2019 CONSUMER CONFIDENCE REPORT

Ontario's annual water quality report takes you inside the world of your high-quality drinking water. This report is designed to provide important information about the source(s) of your water, what it contains, and how it compares to standards set by regulatory agencies.

The Ontario Municipal Utilities Company is pleased to report that during the past year, water delivered to your home or business meets or surpassed all state and federal drinking water requirements.

Safe and reliable drinking water supplies are necessary for public health, fire protection, economic development, and the overall quality of life. Businesses and residents are encouraged to use the drinking water supplies as efficiently as possible.

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse Ontario Municipal Utilities Company a 1425 South Bon View Avenue, Ontario, CA 91761 para asistirlo en español.

> ONTARIO MUNICIPAL UTILITIES COMPANY

2019 CONSUMER CONFIDENCE REPORT

To ensure safe drinking water, public water systems must comply with Federal and State drinking water standards. The Ontario Municipal Utilities Company and its trained, certified water quality professionals collect thousands of water samples that are delivered to a State certified laboratory for analysis. We are pleased to report there were no water quality violations during 2019.

The public is encouraged to participate on issues concerning the City's water. Meetings of the Ontario City Council are scheduled on the first and third Tuesday of each month beginning at 6:30pm at Ontario City Hall, 303 East "B" Street, Ontario, CA 91761. Check the City's website at www.ontarioca.gov or call (909) 395-2000 for more information.

Para asegurar que el agua potable, los sistemas públicos de agua deben cumplir con las normas federales y estatales de agua potable. El Municipal Utilities Company Ontario y sus capacitados, certificados profesionales de la calidad del agua recogen miles de muestras de agua que se entregan a un laboratorio certificado por el estado para su análisis. **Nos complace informar que no había violaciónes de calidad del agua durante el año 2019.**

El público es alentado a participar en asuntos con respecto al agua de la Ciudad. Las reuniones del establecimiento de Ontario se programa el primer y tercer martes de cada mes a las 6:30 P.M., por la calle 303 "B" Street, Ontario. Para más información, vaya al Web site de la Ciudad www.ontarioca.gov o llame (909) 395-2000.

Regulatory Information

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

CONTAMINANTS THAT MAY BE PRESENT IN SOURCE WATER INCLUDE:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (U.S. EPA) and the State Water Resources Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Nitrate

Nitrate in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider.

Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Ontario Municipal Utilities Company is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Total Coliform Rule

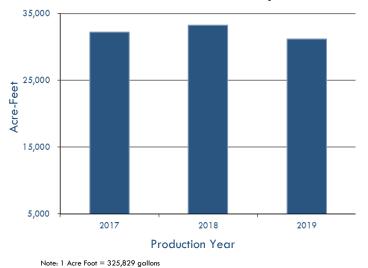
This Consumer Confidence Report (CCR) reflects changes in drinking water regulatory requirements during 2016. All water systems are required to comply with the state Total Coliform Rule. Beginning April 1, 2016, all water systems are also required to comply with the federal Revised Total Coliform Rule. The new federal rule maintains the purpose to protect public health by ensuring the integrity of the drinking water distribution system and monitoring for the presence of microbials (i.e., total coliform and *E. coli* bacteria). The U.S. EPA anticipates greater public health protection as the new rule requires water systems that are vulnerable to microbial contamination to identify and fix problems. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment to determine if any sanitary defects exist. If found, these must be corrected by the water system.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Kidney Dialysis / Aquariums

Customers who have unique water-quality needs and who use specialized home treatments, such as kidney dialysis machines, should make the necessary adjustments to remove chloramines. Customers who have fish tanks in their homes or businesses should also take precautions to remove chloramines prior to adding water to tanks.


Source Water Assessment

An assessment of the drinking water sources for the Ontario Municipal Utilities Company was completed in May 2002 and reviewed by the State Board in 2019. The sources are considered most vulnerable to the following activities associated with contaminants detected in the water supply: high density housing; sewer collection systems; parks; golf courses; the application of fertilizers, pesticides, herbicides; metal plating, finishing and fabricating; wood pulp processing and paper mills; and recreational use of surface water sources.


A copy of the complete assessment is available at State Water Board San Bernardino District Office at 464 West 4th Street, Suite 437, San Bernardino, CA 92401. You may request a summary of the assessment be sent to you by contacting the State Water Board's San Bernardino District Office or Ontario Municipal Utilities Company at (909) 395-2678.

Ontario's Drinking Water Sources

Ontario's water supplies are comprised of surface water and groundwater. Surface water originates from the State Water Project (supplied by Metropolitan Water District) and is treated by Water Facilities Authority (WFA) using conventional water treatment methods. Groundwater supplies consist of City-owed wells (local groundwater), San Antonio Water Company (SAWCO), and Chino Desalter Authority (CDA) wells.

2019 Potable Water Sources

Water Quality Monitoring

In 2019, the Ontario Municipal Utilities Company collected over 18,000 potable water samples to test for more than 150 possible constituents. Samples were collected at water sources and throughout the distribution system.

The following tables (pages 5-8) have been compiled for your information showing which constituents were detected in the City's drinking water during 2019 as compared to water quality standards.

Abbreviations & Definitions

Abbreviations

AL	Action Level	MRL
CFU/mL	Colony-Forming Units per milliliter	
DLR	Detection limits for the purpose of reporting: State determined level that a test can detect the constituent	NA ND
НРС	Heterotrophic Plate Count: a bacteri- ological test that counts the number of bacteria per milliliter of sample	NL NR
LRAA	Location Running Annual Average	
MCL	Maximum Contaminant Level	NTU
MCLG	Maximum Contaminant Level Goal	pCi/L
MRDL	Maximum Residual Disinfectant Level	PHG
MRDLG	Maximum Residual Disinfectant Level Goal	ppb

	Minimum Reporting Level set by EPA for unregulated contaminant monitoring	рр
	Not Applicable: no State or Federal standards established	ppi
	Not Detected: sample was taken and	RA
	constituent was not detected	то
	Notification Level	тт
	No Range: all results were the same value	μS
	Nephelometric Turbidity Units	" =
L	picoCuries per Liter	" >
;	Public Health Goal	" <
	parts per billon or micrograms per liter	" ≤
	(µg/L)	"#
		" 9

opm	parts per million or milligrams per liter (mg/L)
opt	parts per trillion or nanograms per liter (ng/L)
RAA	Running Annual Average
ΓΟΝ	Threshold Odor Number
гт	Treatment Technique
uS/cm	microSiemen per centimeter; or micromho per centimeter (µmho/cm)
' = "	Equal
' > "	Greater than
' < "	Less than
'≤"	Less than or equal to
' # "	Number
' % "	Percent

One part per million (ppm)	
IS LIKE	
1 second in 11.5 days	
1 drop in 13.6 gallons	

Definitions

90th Percentile: The value in a data set in which 90 percent of the set is less than or equal to this value.

Disinfection By-Product: Compounds which are formed from mixing of organic or mineral precursors in the water with ozone, chlorine or chloramine. Total Trihalomethanes and Haloacetic Acids are disinfection by-products.

Locational Running Annual Average (LRAA): The Running Annual Average (RAA) at one sample location.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. EPA. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

One part per **billion** (ppb)

IS LIKE

1 second in nearly 32 years

1 drop in 13,563 gallons

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Notification Level (NL): Notification levels are health –based advisory levels established by the State Board for chemicals in drinking water that lack maximum contaminant levels (MCLs).

Primary Drinking Water Standard (Primary Standard): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. One part per **trillion (ppt)** IS LIKE

1 second in nearly 32,000 years

1 drop in 13,563,368 gallons

Public Health Goals (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Running Annual Average (RAA): The yearly average which is calculated every 3 months using the previous 12 months' data.

Secondary Drinking Water Standard (Secondary Standard): MCLs for contaminants that do not affect health but are used to monitor the aesthetics of the water.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

rio M	unicipa	l Utilities	s Con	npany -	2019 Distr	ibution System Data			
UNITS	MCL or [AL] or (MRDL)	PHG or [MCLG] or (MRDLG)	CA DLR [MRL]	Range Average	OMUC's Entire Distribution System	Major Sources in Drinking Water			
MICROBIOLOGICAL									
6 Positive per month	5% Positive per month	[0]	NA	Highest Monthly % Positive # of Months in Violation	0.53% 0	Erosion of natural deposits; residue from some surface water treatment processes.			
CFU /mL	тт	NA	[1]	#HPC > 500 cfu/mL Lowest Monthly %	1 99.3 %	Naturally present in the environment.			
			PHYSI	CAL PARAM	ETERS				
Units	3	NA	1	Range Average	ND NR	Naturally-occurring organic materials.			
pH Unit	6.5 - 8.5	NA	[1]	Range Average	6.66 to 9.21 7.85	Measurement of hydrogen ion activity.			
NTU	5	NA	0.1	Range Average	ND to 0.81 0.08	Soil runoff.			
	DISI	NFECTION BY	-PROD	UCTS AND DI	SINFECTANT RE	SIDUALS			
ppb	LRAA = 60	NA	2.0*	Range Highest LRAA	ND to 17 17	Byproduct of drinking water disinfection.			
ppb	LRAA = 80	NA	1	Range Highest LRAA	ND to 77 66	Byproduct of drinking water disinfection.			
ppm	(4)	(4)	NA	Range Average	0.04 to 1.69 0.86	Drinking water disinfectant added for treatment.			
		METALS	AT CO	NSUMER'S PL	UMBING (2018)				
ppb	[1300]	300	50	NA	90th percentile: 160 ppb (0 exceeded AL / 57 samples)	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.			
ppb	[15]	0.2	5	NA	90th percentile: ND (0 exceeded AL / 57 samples)	Internal corrosion of household plumbing systems; discharges from industrial manufacturers; erosion of natural deposits.			
	UNREG	ULATED CO	NTAMIN		ORING RULE 4 (2	2018-2019)			
ppb	NA	NA	[0.03]	Range Average	NR ND	Cyanobacteria, formerly referred to as blue-green algae, are found naturally in lakes, rivers, ponds and other surface waters.			
ppb	NA	NA	[0.09]	Range Average	NR ND	Cyanobacteria, formerly referred to as blue-green algae, are found naturally in lakes, rivers, ponds and other surface waters.			
ppb	NA	NA	[0.3]	Range Average	NR ND	Cyanobacteria, formerly referred to as blue-green algae, are found naturally in lakes, rivers, ponds and other surface waters.			
ppb	NA	NA	[0.3]	Range Average	ND to 6.2 0.65	Naturally-occurring element; commercially available in combination with other elements and minerals; used in steel production, fertilizer, batteries and fireworks; drinking water and wastewater treatment chemical; essential nutrient.			
ppb	NA	NA	[0.3]	Range Average	ND to 2.9 1.1	Byproduct of drinking water disinfection.			
ppb	NA	NA	[0.5]	Range Average	ND to 3.2 1.3	Byproduct of drinking water disinfection.			
ppb	NA	NA	[0.3]	Range Average	ND to 3.1 1.1	Byproduct of drinking water disinfection.			
	UNITS 6 Positive 6 Positive 6 Positive 1 Onits 1 Dits 1	UNITSMCL or [AL] or (MRDL)6 Positive fer month5% Positive per month6 Positive fer month5% Positive per monthCFU /mLTTUnits3H Unit6.5 - 8.5NTU5PpbLRAA = 60ppbLRAA = 80ppb[1300]ppb[15]ppbNA	UNITSMCL or (MRDL)PHG or (MCLG] or (MRDLG)6 Positive (er month)5% Positive per month)[0]6 Positive (er month)10][0]CFU /mLTTNAUnits3NApH Unit6.5 - 8.5NANTU5NAppbLRAA = 60NAppbLRAA = 80NAppb[1300]300ppb[1300]300ppb[15]0.2ppbNANAppbNANAppbNANAppbNANAppbNANAppbNANAppbNANAppbNANAppbNANAppbNANAppbNANAppbNANAppbNANAppbNANA	UNITSMCL or (MRDL)PHG or (MRDLG) or (MRDLG)CA DLR (MRL)6 Positive fer month[0]NA6 Positive fer month[0]NA6 Positive fer month[0]NACEU /mLTTNA[1]Units3NA1pH Unit6.5 - 8.5NA[1]NTU5NA[1]ppbLRAA = 60NA2.0*ppbLRAA = 80NA1ppm(4)(4)NAppb[1300]30050ppb[1300]30050ppb[1300]30050ppbNANA[0.3]ppbNANA[0.3]ppbNANA[0.3]ppbNANA[0.3]ppbNANA[0.3]ppbNANA[0.3]ppbNANA[0.3]ppbNANA[0.3]	UNITSMCL or [AL] or (MRDL)PHG or (MRDLG)CA DLR (MRDLG)Range Average6 Positive er month $[0]$ NAHighest Monthly % Positive % Positive % Positive % Positive per month $[0]$ NAHighest Monthly % Positive % Positive % % Positive % Positive % Positive % Positive % Positive % Positive % % Positive % Positive % Positive % Positive % % % Positive % Positive % % Positive % Positive % % % Positive %	UNITS[AL] or (MRD.)[MCLG] or (MRD.G)DLR (MRL)Kange AverageDistribution System6 Positive er month5% Positive per month[0]NAHighest Monthly % Positive for Months in Violation0.53% 0CEU /mLTTNAA[1]#HPC - 500 cf//mL Lowest Monthly %1DINTS3NA1Renge AverageNDPH Unit6.5 - 8.5NA[1]Renge AverageND to 0.81 0.63 to 0.1PH Unit5NA0.1Renge AverageND to 0.81 0.66 to 9.21 7.85NTU5NA0.1Renge AverageND to 0.81 0.68PpbIRAA = 60NA2.0*Renge Highest IRAAND to 17 66ppm(4)(4)NARenge Average0.04 to 1.69 0.86ppm(1300)30050NA90h percentile: ND (0 exceeded AL / 57 samples)ppb[15]0.25NA90h percentile: ND (0 exceeded AL / 57 samples)ppbNANA[0.03]Renge AverageNRppbNANA[0.03]Renge AverageNRppbNANA[0.03]Renge AverageNRppbNANA[0.03]Renge AverageNRppbNANA[0.03]Renge AverageNRppbNANA[0.3]Renge AverageNRppbNANA[0.			

*DLR =1.0 ppb for each HAA5 analyte except for monochloroacetic acid which has a DLR = 2.0ppb.

Unregulated contaminant monitoring helps USEPA and the State Water Resources Control Board to determine where certain contaminants occur and whether the contaminants need to be regulated.

The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

	Ontario	o Municip	bal Utiliti	ies Co	mpany	- 2019 \	Water Q	uality 1	Table
	Local					Local Ground Water		d Water, SAWCO	
CONSTITUENT	UNITS	MCL [NL]	PHG or [MCLG]	CA DLR [MRL]	Average	Range	Average	Range	Major Sources in Drinking Water
		PRIM	ARY STAND	ARDS - Ma	andatory He	alth-Related	d Standards		
				C	CLARITY				
Combined Filter Effluent	NTU and %	TT = 1 NTU	NA	NA	NA	NA	0.22 ⊦	lighest	Soil Runoff.
Turbidity		TT	INA	INA	INA	INA	% ≤ 0.3	100%	Son Kunon.
				MICRO	BIOLOGICA	L			
Total Coliform	%	5	[0]	NA	ND	ND to 1.1	0.2	ND to 1.8	Erosion of natural deposits; residue from some surface water treatment processes.
Heterotrophic Plate Count (HPC)	# HPCs > 500 cfu / mL	тт	NA	[1]	11	ND to 160	NA	NA	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes.
	mi			ORGAN		LS			
Dibromochloropropane	ppt	200	1.7	10	20	ND to 40	NA	NA	Banned nematicide that may still be present in soils due to runoff/leaching from former use on soybeans, cotton, vineyards, tomatoes, and tree fruit.
				ORGAN		LS			
Gross Alpha Particle Activity	ppt	200	1.7	10	NA	NA	1.1	ND to 4.3	Erosion of natural deposits.
				INORGA		ALS			1
Aluminum	ppb	1000	600	50	ND	NR	13	ND to 52	Erosion of natural deposits; residue from some surface water treatment processes.
Barium	ppm	1	2	0.1	0.7	0.3 to 0.8	NA	NA	Discharges of oil drilling wastes and from metal.
Cadmium	ppb	5	0.04	1	0.4	NR	NA	NA	Internal corrosion of galvanized pipes; erosions of natural deposits; discharge from electroplating and industrial chemical factories, and metal refineries; runoff from waste batteries and paints.
Chromium, Total	ppb	50	[100] ¹	10	3.7	2.2 to 6.0	NA	NA	Discharge from steel and pulp mills and chrome plating; erosion of natural deposits.
Hexavalent Chromium	ppb	2 (see footnote)	0.02	[1]	3.6	2.1 to 6.0	NA	NA	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits.
Fluoride (Naturally-occurring)	ppm	2.0	1	0.1	0.2	0.1 to 0.3	ND	NR	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.
Nitrate (as Nitrogen)	ppm	10	10	0.4	2.4	0.67 to 4.9	0.9	ND to 2.7	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits.
Nitrate & Nitrite (as Nitrogen)	ppm	10	10	[0.2]	2.6	1.2 to 4.1	0.9	ND to 2.7	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits.
Perchlorate	ppb	6	1	4	1.4	ND to 2.9	NA	NA	Perchlorate is an inorganic chemical used in solid rocket propellant, fireworks, explosives, flares, matches, and a variety of industries. It usually gets into drinking water as a result of environmental contamination from historic aerospace or other industrial operations that used or use, store, or dispose of perchlorate and its salts.
C	DISINFECTIO	N BY-PRODUC	TS, DISINFEC	TNAT RESI	DUALS, ANI	D DISINFECT	ION BY-PRO	DUCTS PRE	CURSORS
Haloacetic Acids (HAA₅)	ppb	LRAA = 60	NA	2	NA	NA	10	6 to 14	By-product of drinking water chlorination.
Total Trihalomethanes (TTHMs)	ppb	LRAA = 80	NA	1	NA	NA	46	22 to 74	By-product of drinking water chlorination.
Total Chlorine Residual	ppm	MRDL = 4	MRDLG = 4	NA	NA	NA	1.2	1.2 to 1.3	Drinking water disinfectant added for treatment.

	Ontario	o Municij	pal Utilit	ies Co	mpany	- 2019	Water G	Quality 1	able
						und Water		Water, WFA AWCO	
CONSTITUENT	UNITS	MCL [NL]	PHG or [MCLG]	CA DLR [MRL]	Average	Range	Average	Range	Major Sources in Drinking Water
	1	1	SECONDA	RY STAND	ARDS - Aes	sthetic Stanc	lards	1	1
Aluminum	ppb	200	600	50	ND	NR	13	ND to 52	Erosion of natural deposits; residue from some surface water treatment processes.
Chloride	ppm	500	NA	[1]	7.6	3.7 to 15	48	28 to 93	Runoff/leaching from natural deposits; seawater influence.
Iron	ppb	300	NA	100	ND	NR	ND	NR	Leaching from natural deposits; industrial wastes.
Odor Threshold	TON	3	NA	1	ND	NR	1.5	ND to 4.0	Naturally-occurring organic materials.
Specific Conductance	µS/cm	1600	NA	[1]	357	310 to 450	343	260 to 530	Substances that form ions when in water; seawater influence.
Sulfate	ppm	500	NA	0.5	14	5.5 to 36	24	20 to 39	Runoff/leaching from natural deposits; industrial wastes.
Total Dissolved Solids	ppm	1000	NA	NA	217	190 to 250	203	140 to 280	Runoff/leaching from natural deposits.
Turbidity	NTU	5	NA	[0.10]	0.1	0.1 to 0.2	0.10	ND to 0.14	Soil runoff.
	1	1	1	OTHER	PARAMETE	RS	1	1	1
Alkalinity (Total)	ppm	NA	NA	[3]	143	130 to 160	57	38 to 74	Naturally-occurring carbonate; measures the water's ability to neutralize acid.
Bicarbonate	ppm	NA	NA	[3]	143	130 to 160	69	46 to 90	
Boron	ppb	[1000]	NA	100	NA	NA	25	ND to 100	Naturally-occurring element; runoff/leaching from natural deposits and fertilizer use; industrial wastes.
Calcium	ppm	NA	NA	[1]	43	35 to 55	16	13 to 20	Naturally-occurring mineral.
Corrosivity (Aggressiveness Index)	AI	NA	NA	NA	NA	NA	12	11 to 12	Elemental balance in water; affected by temperature, other factors.
Corrosivity (Saturation Index)	SI	NA	NA	NA	NA	NA	0.1	-0.3 to 0.5	Elemental balance in water; affected by temperature, other factors.
Hardness as CaCO₃ (Total)	ppm	NA	NA	[3]	138	120 to 180	73	57 to 99	Naturally-occurring mineral; the sum of calcium and magnesium present in water.
Magnesium	ppm	NA	NA	[1]	7.5	6.0 to 10	8.2	6.0 to 12	Naturally-occurring mineral.
Perfluorobutanesulfonic acid (PFBS) ³	ppt	NA	NA	[2]	ND	ND to 5.6	NA	NA	Discharge from chemical synthesis of water and oil resistance consumer products and fire -retarding foam.
Perfluoroheptanoic acid (PFHpA) ³	ppt	NA	NA	[2]	ND	ND to 2.8	NA	NA	Discharge from chemical synthesis of water and oil resistance consumer products and fire -retarding foam.
Perfluorohexanesulfonic acid (PFHxS) ³	ppt	NA	NA	[2]	ND	ND to 13	NA	NA	Discharge from chemical synthesis of water and oil resistance consumer products and fire -retarding foam.
Perfluorohexanoic acid (PFHxA) ³	ppt	NA	NA	[2]	ND	ND to 6.6	NA	NA	Discharge from chemical synthesis of water and oil resistance consumer products and fire -retarding foam.
Perfluorooctanoic acid (PFOA) ³	ppt	4 (see footnote)	5 (see footnote)	[2]	ND	ND to 5.8	NA	NA	Discharge from chemical synthesis of water and oil resistance consumer products and fire -retarding foam.
рН	pH units	NA	NA	[1]	8.2	8.0 to 8.3	8.1	7.9 to 8.2	Measurement of hydrogen ion activity.
Potassium	ppm	NA	NA	[1]	1.8	1.5 to 2.1	2.0	1.5 to 3.1	Naturally-occurring mineral.
Sodium	ppm	NA	NA	[1]	19	14 to 27	37	26 to 61	Naturally-occurring mineral; seawater influence.
Total Organic Carbon (TOC)	ppm	TT	NA	0.3	NA	NA	2.1	1.4 to 2.9	Various natural and man-made sources.

¹ California withdrew the PHG for total chromium in November 2011.

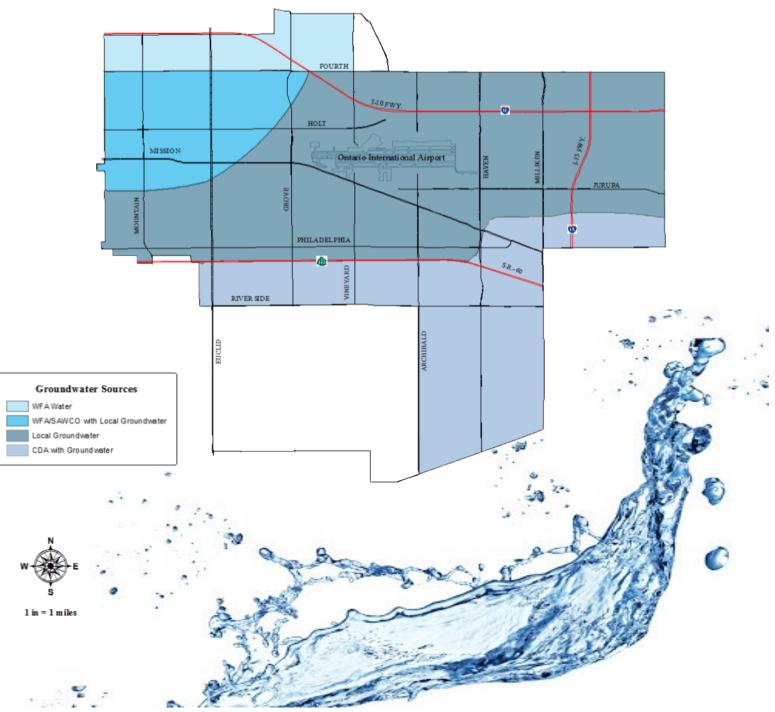
² There is currently no MCL for hexavalent chromium. The previous MCL of 10ppb was withdrawn on September 11th, 2017. The Ontario Municipal Utilities Company (OMUC) will continue to monitor this constituent.

³ Detection in one local groundwater well and was removed by OMUC on April 29, 2019.

⁴ The July 2018 notification levels for PFOA of 14 ng/L and for PFOS of 13 ng/L were superseded on August 22, 2019, with new notification levels 5.1 ng/L for PFOA and 6.5 ng/L for PFOS.

⁶ The California Office of Environmental Health Hazard Assessment is developing a PHG for PFOA & PFOS. There is no established PHG at this time.

The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.


Ontario Municipal Utilities Company - 2019 Water Quality Table											
					CD. (870		CD. (1110	A II Zone)		Ion Exchange Iant (870 Zone)	
CONSTITUENT	UNITS	MCL [NL]	PHG or [MCLG]	CA DLR [MRL]	Average	Range	Average	Range	Average	Range	Major Sources in Drinking Water
		F	PRIMARY ST		DS - Mar	ndatory I	Health-R	elated S	tandards		
				1	NORGAN	IC CHEMI	CALS				
Chromium, Total	ppb	50	[100] ¹	10	3.4	2.0 to 5.1	ND	ND to 4.2	ND	NR	Discharge from steel and pulp mills and chrome plating; erosion of natural deposits.
Fluoride (Naturally-occurring)	ppm	2.0	1	0.1	0.12	0.10 to 0.14	ND	ND to 0.16	ND	NR	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.
Nitrate (as Nitrogen)	ppm	10	10	0.4	5.5	2.9 to 8.0	4.8	3.3 to 5.7	4.0	2.0 to 6.0	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits.
	DISI	NFECTION BY-	PRODUCTS, D	ISINFECT	NAT RESID	UALS, AN		ECTION B	Y-PRODU	CTS PREC	URSORS
Total Trihalomethanes (TTHMs)	ppb	LRAA = 80	NA	1	8.9	5.2 to 12.5	ND	NR	ND	NR	By-product of drinking water chlorination.
Free Chlorine Residual	ppm	MRDL = 4	MRDLG = 4	NA	1.31	0.57 to 1.74	1.44	1.05 to 1.79	0.98	0.64 to 1.66	Drinking water disinfectant added for treatment.
			SECO	NDARY	STANDA	RDS - A	esthetic	Standard	ls		
Chloride	ppm	500	NA	[1]	86	23 to 160	78	12 to 82	109	98 to 120	Runoff/leaching from natural deposits; seawater influence.
Specific Conductance	µ\$/cm	1600	NA	[1]	597	440 to 790	602	350 to 720	610	500 to 720	Substances that form ions when in water; seawater influence
Sulfate	ppm	500	NA	0.5	21	16 to 25	11	10 to 13	3.2	0.52 to 5.8	Runoff/leaching from natural deposits; industrial wastes.
Total Dissolved Solids	ppm	1000	NA	NA	502	280 to 790	434	220 to 500	470	340 to 600	Runoff/leaching from natural deposits.
Turbidity	NTU	5	NA	[0.10]	ND	ND to 0.26	ND	ND to 0.4	0.15	0.12 to 0.18	Soil runoff.
Surfactants	ppb	500	NA	NA	ND	ND to 90	ND	NR	ND	NR	Municipal and industrial waste discharges.
				(OTHER P	ARAME'	TERS				
Alkalinity (Total)	ppm	NA	NA	[3]	142	130 to 160	112	100 to 140	97	94 to 100	Naturally-occurring carbonate; measures the water's ability to neutralize acid.
Calcium	ppm	NA	NA	[1]	84	62 to 110	56	42 to 57	55	48 to 62	Naturally-occurring mineral.
Hardness	ppm	NA	NA	[3]	239	180 to 310	177	130 to 180	190	170 to 210	Naturally-occurring mineral; the sum of calcium and magnesium present in water.
Hexavalent Chromium	ppb	2 (see footnote)	0.02	[1]	3.2	1.7 to 5.0	2.3	0.66 to 4.2	ND	NR	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits.
Magnesium	ppm	NA	NA	[1]	6.7	6.2 to 12	8.8	5.6 to 9.0	12.5	11 to 14	Naturally-occurring mineral.
N-Nitrosodimethyl- amine (NDMA)	ppt	[10]	NA	NA	ND	NR	ND	NR	4.0	NR	By-product of drinking water treatment, production of liquid rocket fuel.
рН	pH units	NA	NA	[1]	8.0	NR	8.0	7.9 to 8.1	8.0	7.9 to 8.0	Measurement of hydrogen ion activity.
Perfluorooctanoic Acid (PFOA) ³	ppt	4 (see footnote)	5 (see footnote)	[2]	3.1	ND to 6.9	ND	NR	ND	NR	Discharge from chemical synthesis of water and oil resistance consumer products and fire-retarding foam.
Perfluoro- octanesulfonic Acid (PFOS) ³	ppt	4 (see footnote)	5 (see footnote)	[2]	47	ND to 200	ND	NR	ND	NR	Discharge from chemical synthesis of water and oil resistance consumer products and fire-retarding foam.
Potassium	ppm	NA	NA	[1]	2.4	1.9 to 2.9	1.6	1.5 to 2.0	1.4	1.1 to 1.6	Naturally-occurring mineral.
Sodium	ppm	NA	NA	[1]	27	19 to 35	28	25 to 28	28	27 to 28	Naturally-occurring mineral; seawater influence.
Total Silica	ppm	NA	NA	NA	21	16 to 25	15	12 to 16	11	NR	

¹ California withdrew the PHG for total chromium in November 2011. ² There is currently no MCL for hexavalent chromium. The previous MCL of 10ppb was withdrawn on September 11th, 2017. The Ontario Municipal Utilities Company (OMUC) will continue to monitor this constituent.

⁴ There is currently no MCL for nexavalent arromium. The previous MCL for Uppp was withardawn on september 1 Im, 2017. The Ontario Municipal Unlines Company (UMUC) will continue to monitor this constituent.
⁵ JCSD has removed all sources above the response level (10 ppt) and will not be used until treatment is in place. Any source above the notification level (st. August 22, 2019) has been put on emergency standby only.
⁴ The July 2018 notification levels for PFOA of 14 ng/L and for PFOS of 13 ng/L were superseded on August 22, 2019, with new notification levels 5.1 ng/L for PFOA and 6.5 ng/L for PFOS.
⁶ The Colifornia Office of Environmental Health Hazard Assessment is developing a PHG for PFOA & PFOS. There is no established PHG at this time.
All water quality data reported for CDA/JCSD were taken from treated water sample locations with the exemption of PFAS data from lon Exchange Plant (870 Zone).

Page 8

The Source of Your Drinking Water

2019 Consumer Confidence Report

City Officials

Mayor Paul S. Leon

Mayor pro Tem Debra Dorst-Porada

Council Members

Alan D. Wapner Jim W. Bowman Ruben Valencia

City Manager Scott Ochoa

Utilities General Manager Scott Burton

