Consumer Confidence Report Certification Form (To be submitted with a copy of the CCR) | (,, | o casimito vi | in a copy of the corty | |--|---|--| | Water System Name: | Lake Morena's | Oak Shores Mutual Water Co. | | Water System Number: | 3700923 | | | was distributed on July 1, 2 been given). Further, the correct and consistent with | 2023 to customer
system certifies
n the compliance | ertifies that its Consumer Confidence Report s (and appropriate notices of availability have that the information contained in the report is monitoring data previously submitted to the sion of Drinking Water (DDW). | | Certified by: | | | | Name: Craig Barkett | | Title: Operator #34477 | | Signature: Ly Sala | H | Date: April 24, 2023 | | Phone number: 619 478 | -5151 | | | other direct delivery n X CCR was distributed for Electronic Delivery electronic delivery me "Good faith" efforts w included the following Posting the CCI | by mail or other nethods used). using electronic of the Consumenthods must compare used to react methods: R at the following | direct delivery methods (attach description of delivery methods described in the Guidance or Confidence Report (water systems utilizing plete the second page). Those efforts URL: www | | used) | | e CCR in news media (attach copy of press | | ☐ Publication of the | | al newspaper of general circulation (attach a including name of newspaper and date | | ☐ Delivery of mult | iple copies of CO | (attach a list of locations) CR to single-billed addresses serving several usinesses, and schools | | | | ions (attach a list of organizations) | | | □ Publication of the CCR in the electronic city newsletter or electronic community newsletter or listserv (attach a copy of the article or notice) □ Electronic announcement of CCR availability via social media outlets (attach list of social media outlets utilized) □ Other (attach a list of other methods used) For systems serving at least 100,000 persons: Posted CCR on a publicly-accessible internet site at the following URL: www. For privately-owned utilities: Delivered the CCR to the California Public Utilities Commission | |-----------------|--| | | Consumer Confidence Report Electronic Delivery Certification | | Wate
this | er systems utilizing electronic distribution methods for CCR delivery must complete page by checking all items that apply and fill-in where appropriate. | | X | Water system mailed a notification that the CCR is available and provides a direct URL to the CCR on a publicly available website where it can be viewed (attach a copy of the mailed CCR notification). URL: www.lmoswater.org Water system emailed a notification that the CCR is available and provides a direct URL to the CCR on a publicly available site on the Internet where it can be viewed (attach a copy of the emailed CCR notification). URL: | | | Water system emailed the CCR as an electronic file email attachment. Water system emailed the CCR text and tables inserted or embedded into the body of an email, not as an attachment (attach a copy of the emailed CCR). Requires prior DDW review and approval. Water system utilized other electronic delivery method that meets the direct delivery requirement. | | Provinclu deliv | ride a brief description of the water system's electronic delivery procedures and add how the water system ensures delivery to customers unable to receive electronic very. | | | | | = " | | |-----|--| | | | | | | | | | | * | | | | | | | | | | | | | | | | | This form is provided as a convenience and may be used to meet the certification requirement of section 64483(c) of the California Code of Regulations. ## **2022 Consumer Confidence Report** ### **Water System Information** Water System Name: Lake Morena's Oak Shores Mutual Water Co. Report Date: July 1, 2023 Type of Water Source(s) in Use: Ground water, 5 active wells used in 2022 Name and General Location of Source(s): Wells 1,2,5,6, and 7 are located off Lake Morena Drive within the Lake Morena Oak Shores community. Drinking Water Source Assessment Information: Source water assessments were completed for all the sources in 2022. The sources are considered vulnerable to septic systems in high density (>1/acre). Copies of the assessments are available at the State Water Resources Control Board Division of Drinking Water or Lake Morena's Oak Shores' office. Time and Place of Regularly Scheduled Board Meetings for Public Participation: First Thursday of each month at the Lake Morena Community Church @ 7:00 p.m. For More Information, Contact: Lake Morena's Oak Shores office @ 619 478-5151 ### **About This Report** We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2022 and may include earlier monitoring data. **Terms Used in This Report** | Term | Definition | |--|---| | Level 1 Assessment | A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. | | Level 2 Assessment | A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. | | Maximum Contaminant
Level (MCL) | The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. | | Maximum Contaminant
Level Goal (MCLG) | The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA). | | Term | Definition | |--|--| | Maximum Residual
Disinfectant Level
(MRDL) | The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. | | Maximum Residual
Disinfectant Level Goal
(MRDLG) | The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. | | Primary Drinking Water Standards (PDWS) | MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. | | Public Health Goal
(PHG) | The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. | | Regulatory Action Level (AL) | The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. | | Secondary Drinking
Water Standards
(SDWS) | MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. | | Treatment Technique (TT) | A required process intended to reduce the level of a contaminant in drinking water. | | Variances and
Exemptions | Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions. | | ND | Not detectable at testing limit. | | ppm | parts per million or milligrams per liter (mg/L) | | ppb | parts per billion or micrograms per liter (µg/L) | | ppt | parts per trillion or nanograms per liter (ng/L) | | ppq | parts per quadrillion or picogram per liter (pg/L) | | pCi/L | picocuries per liter (a measure of radiation) | # Sources of Drinking Water and Contaminants that May Be Present in Source Water The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems. - Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. ### Regulation of Drinking Water and Bottled Water Quality In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health. ### **About Your Drinking Water Quality** #### **Drinking Water Contaminants Detected** Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report. Table 1. Sampling Results Showing the Detection of Lead and Copper Complete if lead or copper is detected in the last sample set. | Lead and
Copper | Sample Date | No. of
Samples
Collected | 90 th Percentile
Level Detected | No. Sites
Exceeding AL | AL | PHG | Typical Source
of
Contaminant | |--------------------|------------------------------|--------------------------------|---|---------------------------|----|-----|---| | Lead
(ppb) | August-
September
2022 | 10 | 19 | 2 | 15 | 0.2 | Internal corrosion of household
water plumbing systems;
discharges from industrial
manufacturers; erosion of
natural deposits | | Lead and
Copper | Sample Date | No. of
Samples
Collected | 90 th Percentile
Level Detected | No. Sites
Exceeding AL | AL | PHG | Typical Source
of
Contaminant | |--------------------|------------------------------|--------------------------------|---|---------------------------|-----|-----|---| | Copper (ppm) | August-
September
2022 | 10 | 0.27 | 0 | 1.3 | 0.3 | Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives | Table 2. Sampling Results for Sodium and Hardness | Chemical or
Constituent (and
reporting units) | Sample
Date | Level
Detected | Range of Detections | MCL | PHG
(MCLG) | Typical Source of Contaminant | |---|----------------|-------------------|---------------------|------|---------------|--| | Sodium (ppm) | 2022 | 152 | 63.3-245 | None | None | Salt present in the water and is generally naturally occurring | | Hardness (ppm) | 2022 | 740 | 178-1380 | None | None | Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring | Table 3. Detection of Contaminants with a Primary Drinking Water Standard | Chemical or
Constituent
(and
reporting units) | Sample
Date | Level
Detected | Range of Detections | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Source
of
Contaminant | |--|----------------|-------------------|---------------------|---------------|--------------------------|---| | Nitrate (mg/L as N) | 2022 | 4.6 | 4.2-5.2 | 10 | 10 | Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits | | Uranium (pCi/L) | 2022 | 0.07 | 0-0.6 | 20 | 0.43 | Erosion of natural deposits | | Gross Alpha (pCi/L) | 2022 | 11.5 | 5.32-25.2 | 15 | 0 | Erosion of natural deposits | | Arsenic (ug/L) | 2022 | 0.001 | 0.0004-
0.003 | 10 | 0.004 | Erosion of
natural
deposits; runoff
from orchards;
glass and
electronics
production
wastes | |-----------------|------|-------|------------------|------|-------|---| | Fluoride (mg/L) | 2022 | 0.21 | 0.181-0.26 | 2.0 | 1 | Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories | | | | | | | | * | | Selenium (ug/L) | 2022 | 0.006 | 0-0.03 | 50.0 | 30 | Discharge from petroleum, glass, and metal refineries; erosion of natural deposits; discharge from mines and chemical manufacturers; runoff from livestock lots (feed additive) | | Barium (mg/L) | 2022 | 0.25 | 0.009-0.65 | 1.0 | 2 | Discharge of oil
drilling wastes
and from metal
refineries;
erosion of
natural deposits | | TTHM's (ug/L) Trihalomethanes | August
2022 | 10 | N/A | 80 | N/A | By-product of drinking water disinfection | |-------------------------------|----------------|----|-----|----|-----|---| | HAA5 (ug/L) Haloacetic Acid | August
2022 | 19 | N/A | 60 | N/A | By-product of drinking water disinfection | Table 4. Detection of Contaminants with a Secondary Drinking Water Standard | | name of our and of our and our or and our or an a | | | | | | | | | |---|--|-------------------|---------------------|------|---------------|---|--|--|--| | Chemical or
Constituent (and
reporting units) | Sample
Date | Level
Detected | Range of Detections | SMCL | PHG
(MCLG) | Typical Source
of
Contaminant | | | | | Aggressive Index | 2022 | 11.6 | 11.3-12.2 | None | None | Natural Occurring | | | | | Total Alkalinity
(mg/L) | 2022 | 202 | 180-244 | None | None | Natural Occurring | | | | | Bicarbonate
Alkalinity (mg/L) | 2022 | 202 | 180-244 | None | None | Natural Occurring | | | | | Calcium (mg/L) | 2022 | 203 | 52.9-350 | None | None | Natural Occurring | | | | | Chloride (mg/L) | 2022 | 77.6 | 43-141 | 500 | None | Runoff/leaching
from natural
deposits; industrial
wastes | | | | | Magnesium
(mg/L) | 2022 | 56 | 11.2-123 | None | None | Natural Occurring | | | | | pH (pH units) | 2022 | 6.7 | 6.17-6.97 | None | None | Natural Occurring | | | | | Specific
Conductance
(umhos/cm) | 2022 | 771 | 561-1060 | 1600 | None | Substance that form ions when in water; sea water influence | | | | | Sulfate (mg/L) | 2022 | 21 | 13.5-30.5 | 500 | None | Runoff/leaching
from natural
deposits; industrial
wastes | | | | | Total Dissolved
Solids (mg/L) | 2022 | 476 | 322-693 | 1000 | None | Runoff/leaching from natural deposits | | | | | Turbidity (NTU) | 2017 | 0.17 | 0-0.33 | 5.0 | None | Soil runoff | | | | | Zinc (ug/L) | 2022 | 0.1 | 0.001-0.496 | 5000 | None | Runoff/leaching
from natural
deposits; industrial
wastes | | | | #### **Additional General Information on Drinking Water** Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Lake Morena's Oak Shores Mutual Water Company is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead. coli MCL.]