

Consumer Confidence Report Certification Form

*Please see the attached copy of CCR.
Please see the attached copy of the mailing distribution list.*

Water System Name:	City of Loma Linda
Water System Number:	CA3610013

The water system named above hereby certifies that its Consumer Confidence Report was distributed on 6/30/2025 (date) to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the State Water Resources Control Board, Division of Drinking Water (DDW).

Certified by:

Name: Kirk Mayo	Title: Treatment Plant Operator
Signature: 82256DC0531240D	Date: 7/30/2025
Phone number: (909) 799-4401	Email: kmayo@lomalinda-ca.gov

The following CCR delivery methods were used and good-faith efforts taken:

- CCR was distributed by mail or other direct delivery methods (attach description of other direct delivery methods used).
- CCR was distributed using electronic delivery methods described in the Guidance for Electronic Delivery of the Consumer Confidence Report (water systems utilizing electronic delivery methods must complete the second page).
- "Good faith" efforts were used to reach non-bill paying consumers. Those efforts included the following methods:
 - Posting the CCR at the following URL: https://www.lomalinda-ca.gov/our_city/departments/public_works/water_sewer
 - Mailing the CCR to postal patrons within the service area (attach zip codes used)
 - Advertising the availability of the CCR in news media (attach copy of press release)
 - Publication of the CCR in a local newspaper of general circulation (attach a copy of the published notice, including name of newspaper and date published)
 - Posted the CCR in public places (attach a list of locations)
 - Delivery of multiple copies of CCR to single-billed addresses serving several persons, such as apartments, businesses, and schools

- Delivery to community organizations (attach a list of organizations)
- Publication of the CCR in the electronic city newsletter or electronic community newsletter or listserv (attach a copy of the article or notice)
- Electronic announcement of CCR availability via social media outlets (attach list of social media outlets utilized)
- Other (attach a list of other methods used)
- For systems serving at least 100,000 persons: Posted CCR on a publicly-accessible internet site at the following URL: www._____
- For privately-owned utilities: Delivered the CCR to the California Public Utilities Commission

Consumer Confidence Report Electronic Delivery Certification

- Water system mailed a notification that the CCR is available and provides a direct URL to the CCR on a publicly available website where it can be viewed (attach a copy of the mailed CCR notification). URL: www.lomalinda-ca.gov/our_city/departments/public_works/water_sewer
- Water system emailed a notification that the CCR is available and provides a direct URL to the CCR on a publicly available site on the Internet where it can be viewed (attach a copy of the emailed CCR notification). URL: www._____
- Water system emailed the CCR as an electronic file email attachment.
- Water system emailed the CCR text and tables inserted or embedded into the body of an email, not as an attachment (attach a copy of the emailed CCR).
- Requires prior DDW review and approval. Water system utilized other electronic delivery method that meets the direct delivery requirement.

The following electronic delivery procedures were taken, including good-faith efforts to ensure delivery to customers unable to receive electronic delivery.

Infosend Inc. 4240 East Palma Ave Anaheim Ca, 92807 phone# 800-955-9330 This company did the delivery
using the U.S Mail. First Class postage. on 6/27/2025
Delivery Zip codes 92350 92354 92357 92373 92374 92405 92408
Posted for public pickup- City Hall and City corp yard.

This form is intended to meet the certification requirement of section 64483(c) of the California Code of Regulations.

ANNUAL WATER QUALITY REPORT

Reporting Year 2024

Presented By
City of Loma Linda

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.

PWS ID#: 3610013

Our Commitment

We are pleased to present to you this year's annual water quality report. This report is a snapshot of last year's water quality covering all testing performed between January 1 and December 31, 2024. Included are details about your sources of water, what it contains, and how it compares to standards set by regulatory agencies. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water and providing you with this information because informed customers are our best allies.

Water Treatment Processes

The city removes contaminants in a variety of ways. All water is chlorinated to kill or remove bacteria, viruses, and pathogens that may be present. To accomplish this, water is passed through a cylinder containing calcium hypochlorite, which produces a chlorine solution. Then it flows into a storage tank from which the solution is pumped into a pipeline connected to the wellhead, where it mixes with the water to provide contact time. A minimum of 0.2 ppm is maintained throughout the water system to ensure all possible bacteriological contaminants are deactivated. There are 16 stations throughout the city where we collect bacteriological samples and test chlorine residuals.

Blending is another form of treatment used to reduce or remove chemical and mineral contaminants. This is achieved by introducing water from a high-quality water source into a common pipeline, where it is combined with a source of lower quality. Water is then pushed through an in-line mixer, which reduces the contaminant to levels that meet or exceed standards set forth by the U.S. EPA and state water quality regulations. The sources and combined water are tested at frequencies determined by the CDPH to ensure high-quality drinking water. The city uses this method to reduce levels of nitrate and arsenic.

We also treat water to remove arsenic using a process known as adsorption. First, the pH of the well water is adjusted using carbon dioxide gas and chlorine. This changes the arsenic into an oxidized state, making it more readily adsorbed. From there, water enters treatment vessels that contain iron oxide media. As water passes through the bed of media, arsenic is removed to levels that meet or exceed the standards set by the U.S. EPA and CDPH. From there, the water passes through posttreatment filters that prevent loose media from entering the distribution system. The performance of the media is closely monitored by frequent testing of the treated water. When the treated water reaches arsenic levels close to 80 percent of the maximum allowable levels, filter maintenance is performed by backwashing and forward flushing the vessels or replacing the media. Perchlorate and VOCs are removed through filtration processes similar to those used for arsenic removal.

If you have any questions regarding any of our treatment processes, please call (909) 799-4410 and ask to speak with one of our treatment operators or the utilities superintendent. All water is closely monitored by trained and certified personnel to ensure that it meets all water quality regulations set forth by the U.S. EPA and CDPH.

Community Participation

You are invited to participate in our public forum and voice your concerns about your drinking water. The city council meets the second and fourth Tuesday of each month at 7:00 p.m. at the City of Loma Linda Council Chamber, 25541 Barton Road.

Important Health Information

While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The U.S. Environmental Protection Agency (U.S. EPA) continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and linked to other health effects such as skin damage and circulatory problems.

Nitrate in drinking water at levels above 10 parts per million (ppm) is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 ppm may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask for advice from your health-care provider.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants, can be particularly at risk from infections. These people should seek advice about drinking water from their health-care providers. U.S. EPA/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or epa.gov/safewater.

QUESTIONS?

For more information about this report, or for any questions relating to your drinking water, please call Kirk Mayo, Utilities Superintendent, at (909) 799-4420.

Substances That Could Be in Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic Contaminants, such as salts and metals, that can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and Herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

Radioactive Contaminants that can be naturally occurring or the result of oil and gas production and mining activities.

To ensure that tap water is safe to drink, the U.S. EPA and the State Water Resources Control Board (SWRCB) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Source Water Assessment

To find and protect against any potential contamination sources to our water supply, the City of Loma Linda completed a drinking water source assessment for each well. These assessments were completed as follows: Mountain View Well 3, November 1999; Richardson Well 4, February 2000; Richardson Well 3, November 2000; Mountain View Well 5, February 2003; Richardson Well 6, August 2009; Mountain View Well 6 and Richardson Well 5, April 2009.

The drinking water source assessment is the first step in the development of a complete drinking water source protection program. The assessment includes a delineation of the area around a drinking water source through which contaminants might move and reach that drinking water supply. In addition, it includes an inventory of activities that might lead to the release of microbiological or chemical contaminants within the delineated area. This enables us to determine whether the drinking water source might be vulnerable to contamination. All information obtained during the process is provided to CDPH for review. A copy of the assessment can be obtained by contacting us during regular business hours at (909) 799-4420. More information on San Bernardino's source water can be found at <https://www.sbmwd.org/172/Water-Quality>.

Lead in Home Plumbing

Lead can cause serious health effects in people of all ages, especially pregnant people, infants (both formula-fed and breastfed), and young children. Lead in drinking water is primarily from materials and parts used in service lines and in home plumbing. The City of Loma Linda is responsible for providing high-quality drinking water and removing lead pipes but cannot control the variety of materials used in the plumbing in your home. Because lead levels may vary over time, lead exposure is possible even when your tap sampling results do not detect lead at one point in time. You can help protect yourself and your family by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Using a filter certified by an American National Standards Institute-accredited certifier to reduce lead is effective in reducing lead exposures. Follow the instructions provided with the filter to ensure it is used properly. Use only cold water for drinking, cooking, and making baby formula. Boiling does not remove lead from water.

Before using tap water for drinking, cooking, or making baby formula, flush your pipes for several minutes. You can do this by running your tap, taking a shower, or doing laundry or a load of dishes. If you have a lead or galvanized service line requiring replacement, you may need to flush your pipes for a longer period. If you are concerned about lead and wish to have your water tested, contact the City of Loma Linda at (909) 799-4420. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at epa.gov/safewater/lead.

To address lead in drinking water, public water systems were required to develop and maintain an inventory of service line materials by October 16, 2024. Developing an inventory and identifying the location of lead service lines (LSL) is the first step for beginning LSL replacement and protecting public health. Please contact us at (909) 799-4420 for access to the inventory or more information about any lead sampling that has been done.

Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule, and the water we deliver must meet specific health standards. Here, we only show those substances that were detected in our water (a complete list of all our analytical results is available upon request). Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The state recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data is included, along with the year in which the sample was taken.

We participated in the fifth stage of the U.S. EPA's Unregulated Contaminant Monitoring Rule (UCMR5) program by performing additional tests on our drinking water. UCMR5 sampling benefits the environment and public health by providing the U.S. EPA with data on the occurrence of contaminants suspected to be in drinking water to determine if it needs to introduce new regulatory standards to improve drinking water quality. Unregulated contaminant monitoring data is available to the public, so please feel free to contact us if you are interested in obtaining that information. If you would like more information on the U.S. EPA's Unregulated Contaminant Monitoring Rule, please call the Safe Drinking Water Hotline at (800) 426-4791.

Regulated Substances							
Substance (Unit of Measure)	Year Sampled	MCL [MRDL]	PHG (MCLG) [MRDLG]	Amount Detected	Range Low-High	Violation	Typical Source
1,1-Dichloroethylene (ppb)	2024	6	10	0.28	ND–0.77	No	Discharge from industrial chemical factories
Aluminum (ppm)	2024	1	0.6	0.0036	ND–0.018	No	Erosion of natural deposits; residue from some surface water treatment processes
Arsenic (ppb)	2024	10	0.004	5.7	5.2–6.4	No	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Barium (ppm)	2024	1	2	0.0154	ND–0.039	No	Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits
Cadmium (ppb)	2024	5	0.04	0.06	ND–0.31	No	Internal corrosion of galvanized pipes; erosion of natural deposits; discharge from electroplating and industrial chemical factories, and metal refineries; runoff from waste batteries and paints
Chlorine (ppm)	2024	[4.0 (as Cl ₂)]	[4 (as Cl ₂)]	0.55	0.15–1.01	No	Drinking water disinfectant added for treatment
Chromium, Total (ppb)	2024	50	(100)	2.56	2.30–3.1	No	Discharge from steel and pulp mills and chrome plating; erosion of natural deposits
Fluoride (ppm)	2024	2.0	1	0.82	0.58–1.1	No	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories
Gross Alpha Particle Activity (pCi/L)	2024	15	(0)	3.36	ND–7.6	No	Erosion of natural deposits
Hexavalent Chromium (ppb)	2024	10	20	2.66	2.2–3.1	No	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits
Mercury [inorganic] (ppb)	2024	2	1.2	0.104	ND–0.26	No	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and cropland
Nickel (ppb)	2024	100	12	0.73	ND–2.3	No	Erosion of natural deposits; discharge from metal factories
Nitrate [as nitrogen] (ppm)	2024	10	10	5.06	2.4–6.5	No	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Nitrate + Nitrite (ppm)	2024	10	10	3.72	0.47–8.2	No	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Thallium (ppb)	2024	2	0.1	0.48	0.40–0.55	No	Leaching from ore-processing sites; discharge from electronics, glass, and drug factories
TTHMs [total trihalomethanes] (ppb)	2024	80	NA	3.2	ND–6.4	No	By-product of drinking water disinfection
Uranium (pCi/L)	2024	20	0.43	3.35	ND–10	No	Erosion of natural deposits

Tap water samples were collected for lead and copper analyses from sample sites throughout the community

Substance (Unit of Measure)	Year Sampled	AL	PHG (MCLG)	Amount Detected (90th %ile)	Range Low-High	Sites Above AL/Total Sites	Violation	Typical Source
Copper (ppm)	2023	1.3	0.3	0.15	NA	0/30	No	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

SECONDARY SUBSTANCES

Substance (Unit of Measure)	Year Sampled	SMCL	PHG (MCLG)	Amount Detected	Range Low-High	Violation	Typical Source
Chloride (ppm)	2024	500	NS	14.58	3.9–23	No	Runoff/leaching from natural deposits; seawater influence
Copper (ppm)	2024	1.0	NS	0.00386	ND–0.012	No	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Manganese (ppb)	2024	50	NS	1.42	ND–2.9	No	Leaching from natural deposits
Odor, Threshold (TON)	2024	3	NS	1	1–1	No	Naturally occurring organic materials
Specific Conductance ($\mu\text{S}/\text{cm}$)	2024	1,600	NS	436	270–540	No	Substances that form ions when in water; seawater influence
Sulfate (ppm)	2024	500	NS	35.8	16–43	No	Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids (ppm)	2024	1,000	NS	264	160–330	No	Runoff/leaching from natural deposits
Turbidity (NTU)	2024	5	NS	0.05	ND–0.14	No	Soil runoff

¹Unregulated contaminant monitoring helps the U.S. EPA and SWRCB determine where certain contaminants occur and whether the contaminants need to be regulated.

UNREGULATED SUBSTANCES¹

Substance (Unit of Measure)	Year Sampled	Amount Detected	Range Low-High	Typical Source
Bicarbonate (ppm)	2024	170	110–220	NA
Boron (ppb)	2024	73.8	40–100	NA
Calcium (ppm)	2024	38.54	2.7–75	NA
Carbonate (ppm)	2024	2.5	ND–14	NA
Chromium, Total (ppb)	2023	1.74	ND–3.3	NA
Hardness, Total [as CaCO_3] (ppm)	2024	113.96	6.8–230	NA
Magnesium (ppb)	2024	4.22	ND–9.9	NA
pH (units)	2024	7.94	7.6–8.8	NA
Potassium (ppm)	2024	13.66	1.9–60	NA
Sodium (ppm)	2024	49.8	20–73	NA
Total Alkalinity (ppm)	2024	144	110–180	NA
Total Anions (mEq/L)	2024	4.08	2.76–4.88	NA
Cations (mEq/L)	2024	4.48	2.89–5.33	NA
Vanadium (ppb)	2024	14.88	5.4–44	NA

Where Does My Water Come From?

City of Loma Linda's customers are fortunate because we enjoy an abundant groundwater supply. We operate seven wells: Richardson Wells 3, 4, 5, and 6 and Mountain View Wells 3, 5, and 6. All city wells are located in the Bunker Hill basin, a vast natural underground water storage area referred to as an aquifer. The Bunker Hill basin stretches from the San Bernardino Mountain range to the south hills of Loma Linda. The water that replenishes the Bunker Hill basin comes from annual rainfall and snowmelt from the San Bernardino Mountains. The wells are located in the north area of the City of Loma Linda.

Loma Linda also uses a supplemental supply of water as needed from the City of San Bernardino Municipal Water Department. Both the City of Loma Linda and the City of San Bernardino Municipal Water Department fall under the same regulations for water set forth by the U.S. EPA and the California Department of Public Health (CDPH).

In June 2006, an arsenic removal facility was installed to treat water at Mountain View Wells 3 and 5. This was done to maintain compliance in response to the U.S. EPA's decision to lower the maximum contaminant level (MCL) from 50 to 10 parts per billion (ppb).

In 2011, as part of a joint project with Lockheed Martin Inc., two treatment facilities were installed to remove perchlorate and volatile organic chemicals (VOCs) from two new wells that were installed in 2010. This was done in an effort to isolate and remove those contaminants from the aquifer and keep them from migrating further into the Bunker Hill basin.

Definitions

90th percentile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

AL (Regulatory Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs (SMCLs) are set to protect the odor, taste, and appearance of drinking water.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. EPA.

mEq/L: Milliequivalents per liter.

mmol/L: Millimoles per liter.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

ND (Not Detected): Indicates that the substance was not found by laboratory analysis.

NS: No standard.

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

pCi/L (picocuries per liter): A measure of radioactivity.

PDWS (Primary Drinking Water Standard): MCLs and MRDLs for contaminants that affect health, along with their monitoring and reporting requirements and water treatment requirements.

PHG (Public Health Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

ppb ($\mu\text{g}/\text{L}$) (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (mg/L) (parts per million): One part substance per million parts water (or milligrams per liter).

SMCL (Secondary Maximum Contaminant Level): These standards are developed to protect aesthetic qualities of drinking water and are not health based.

TON (Threshold Odor Number): A measure of odor in water.

$\mu\text{s}/\text{cm}$ (microsiemens per centimeter): A unit expressing the amount of electrical conductivity of a solution.