APPENDIX B: eCCR Certification Form

Consumer Confidence Report Certification Form

(To be submitted with a copy of the CCR)

Water System Name:	California Institution for Men
Water System Number:	CA3610850

The water system named above hereby certifies that its Consumer Confidence Report was distributed on 7/18/2025 to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the State Water Resources Control Board, Division of Drinking Water (DDW).

Certified by:

Name: Jaime Medrano	Title: Water & Sewer Plant Supervisor
Signature: The Josh Que	Date: 7/18/2025
Phone number: 909-606-7207	

To summarize report delivery used and good-faith efforts taken, please complete this page by checking all items that apply and fill-in where appropriate:

CCR was distributed by mail or other direct delivery methods. (CCR was posted on all housing unit bulletin boards for customer to view.)

CCR was distributed using electronic delivery methods described in the Guidance for Electronic Delivery of the Consumer Confidence Report (CCR was emailed to all housing units for printing capability).

Posted the CCR in public places (Plant Operations, Administration builds, Housing Units.)

This form is provided as a convenience and may be used to meet the certification requirement of section 64483(c) of the California Code of Regulations.

2024 Consumer Confidence Report

Water System Information

Water System Name: California Institution for Men

Report Date:7/3/2025

Type of Water Source(s) in Use: Ground Water

Name and General Location of Source(s): Domestic Wells: #1, #1A, #3, #11A, #15, #16; All Are Located in the Chino Basin.

Drinking Water Source Assessment Information: Source assessment performed in 2017 for Wells #1, #1A, #3, #11A,#16, #15. All wells were found to be vulnerable to Nitrate detection. All source wells are processed and treated at the CIM Ion Exchange Plant.

For More Information, Contact: Jaime Medrano, Chief Plant Operator at (909) 606-7207 or Alex Martinez, Chief Engineer at (909) 606-7082

About This Report

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2024, and may include earlier monitoring data.

Importance of This Report Statement in Five Non-English Languages (Spanish, Mandarin, Tagalog, Vietnamese, and Hmong)

Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse California Institution for Men] a 5997 Edison Ave. Chino, CA. 91710 para asistirlo en español.

Language in Mandarin: 这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 California Institution for Men以获得中文的帮助: 5997 Edison Ave. Chino, CA. 91710; (909) 606-7207.

Language in Tagalog: Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa California Institution for Men 5997 Edison o tumawag sa (909)597-7207 para matulungan sa wikang Tagalog.

Language in Vietnamese: Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ California Institution for Men tại 5997 Edison Ave. Chino, Ca. 91710 để được hỗ trợ giúp bằng tiếng Việt.

Language in Hmong: Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau California Institution for Men ntawm 5997 Edison Ave. Chino, Ca. 91710 rau kev pab hauv lus Askiv.

Terms Used in This Report

Term	Definition
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level (MCL)	The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.
Maximum Contaminant Level Goal (MCLG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).
Maximum Residual Disinfectant Level (MRDL)	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
Primary Drinking Water Standards (PDWS)	MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.
Public Health Goal (PHG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
Regulatory Action Level (AL)	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
Secondary Drinking Water Standards (SDWS)	MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.
Treatment Technique (TT)	A required process intended to reduce the level of a contaminant in drinking water.
Variances and Exemptions	Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.
ND	Not detectable at testing limit.
ppm	parts per million or milligrams per liter (mg/L)
ppb	parts per billion or micrograms per liter (µg/L)
ppt.	parts per trillion or nanograms per liter (ng/L)
ppq	parts per quadrillion or picogram per liter (pg/L)
pCi/L	picocuries per liter (a measure of radiation)

Sources of Drinking Water and Contaminants that May Be Present in Source Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally occurring or be the result of oil and gas production and mining activities.

Regulation of Drinking Water and Bottled Water Quality

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

About Your Drinking Water Quality

Drinking Water Contaminants Detected

Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Table 1. Sampling Results Showing the Detection of Coliform Bacteria

Complete if bacteria are detected.

Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria
E. coli	0	0	(a)	0	Human and animal fecal waste

⁽a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

Table 2. Sampling Results Showing the Detection of Lead and Copper

Complete if lead or copper is detected in the last sample set.

Lead and Copper	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	Range of Results	AL	рна	Typical Source of Contaminant
Lead (ppm)	2024	20	0.007	2	0- 0.084	0.015	0.00 02	Corrosion of household plumbing systems; Erosion of natural deposits
Copper (ppm)	2024	20	0.375	0	0.002- 1.030	1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

Table 3. Sampling Results for Sodium and Hardness

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	01/2024- 12/2024	31.13	22.60- 45.00	None	None	Salt present in the water and is generally naturally occurring
Hardness (ppm)	01/2024- 12/2024	271.14	160-370	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring

Table 4. Detection of Contaminants with a Primary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Arsenic (ppb)	01/2024- 12/2024	2.02	0-5.30	10	0.004	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Barium (ppb)	01/2024- 12/2024	97.37	62.00- 140.00	1000	2000	Discharge of oil drilling wastes and from metal refineries; erosion of natural deposits
Chromium (ppb)	01/2024- 12/2024	10.46	7.27-28.60	50	100	Discharge from steel and pulp mills and chrome plating; erosion of natural deposits
Fluoride (ppm)	01/2024- 12/2024	0.15	0.1-0.29	2.0	1.0	Erosion of natural deposits; water additive which promotes strong teeth; discharges from fertilizer and aluminum factories
Nitrate (as nitrogen, N) (NO3-N) (ppm)	01/2024- 12/2024	4.30	2.60-7.70	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Selenium (ppb)	01/2024- 12/2024	5.66	0-11.00	50	30	Discharge from petroleum, glass and metal refineries; crosion of natural deposits: discharge from mines and chemical manufacturers: runoff from livestock lots (feed additive)
Cyanide (ppb)	01/2024- 12/2024	0.33	0-2.70	150	1,50	Industrial discharges, particularly from metal mining, chemical industries, and wastewater treatment facilities.

Table 5. Detection of Contaminants with a Secondary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant
Chloride (ppm)	01/2024- 12/2024	47.36	21.00- 103.00	500	N/A	Runoff/leaching from natural deposits; seawater influence
Aluminum (ppb)	01/2024- 12/2024	13.59	0-88.00	1000	600	Erosion from natural deposits: residue from some surface water treatment processes
Iron (ppb)	01/2024- 12/2024	123,52	0-1700.00	300	N/A	Leaching from natural deposits; industrial wastes
Manganese (ppb)	01/2024- 12/2024	1.86	0-17.00	50	N/A	Leaching from natural deposits
Specific Conductance (µS/cm)	01/2024- 12/2024	664.24	470.00- 920.00	1,600	Ñ/A	Substances that form ions: when in water: seawater- influence
Total Dissolved Solids (TDS) (ppm)	01/2024- 12/2024	419.81	290.00- 590.00	1,000	N/A	Runofl/leaching from natural deposits
Turbidity (Units)	01/2024- 12/2024	0.61	0-7.00	-5	N/A	Soil runoff
Zinc (ppb)	01/2024- 12/2024	10.10	0-97.80	5,000	.N/A	Runoff/leaching from natural deposits; industrial wastes

Table 6. Detection of Unregulated Contaminants

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects
No Unregulated Contaminants Sampled in 2024					

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who

Revised June 2025

have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: Lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. California Institution for Men is responsible for providing high quality drinking water and removing lead pipes, but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of dishes. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water and wish to have your water tested, CIM Plant Operations at (909)597-1821 ext. 4551. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at http://www.epa.gov/safewater/lead.

Additional Special Language for Nitrate: Nitrate in drinking water at levels above 10mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

Table 7. Violation of a MCL, MRDL	, AL	TT or Monitoring	Reporting Requirement
-----------------------------------	------	------------------	-----------------------

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
No Violations in 2024				

For Water Systems Providing Groundwater as a Source of Drinking Water

Table 8. Sampling Results Showing Fecal Indicator-Positive Groundwater Source Samples

Microbiological Contaminants (complete if fecal- indicator detected)	Total No. of Detections	Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
E. coli	0	N/A	0	(0)	Human and animal fecal waste
Enterococci	0	N/A	TT	N/A	Human and animal fecal waste
Coliphage	Ö	N/A	TT	N/A	Human and animal fecal waste

Summary Information for Fecal Indicator-Positive Groundwater Source Samples, Uncorrected Significant Deficiencies, or Violation of a Groundwater TT

Special Notice of Fecal Indicator-Positive Groundwater Source Sample: N/A

Special Notice for Uncorrected Significant Deficiencies:

IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER

Este informe contiene informacion muy importante sobre su agua potable.

Traduzcalo o hable con alguien lo entienda bien.

California Institution for Men Failed to Comply with a Corrective Action Plan/Schedule to Correct a Significant Deficiencies

Our water system violated a drinking water requirement. Although this incident was not an emergency, as our customers, you have a right to know what happened and what we did (are doing) to correct this situation.

An Inspection conducted on February 9, 2022 by the State Water Resource Control Board, Division of Drinking Water (DDW) found deficiencies in our water system.

As required by the Ground Water Rule, we were required to take action to:

Comply with Title 22, Code of Regulations, Section 64430, provide proof of practice documents showing the start of the design phase for replacement of:

- A) CIM/CIW Transmission line.
- B) High Tank replacement.
- C) Raw Water Main Lines.

However, we failed to take this action by the deadline established by the DDW.

What should I do?

- This is not an emergency. If it had been, you would have been notified within 24 hours.
- There is nothing you need to do. You do not need to boil your water or take other corrective actions. However, if you have specific health concerns, consult your doctor.
- People with severely compromised immune systems, infants, and some elderly may be at increased risk. These people should seek advice about drinking water from their health care providers. General guidelines on ways to lessen the risk of infection by microbes are available from U.S. EPA's Safe Drinking water Hotline at I (800) 4264791.

What happened? What is being done?

CITATION NO. 05_13 23c_027 FAILURE TO COMPLY WITH THE STATE-APPROVED CORRECTIVE ACTION PLAN FOR 2022 SANITARY SURVEY SIGNIFICANT DEFICIENCIES.

FMRCB is determining a new schedule date by which design will be released for the three violations noted in the citation.

Project identification large projects have been assigned as follows:

- Project #1- Raw Water Main Lines
 Proposed Start Date: Scope of work-3/12/2025 -- Finish Assessment- 2/27/2027
- Project #2- CIM/CIW transmission Line
 Proposed Start Date: Scope of work-3/12/2025 -- Finish Assessment- 2/22/2027
- Project #3- High Tank
 Proposed Start Date: Scope of work-12/2/2024 -- Finish Construction- 7/10/2028

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this public notice in a public place or distributing copies by hand or mail. Secondary Notification Requirements Upon receipt of notification from a person operating a public water system, the following notification must be given within 10 days [Health and Safety Code Section 116450(g)]:

Revised June 2025

Table 9. Violation of Groundwater TT

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
CIM/CIW Transmission line.	Transmission line subject to soil erosion, relocate Transmission line	24 Months	Awaiting CDCR's Facilities Asset Mgmt. Branch Revised (CAP).	None
High Tank	Construction of High Tank does not meet current OSHA AWWA standards.	48 Months	Awaiting CDCR's Facilities Asset Mgmt, Branch Revised (CAP).	None
Raw water main lines	Raw water lines aged and corroded	24 Months	Awaiting CDCR's Facilities Asset Mgmt. Branch Revised (CAP).	None

SWS CCR Revised June 2025