2024 Consumer Confidence Report ### **Water System Information** Water System Name: H& J Water Company 3700073 Report Date: 06/27/2025 Type of Water Source(s) in Use: Groundwater Wells Name and General Location of Source(s): H&J Water Co. PO Box 1214, 4835 Belvedere Drive, Julian, CA 92036 Drinking Water Source Assessment Information: Well #2 is the Primary Source located in H&J Water Company's property in Heise County Park; Well #1 is the Standby Source located next to Lot #23 (4745 Belvedere Drive, Julian, CA 92036) in the Pine Hills subdivision of Frisius Park. On file with the Department of Health Time and Place of Regularly Scheduled Board Meetings for Public Participation: [The fourth Sunday of every June (end of fiscal year): and periodically throughout the year as the Board deems necessary. The location and dates/times differ, and the members are notified 10 days prior to any meeting. For More Information, Contact: H&J Water Company Josue Vega (operator) 760-522-1034, Rosa Arias, 760-803-2492 and Peter Girten 760-270-1627. ## **About This Report** We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2024, and may include earlier monitoring data. # Importance of This Report Statement in Five Non-English Languages (Spanish, Mandarin, Tagalog, Vietnamese, and Hmong) Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse [Enter Water System's Name] a [Enter Water System's Address or Phone Number] para asistirlo en español. Language in Mandarin: 这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 [Enter Water System Name]以获得中文的帮助: [Enter Water System's Address][Enter Water System's Phone Number]. Language in Tagalog: Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa [Enter Water System's Name and Address] o tumawag sa [Enter Water System's Phone Number] para matulungan sa wikang Tagalog. Language in Vietnamese: Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ [Enter Water System's Name] tại [Enter Water System's Address or Phone Number] để được hỗ trợ giúp bằng tiếng Việt. Language in Hmong: Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau [Enter Water System's Name] ntawm [Enter Water System's Address or Phone Number] rau kev pab hauv lus Askiv. ## **Terms Used in This Report** | Term | Definition | |--|---| | Level 1 Assessment | A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. | | Level 2 Assessment | A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. | | Maximum Contaminant
Level (MCL) | The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. | | Maximum Contaminant
Level Goal (MCLG) | The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA). | | Maximum Residual
Disinfectant Level
(MRDL) | The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. | | Maximum Residual
Disinfectant Level Goal
(MRDLG) | The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. | | Primary Drinking Water Standards (PDWS) | MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. | | Public Health Goal
(PHG) | The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. | | Regulatory Action Level (AL) | The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. | | Secondary Drinking
Water Standards
(SDWS) | MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. | | Treatment Technique (TT) | A required process intended to reduce the level of a contaminant in drinking water. | | Variances and Exemptions | Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions. | | Term | Definition | |-------|--| | ND | Not detectable at testing limit. | | ppm | parts per million or milligrams per liter (mg/L) | | ppb | parts per billion or micrograms per liter (µg/L) | | ppt | parts per trillion or nanograms per liter (ng/L) | | ppq | parts per quadrillion or picogram per liter (pg/L) | | pCi/L | picocuries per liter (a measure of radiation) | # Sources of Drinking Water and Contaminants that May Be Present in Source Water The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems. - Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. # Regulation of Drinking Water and Bottled Water Quality In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health. ### **About Your Drinking Water Quality** #### **Drinking Water Contaminants Detected** Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report. Table 1. Sampling Results Showing the Detection of Coliform Bacteria Complete if bacteria are detected. | Microbiological
Contaminants | Highest No.
of
Detections | No. of
Months in
Violation | MCL | MCLG | Typical Source of
Bacteria | |---------------------------------|---------------------------------|----------------------------------|-----|------|-------------------------------| | E. coli | (In the year)
0 | 0 | (a) | 0 | Human and animal fecal waste | (a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*. Table 2. Sampling Results Showing the Detection of Lead and Copper Complete if lead or copper is detected in the last sample set. | Lead and
Copper | Sample Date | No. of
Samples
Collected | 90 th Percentile
Level Detected | No. Sites
Exceeding AL | Range of
Results | AL | PHG | Typical Source
of
Contaminant | |--------------------|-------------|--------------------------------|---|---------------------------|---------------------|---------------|-----|---| | Lead
(ppb) | 10/24/24 | 5 | 0.066
mg/L | 0 | 0.00494
mg | 0.015
mg/L | 0.2 | Corrosion of household plumbing systems; Erosion of natural deposits | | Copper (ppm) | 10/24/24 | 5 | 0.13 mg/L | 0 | 0.094
mg | 1300
mg/L | 0.3 | Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives | Table 3. Sampling Results for Sodium and Hardness | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | Range of Detections | MCL | PHG
(MCLG) | Typical Source of
Contaminant | |---|----------------|-------------------|---------------------|------|---------------|--| | Sodium (ppm) | 12/30/23 | 27 | 27 | None | None | Salt present in the water and is generally naturally occurring | | Hardness (ppm) | 12/30/23 | 260 | 260 | None | None | Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring | Table 4. Detection of Contaminants with a Primary Drinking Water Standard | Chemical or
Constituent
(and
reporting units) | Sample
Date | Level
Detected | Range of
Detections | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Source
of
Contaminant | |--|----------------|-------------------|------------------------|---------------|--------------------------|--| | Calcium | 03/05/25 | 59 | 59 | 0 | 0 | [Enter Source] | | Magnesium | 12/29/23 | 24 | 24 | 0 | 0 | [Enter Source] | | Nitrate | 12/30/24 | 0-ND | ND-1.00 | 10 | 0.05 | Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits. | | Dioxin 2,3,7,8-
TCDD (ng/ml) | 12/15/2018 | 10.9 | 7.3-14.6 | 0.03 | 0.05 | Emissions from waste incineration and other combustion discharge from chemical factories | | Potassium | 12/29/23 | 3.4 | 3.4 | 0 | 0 | | Table 5. Detection of Contaminants with a Secondary Drinking Water Standard | | ı | | 1 | 1 | ı | , | |---|--|---|---|--|---------------|---| | Chemical or
Constituent (and
reporting units) | Sample
Date | Level
Detected | Range of Detections | SMCL | PHG
(MCLG) | Typical Source
of
Contaminant | | Alkalinity | 03/05/25 | 220 | 220 | | | | | Bicarbonate (HC 03) | 01/15/24 | 250 | 250 | | | | | Color | 12/29/23 | 40 | 40 | 15 | | Runoff/leaching of natural deposits | | Odor | 12/29/23 | 1 | 1 | 3 | | Runoff/leaching of natural deposits | | pН | 02/25/25 | 7.0 | 7.0 | | | | | Specific
Conductance | 02/20/25 | 620 | 620 | 1600 | | Substance that form ions when in water, seawater influence. | | TDS | 12/29/23 | 340 | 340 | 1000 | | Runoff/leaching of natural deposits. | | Chloride | 12/29/23 | 34 | 34 | 500 | | Runoff/leaching of natural deposits; seawater influence. | | Turbidity | 12/29/23 | 10 | 10 | 5 | | Leaching of natural deposits. | | Iron | 01/27/24
02/15/24
03/28/24
04/18/24
05/29/24
06/24/24
07/18/24
08/15/24
09/24/24
10/17/24
11/21/24
12/31/24 | 840
570
730
800
660
1100
780
970
860
460
1000
1400 | 840
570
730
800
660
1100
780
970
860
460
1000
1400 | 300
300
300
300
300
300
300
300
300
300 | | Leaching of natural deposits | | Manganese | 12/29/23 | 26 | 26 | 50 | | Leaching of natural deposits | **Table 6. Detection of Unregulated Contaminants** | Chemical or
Constituent (and
reporting units) | Sample
Date | Level
Detected | Range of Detections | Notification
Level | Health Effects | |---|----------------|-------------------|---------------------|-----------------------|---| | Perfluorobutane
sulfonic acid
[PFBS] | 03/04/2025 | 4 | 4 | 500 ng/L | Perfluorobutane sulfonic acid exposures resulted in decreased thyroid | | | | hormone in pregnant | |--|--|-----------------------| | | | female mice. PFBS | | | | only detected in Well | | | | 01.not well 2 | #### **Additional General Information on Drinking Water** Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). Lead-Specific Language: Lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. [H&J Water Company] is responsible for providing high quality drinking water and removing lead pipes, but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of dishes. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water and wish to have your water tested, contact [H&J Water Company, Rosa Arias 760-803-2492]. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at http://www.epa.gov/safewater/lead. Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement Table 7. Violation of a MCL, MRDL, AL, TT or Monitoring Reporting Requirement | Violation | Explanation | Duration | Actions Taken to Correct Violation | Health Effects
Language | |-----------|--|----------|---|---| | Iron | Water source is naturally high in iron | ongoing | Working on improving all the filtration system and chlorinator. | Iron was found at
levels that exceed
the secondary MCL
of 300 ug/L. The iron
MCL was set to
protect you against
unpleasant aesthetic
effects (e.g color,
taste, and odor) and | | | | | | the staining of plumbing fixtures (e.g.) tubs, and sinks) and clothing while washing. The high iron levels are due to leaching of natural deposits. | |-----------|--|---------------------|--|---| | Manganese | Water source is
naturally high in
Manganese | Ongoing | Looking into a new system. | Manganese exposures result in neurological effects. High levels of manganese in people have been shown to result in adverse effects to the nervous system. | | Nitrate | H&J Water is required to monitor your drinking water for specific contaminants on a regular basis. Results of a regular monitoring are an indicator of whether or not your drinking water meets health standards. During the calendar year of 2021 and 2022, we did not monitor for Nitrate from Well 02 and therefore, cannot be sure of the quality of your drinking water during that time. | Years 2021 and 2022 | Took nitrate tests on 12/30/24 the results showed that no nitrate was detected | Nitrate in drinking water at levels above 10mg/L is at health risks for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry to carry oxygen, resulting in serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with specific enzymes deficiencies. If you are pregnant, you should ask advice | | | | from your health care provider. | |--|--|---------------------------------| | | | care provider. | ### For Water Systems Providing Groundwater as a Source of Drinking Water Table 8. Sampling Results Showing Fecal Indicator-Positive Groundwater Source Samples | Microbiological Contaminants (complete if fecal- indicator detected) | Total No. of
Detections | Sample
Dates | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Source of
Contaminant | |--|----------------------------|-----------------------|---------------|--------------------------|----------------------------------| | E. coli | 2024
0 | Each month of 2024 | 0 | (0) | Human and animal fecal waste | | Enterococci | 2024
0 | Each month
of 2024 | TT | N/A | Human and animal fecal waste | | Coliphage | 2024
0 | Each month
of 2024 | TT | N/A | Human and animal fecal waste | #### Table 9. Violation of Groundwater TT | Violation | Explanation | Duration | Actions Taken to Correct Violation | Health Effects
Language | |-----------|-------------|----------|------------------------------------|----------------------------| | None | None | None | None | None | Summary Information for Violation of a Surface Water TT **Summary Information for Operating Under a Variance or Exemption** Not applicable