APPENDIX B: eCCR Certification Form (Suggested Format) #### **Consumer Confidence Report Certification Form** (To be submitted with a copy of the CCR) | Water System Name: | Mojave Water Agency | |----------------------|---------------------| | Water System Number: | CA-3610129 | The water system named above hereby certifies that its Consumer Confidence Report was distributed on March 28, 2024 (date) to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the State Water Resources Control Board, Division of Drinking Water (DDW). #### Certified by: | Name: Christy Huiner | Title: Senior Water Resource Analyst | | | | |------------------------------|--------------------------------------|--|--|--| | Signature: Christy Huiner | Date: March 28,2024 | | | | | Phone number: (760) 946-7066 | blank | | | | To summarize report delivery used and good-faith efforts taken, please complete this page by checking all items that apply and fill-in where appropriate: | | | ect delivery methods (attach description of | |-------------|--|---| | | other direct delivery methods used). | | | \boxtimes | CCR was distributed using electronic del | ivery methods described in the Guidance | | | for Electronic Delivery of the Consumer C | Confidence Report (water systems utilizing | | | electronic delivery methods must complet | e the second page). | | | Good faith" efforts were used to reach r | non-bill paying consumers. Those efforts | | | included the following methods: | | | | Posting the CCR at the following UI | RL: | | | ☐ Mailing the CCR to postal patrons | within the service area (attach zip codes | | | used) | | | | Advertising the availability of the C release) | CR in news media (attach copy of press | | | , | awananar of ganaral airculation (attach a | | | | ewspaper of general circulation (attach a | | | copy of the published notice, in published) | cluding name of newspaper and date | | | Posted the CCR in public places (a) | tach a list of locations) | | | 1/NE - L DOLEG THE CALL III DUDIIG DIAGEO (A) | Jewi e na O Ocellola I | | | Delivery of multiple copies of CCR to single-billed addresses serving several persons, such as apartments, businesses, and schools Delivery to community organizations (attach a list of organizations) Publication of the CCR in the electronic city newsletter or electronic community newsletter or listserv (attach a copy of the article or notice) Electronic announcement of CCR availability via social media outlets (attach list of social media outlets utilized) Other (attach a list of other methods used) For systems serving at least 100,000 persons: Posted CCR on a publicly-accessible internet site at the following URL: www.mojavewater.org For privately-owned utilities: Delivered the CCR to the California Public Utilities Commission | |-------|---| | | Consumer Confidence Report Electronic Delivery Certification | | | er systems utilizing electronic distribution methods for CCR delivery must complete page by checking all items that apply and fill-in where appropriate. | | | Water system mailed a notification that the CCR is available and provides a direct URL to the CCR on a publicly available website where it can be viewed (attach a copy of the mailed CCR notification). URL: www. | | | Water system emailed a notification that the CCR is available and provides a direct URL to the CCR on a publicly available site on the Internet where it can be viewed (attach a copy of the emailed CCR notification). URL: www. | | | Water system emailed the CCR as an electronic file email attachment. Water system emailed the CCR text and tables inserted or embedded into the body of an email, not as an attachment (attach a copy of the emailed CCR). | | | Requires prior DDW review and approval. Water system utilized other electronic delivery method that meets the direct delivery requirement. | | inclu | vide a brief description of the water system's electronic delivery procedures and ude how the water system ensures delivery to customers unable to receive electronic very. | | | ijave Water Agency is a water wholesaler and provides water to these retail | | Liberty Utilities, Adelanto Water District, Hesperia Water District, Victorville Water | |--| | District. | | Director of Engineering and Operations, Mike Simpson, emailed the | | supervisors/managers of those districts. Additionally it was posted to | | www.mojavewater.org the Agency's website and made available at the office, 13846 | | Headquarters Drive, Apple Valley CA 92307 | This form is provided as a convenience and may be used to meet the certification requirement of section 64483(c) of the California Code of Regulations. Public places CCR was posted: Mojave Water Agency Main Office 13846 Headquarters Drive, Apple Valley CA 92307 #### **Contact Us** For questions, contact Director of Engineering and Operations Michael Simpson during our regular office hours: M-Th 8 a.m. – 5 p.m. Alternating Fridays 8 a.m. – 4:30 p.m. Closed on Holidays (760) 946-7000 www.MojaveWater.org PublicAffairs@mojavewater.org 13846 Conference Center Dr. Apple Valley, CA 92307 MWA Board Meetings are open to the public at 9:30 a.m. on the second and fourth Thursday of each month ### En Español Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse Mojave Water Agency a 760-946-7000 para asistirlo en español. ### **Consumer Confidence Report** The Mojave Water Agency (MWA) conducts extensive water quality tests annually to ensure our region has a clean, sustainable water supply. The results in our 2023 Consumer Confidence Report represent the most recent sampling, which could be from previous years, as indicated. We encourage you to review this report which provides a description of where your water comes from and detailed information about your water quality. Adnan Anabtawi General Manager ## From the Board of Directors ## Our commitment to you... Kimberly Cox President Mojave Water Agency works diligently to sustainably manage groundwater to benefit the residents and lands within its 4,900-square-mile service area. As one of 29 State Water Project (SWP) Contractors we use sound science to import water from Northern California, combine it with local water supplies, and maintain the infrastructure to ensure the availability and accessibility of water supplies for local use. We do this with robust technology, science, and data management systems to support effective operations and decision-making. Rick Roelle Vice President The Regional Recharge and Recovery Project (R3) delivers imported State Water Project water into the local aquifers along the Mojave River in Hesperia and Apple Valley. MWA stores these supplies as groundwater until it is needed, then recovers it for wholesale distribution to local purveyors, including the Victorville Water District, Hesperia Water District, Liberty Utilities (Apple Valley), and City of Adelanto. Mike Page Treasurer Water provided by the Mojave Water Agency has met all of California's Drinking Water standards. Through MWA's trained and certified water professionals, customers have the security of knowing their drinking water has proper monitoring and oversight. We are committed to providing our customers with reliable, high-quality drinking water. Marina West Secretary Kathy Hoffman Director Jesse Ramirez Director Mike Limbaugh Director ## 2023 Drinking Water Quality Test Results Wells 1-5 This report includes results from several tests for various constituents. Mojave Water Agency routinely monitors for constituents in the Agency's drinking water in accordance with Federal and State laws. Substances that are not detected (ND) are not listed. Values accompanied by < indicate a result less than the detection limit. The results below represent drinking water quality tests performed by Mojave Water Agency on Wells 1, 2, 3, 4, & 5 in the R3 wholesale water system. These wells provide high quality drinking water through service connections to the cities of Victorville, Hesperia and Adelanto upon request. Contact your local water provider for detailed information on your water quality and where your water comes from. | Inorganic w/ Primary Drinking Water Standards Wells 1, 2, 3, 4, & 5 | | | | | | | | |---|-------------|-----------------|-----------------|-------------|---------------------------|--------------|--| | Contaminants | Average | Sample Range | MCL | PHG | Sample Date | Violation | Major Sources in Drinking Water | | Fluoride (mg/L)
(Naturally Occurring) | 0.28 | 0.23 - 0.33 | 2 | 1 | 2022 | NO | Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories | | Nitrate as N (mg/L)
(NO3-N) | 0.54 | 0.47 - 0.64 | 10 | 10 | 2023 | NO | Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits | | Nitrate + Nitrite (mg/L) (as N) | 0.54 | 0.47 - 0.64 | 10 | 10 | 2023 | NO | Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits | | Radioactive Contamina | ants | | | | | | Wells 1, 2, 3, 4, & 5 | | Uranium (pCi/L) | <1.0 | <1.0 - 1.2 | 20 | 0.43 | 2022 | NO | Erosion of natural deposits | | Radium 226 + 228
(pCi/L) | <1.0 | <1.0 - 1.4 | 5 | 0 | 2022 | NO | Erosion of natural deposits | | Disinfectant Byproduc | ts | | | | | Sample resul | Its are from the distribution system from Wells 1, 2, 3, 4, & 5 | | Haloacetic Acids (ug/L)
(HAA5) | <1.0 | <1.0 - 1.2 | 60 | N/A | 2023 | NO | Byproduct of drinking water disinfection | | Total Trihalomethanes (ug/L) (TTHM) | 5.9 | <1.0 - 15.4 | 80 | N/A | 2023 | NO | Byproduct of drinking water disinfection | | Regulated Contaminar | nts with Se | condary Maxim | num Contaminant | Levels | | | Wells 1, 2, 3, 4, & 5 | | Contaminants | Average | Sample Range | Secondary MCL | Sample Date | Violation | | Major Sources in Drinking Water | | Chloride (mg/L) | 24 | 19 - 29 | 500 | 2022 | NO | Runoff/leac | hing from natural deposits; seawater influence | | Foaming Agents (ug/L)
(MBAS) | <100 | <100 - 100 | 500 | 2022 | NO | Municipal a | nd industrial wastes discharges | | Odor (units) | 1 | 1 | 3 | 2022 | NO | Naturally oc | ccurring organic materials | | Specific Conductance
(µS/cm) | 262 | 240 - 290 | 1600 | 2022 | NO | Substances | that form ions when in water; seawater influence | | Sulfate (mg/L) | 15 | 12 - 17 | 500 | 2022 | NO | Runoff/leac | hing from natural deposits; industrial wastes | | Total Dissolved Solids (mg/L) | 170 | 140 - 190 | 1000 | 2022 | NO | Runoff/leac | hing from natural deposits | | Turbidity (NTU) | 0.17 | <0.10 - 0.40 | 5 | 2022 | NO | Soil runoff | | | Disinfection Residuals | | | | | | Sample resul | Its are from the distribution system from Wells 1, 2, 3, 4, & 5 $$ | | Constituent | Average | Sample Range | MCL | PHG (MCLG) | • | | Major Sources in Drinking Water | | Chlorine (mg/L) | 0.49 | 0.20 - 0.94 | 4 | 4 | Weekly | Drinking wa | ter disinfectant added for treatment | | Constituents that may | be of inte | rest to consume | ers | | | | Wells 1, 2, 3, 4, & 5 | | Constituents | | | | Average | Range | Sample Date | | | Bicarbonate (mg/L) | | | | 82 | 80 - 86 | 2022 | No PHG or MCL's available | | Calcium (mg/L) | | | | 30 | 28 - 32 | 2022 | No PHG or MCL's available | | Magnesium (mg/L) | | | | 4.5 | 4.3 - 4.8 | 2022 | No PHG or MCL's available | | pH | | 7.3 | 7.1 - 7.7 | 2022 | No PHG or MCL's available | | | | Potassium (mg/L) | | | | 1.5 | 1.5 - 1.6 | 2022 | No PHG or MCL's available | | Sodium (mg/L) | | | | 16 | 15 - 17 | 2022 | No PHG or MCL's available | | Total Alkalinity (as CaCO3) (mg/L) | | | | 67 | 66 - 71 | 2022 | No PHG or MCL's available | | Total Hardness (as CaCO3) (mg/L) | | | | 94 | 88 - 100 | 2022 | No PHG or MCL's available | | Aggressive Index | | 11.20 | 10.77 - 11.40 | 2022 | No PHG or MCL's available | | | # 2023 Drinking Water Quality Test Results Well 6 The results below represent drinking water quality tests performed by Mojave Water Agency on Well 6, which provides water to Liberty Utilities (Apple Valley) upon request. | Inorganic w/ Primary Drinking Water Standards Well 6 | | | | | | | | | |--|--|----------------|----------------|-------------|---------------------------|---|--|--| | Contaminants | Average | Sample Range | MCL | PHG | Sample Date | Violation | Major Sources in Drinking Water | | | Fluoride (mg/L)
(Naturally Occurring) | 0.26 | 0.26 | 2 | 1 | 2022 | NO | Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories | | | Nitrate as N (mg/L)
(NO3-N) | 0.53 | 0.53 | 10 | 10 | 2023 | NO | Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits | | | Nitrate + Nitrite (mg/L) (as N) | 0.53 | 0.53 | 10 | 10 | 2023 | NO | Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits | | | Radioactive Contamin | ants | | | | | | Well 6 | | | Radium 226 + 228
(pCi/L) | <1.0 | <1.0 - 1.1 | 5 | 0 | 2022 | NO | Erosion of natural deposits | | | Regulated Contaminar | nts with Se | econdary Maxim | num Contaminan | t Levels | | | Well 6 | | | Contaminants | Average | Sample Range | Secondary MCL | Sample Date | Violation | | Major Sources in Drinking Water | | | Chloride (mg/L) | 28 | 28 | 500 | 2022 | NO | Runoff/leac | hing from natural deposits; seawater influence | | | Odor (units) | 1 | 1 | 3 | 2022 | NO | Naturally occurring organic materials | | | | Specific Conductance (µS/cm) | 270 | 270 | 1600 | 2022 | NO | Substances that form ions when in water; seawater influence | | | | Sulfate (mg/L) | 16 | 16 | 500 | 2022 | NO | Runoff/leac | hing from natural deposits; industrial wastes | | | Total Dissolved Solids (mg/L) | 170 | 170 | 1000 | 2022 | NO | Runoff/leaching from natural deposits | | | | Constituents that may | Constituents that may be of interest to consumers Well 6 | | | | | | | | | Constituents | | | | Average | Range | Sample Date | Note | | | Bicarbonate (mg/L) | | | | 86 | 86 | 2022 | No PHG or MCL's available | | | Calcium (mg/L) | | | | 31 | 31 | 2022 | No PHG or MCL's available | | | Magnesium (mg/L) | | | | 4.8 | 4.8 | 2022 | No PHG or MCL's available | | | рН | | | | 7.5 | 7.5 | 2022 | No PHG or MCL's available | | | Potassium (mg/L) | | | | 1.7 | 1.7 | 2022 | No PHG or MCL's available | | | Sodium (mg/L) | | | | 17 | 17 | 2022 | No PHG or MCL's available | | | Total Alkalinity (as CaCO3) (mg/L) | | | | 70 | 70 | 2022 | No PHG or MCL's available | | | Total Hardness (as CaCO3) (mg/L) | | | | 98 | 98 | 2022 | No PHG or MCL's available | | | Aggressive Index | | 11.20 | 11.20 | 2022 | No PHG or MCL's available | | | | ## Regional Recharge and Recovery ## Water Supply Mojave Water Agency's R3 water supply is 100 percent groundwater. The Agency obtains its source of groundwater from six (6) vertical wells which are located in the Alto Subarea of the Upper Mojave River Groundwater Basin. Each well has a capacity of approximately 3,500 gallons per minute. The Agency maintains two (2) storage reservoirs that have a combined capacity of approximately 7.5 million gallons. To help monitor and keep your water safe, staff uses a Supervisory Control and Data Acquisition (SCADA) system to monitor reservoir levels, chlorine levels, and well status. The SCADA system provides remote operation and monitoring capabilities, increased security, and advanced notification. This is just one of the ways the Agency provides you with safe and reliable drinking water. #### Source Water Assessment Source water assessments were conducted for Wells 1-5 in June 2012 and Well 6 was conducted in September 2011. The assessments are summarized in the table below. A copy of the complete source water assessment and vulnerability assessment can be obtained by contacting the Mojave Water Agency at 13846 Conference Center Dr., Apple Valley, CA 92307; or the State Water Resources Control Board (SWRCB), 464 West 4th Street, Suite 437, San Bernardino, CA 92401. You may request a summary of the assessments be mailed to you by contacting the Mojave Water Agency at (760) 946-7000 or SWRCB District Engineer at (909) 383-4328. | Source Number | Source ID | Most Vulnerable Activities (PCA) | |---------------|-----------|--| | 001 | Well No.1 | Animal feeding operations as defined in federal regulations2 - Septic systems- high density [>1/acre] | | 002 | Well No.2 | Animal feeding operations as defined in federal regulations2 - Septic systems-high density [>1/acre] | | 003 | Well No.3 | Animal feeding operations as defined in federal regulations2 | | 004 | Well No.4 | Animal feeding operations as defined in federal regulations2 | | 005 | Well No.5 | Animal feeding operations as defined in federal regulations2 | | 006 | Well No.6 | Animal feeding operations as defined in federal regulations2 - Septic systems– high density [>1/acre] Wells– Agricultural / Irrigation | ## Water in the Environment The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals that can occur naturally or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems. - Radioactive contaminants that can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (U.S. EPA) and the State Water Resources Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health. ## How we protect water quality For you and your family #### 1. Extensive Testing Water quality technicians test the water weekly for bacteriological activity at six locations. We also perform bacteriological tests on each active well site monthly. The samples are tested by an independent state certified lab. #### 2. Disinfect for Safety A small amount of chlorine is added at a centralized location on a continual basis to ensure the water remains free of any bacteria. #### 3. Flush the System Staff periodically flushes water out of blow-offs, key flush points within the distribution system, at a high velocity to remove small amounts of natural sand and minerals that can slowly build up in pipelines. This happens because our water comes from deep groundwater wells. ## Additional General Information *About Drinking Water* ## **Are Special Precautions Needed?** Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Mojave Water Agency is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. For information on lead in drinking water, testing methods, and steps you can take to minimize exposure please check https://www.epa.gov/lead or call the Safe Drinking Water Hotline, 1-800-426-4791. #### Sensitive populations may be more vulnerable Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline, 1-800-426-4791. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. The tables in this report indicate which minerals and substances have been detected in the water provided by Mojave Water Agency. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA Safe Drinking Water Hotline at 1-800-426-4791. You can also go to the following websites for more information: U.S. EPA - www.epa.gov/safewater CA State Water Resources Control Board - www.waterboards.ca.gov/drinking_water/programs/ ## **Definitions** Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCL's are set as close to the PHG's (or MCLG's) as is economically and technologically feasible. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLG's are set by the U.S. Environmental Protection Agency (USEPA). Maximum Residual Disinfectant Level (MRDL): Highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLG's do not reflect the benefits of the use of disinfectants to control microbial contaminants. **Notification Level (NL):** The concentration of a contaminant which, if exceeded, triggers notification to local political jurisdictions and customers. **Primary Drinking Water Standard (PDWS):** MCLs, MRDLs and treatment techniques (TTs) for contaminants that affect health, along with their monitoring and reporting requirements. **Public Health Goal (PHG):** The level of a contaminant in drinking water below which there is no known or expected risk to health. PHG's are set by the California Environmental Protection Agency. **Regulatory Action Level (AL):** The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow. **Secondary Drinking Water Standard:** Requirements that ensure appearance, taste, and smell of drinking water are acceptable. **Secondary MCL's (SMCL):** Are set to protect the odor, taste, and appearance of drinking water. **Unregulated Contaminants:** Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted. For additional information, call the Safe Drinking Water Hotline at (800) 426-4791. NA: Not applicable. ND: Non-detected. **NTU:** Nephelometric Turbidity Units. **µS/cm:** a measure of conductance. **pCi/L:** picocuries per liter (a measure of radioactivity). mg/L: milligrams per liter or parts per million (ppm). ug/L: micrograms per liter or parts per billion (ppb). <: Less than the detection limit. 1 mg/L is equivalent to one second of time in approx. 11 1/2 days. 1 ug/L is equivalent to one second of time in approx. 32 years.