) 426-4791 - <u>http://water.epa.gov/drink/index.cfm</u> * National Center for Disease Control - (404) 639-3311 - <u>www.cdc.gov</u>

- * State Water Resources Control Board Division of Drinking Water
- (916) 449-5577 <u>http://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/CCR.shtml</u>
- * Metropolitan Water District of Southern California (213) 217-6000 <u>www.mwdh2o.com</u>