ANNUAL WATER OUALLTY REPORT

Reporting Year 2024

Our Commitment

The City of Chino is pleased to provide you with this Annual Water Quality Report, also known as the Consumer Confidence Report. In accordance with state requirements, this report is intended to provide you, the consumer, with information regarding the quality of drinking water the City of Chino provided in 2024. In this report, you will find important information on our water sources and water conservation. This report can also be found on the city's website at cityofchino.org/waterqualityreport. The title of these annual reports has been adjusted to match the year in which the city provided your drinking water supply.

Where Does My Water Come From?

The City of Chino's drinking water supply is a blend of surface water (rivers, lakes, streams) and groundwater (wells). Surface water comes from Northern California through the Metropolitan Water District (MWD) of Southern California via the State Water Project aqueduct; it is treated at the Agua de Lejos Water Treatment Plant located in Upland. Groundwater supplies are extracted via local wells operated by the City of Chino or the Chino Basin Desalter Authority (CDA). In 2024 treated groundwater represented approximately 80 percent of your drinking water supply, while the remaining 20 percent was produced by the Agua de Lejos Water Treatment Plant.

A sanitary survey inspection of the city's water system facilities, operations, and records to identify conditions that may present a sanitary or public health risk was conducted by the state in 2022. You may request a summary of the survey by contacting the district engineer at the SWRCB, Division of Drinking Water (DDW), at (909) 383-4328.

Public Participation

The public is encouraged to participate in discussions concerning the city's drinking water. Meetings of the Chino City Council are typically scheduled for the first and third Tuesday of each month at 6:00 p.m. at City Hall, 13220 Central Avenue.

Please ensure this report is distributed to all water consumers. To request additional copies for your tenants, please contact the Chino Public Works Department at (909) 334-3265.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants, can be particularly at risk from infections. These people should seek advice about drink-

ing water from their health-care providers. U.S. Environmental Protection Agency (U.S. EPA)/ Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or epa.gov/safewater.

Water Conservation

The Chino City Council encourages all water customers to use water efficiently and has adopted Ordinances 2009-04 and 2015-004, which describe regulations to prevent water waste. The following activities are some of the water conservation restrictions identified in the ordinances and hereby prohibited at all times:

 Allowing irrigation water to run off into a gutter, ditch, drain, driveway, sidewalk, or street or onto pavement or other hard surface.

- Outdoor irrigation of landscape for more than 15 minutes per day per station. This restriction does not apply to landscapes that use drip irrigation systems.
- Automated irrigation of landscape during the hours of 6:00 a.m. to 8:00 p.m. Customers are encouraged to avoid the use of sprinklers on windy days. Irrigation by handheld hoses with automatic shutoff nozzles, drip irrigation, or handheld buckets is permitted anytime.
- Outdoor irrigation of landscape on rainy days.
- Washing down hard or paved surfaces, including but not limited to sidewalks, walkways, driveways, parking areas, patios, and alleys, except when necessary to alleviate safety or sanitary hazards.
- Excess use, loss, or escape of water through breaks, leaks, or other malfunctions in the plumbing system or distribution system for any period of time after such escape of water should have reasonably been discovered and corrected.

Please call the city's Water Conservation hotline at (909) 334-3282 to obtain more information about water conservation or report prohibited water use. For a full list of water conservation measures, visit: cityofchino.org/conservation.

COMMENTS OR QUESTIONS

If you have questions regarding the quality of your water or the information contained in this report, please contact the City of Chino at (909) 334-3441 between 7:00 a.m. and 3:00 p.m., Monday through Thursday. Written inquiries may be sent to City of Chino, Public Works Department/Water, P.O. Box 667, Chino, CA 91708 - Attention: Water Systems Operator.

Water Treatment Process

The City of Chino treats its water using a two-step process: granular activated carbon (GAC) followed by ion exchange (IX). The process begins with pretreatment, where basic filtration removes large debris and sediments.

In the GAC stage, water flows through porous carbon that adsorbs organic compounds, chlorine, taste- and odor-causing substances, and disinfection by-products (DBPs). GAC is especially effective for removing volatile organic compounds (VOCs), pesticides, herbicides, and pharmaceutical residues. GAC protects the IX system by removing oxidants like chlorine that can damage resins.

The IX stage targets inorganic ions such as calcium, magnesium, nitrate, sulfate, fluoride, and perchlorate. As water flows through resin beds, these ions are exchanged for less problematic ones like sodium or chloride. Specific resins, cation or anion, are chosen based on the contaminants present. Resins are periodically regenerated using salt or caustic solutions.

Posttreatment includes disinfection to prevent microbial growth and adjustments to pH or alkalinity to reduce pipe corrosion. This combined GAC and IX approach effectively removes both organic and inorganic contaminants, including per- and polyfluoroalkyl substances (PFAS), and provides a flexible solution tailored to local water quality needs.

Lead in Home Plumbing

ead can cause serious health effects in people of all ages, especially pregnant people, infants (both formula-fed and breastfed), and young children. Lead in drinking water is primarily from materials and parts used in service lines and in home plumbing. The City of Chino is responsible for providing high-quality drinking water and removing lead pipes but cannot control the variety of materials used in the plumbing in your home. Because lead levels may vary over time, lead exposure is possible even when your tap sampling results do not detect lead at one point in time. You can help protect yourself and your family by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Using a filter certified by an American National Standards Institute-accredited certifier to reduce lead is effective in reducing lead exposures. Follow the instructions provided with the filter to ensure the filter is used properly. Use only cold water for drinking, cooking, and making baby formula. Boiling does not remove lead from water.

Before using tap water for drinking, cooking, or making baby formula, flush your pipes for several minutes. You can do this by running your tap, taking a shower, or doing laundry or a load of dishes. If you have a lead or galvanized service line requiring replacement, you may need to flush your pipes for a longer period. If you are concerned about lead and wish to have your water tested, contact the City of Chino, Public Works Department/Water, at (909) 334-3441. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at epa.gov/safewater/lead.

To address lead in drinking water, public water systems were required to develop and maintain an inventory of service line materials by October 16, 2024. Developing an inventory and identifying the location of lead service lines (LSL) is the first step for beginning LSL replacement and protecting public health. The lead service inventory may be accessed by visiting cityofchino.org/1688/Lead-Service-Line-Replacement. Please contact us if you would like more information about the inventory or any lead sampling that has been done.

Substances That Could Be in Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic Contaminants, such as salts and metals, that can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and Herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

Radioactive Contaminants that can be naturally occurring or the result of oil and gas production and mining activities.

To ensure that tap water is safe to drink, the U.S. EPA and the State Water Resources Control Board (SWRCB) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Test Results

The City of Chino safeguards its water supply by exceeding the monitoring frequency required by the U.S. EPA and SWRCB DDW. The City of Chino's drinking water sources (local wells and imported water) are monitored for contaminants such as organic compounds, inorganic compounds, microorganisms, radionuclides, and aesthetic-related contaminants. The City of Chino's water distribution system is also monitored at various locations to ensure good water quality throughout the system. In 2024 the city's water supply was tested for contaminants at state-certified laboratories.

The SWRCB DDW allows certain supply sources and contaminants to be monitored less than once per year because the concentrations of these contaminants do not change frequently. In these cases, the most recent sample data is included, along with the year in which the sample was taken. Although the city's water supply was tested for more than 200 contaminants, regulations require the report to describe only the contaminants that were detected. The water quality data is typically reported in parts per billion (ppb), which is the equivalent of micrograms per liter (μ g/l), or otherwise as listed in the tables.

We participated in the fifth stage of the U.S. EPA's Unregulated Contaminant Monitoring Rule (UCMR5) program by performing additional tests on our drinking water. UCMR5 sampling benefits the environment and public health by providing the U.S. EPA with data on the occurrence of contaminants suspected to be in drinking water to determine if it needs to introduce new regulatory standards to improve drinking water quality. Unregulated contaminant monitoring data is available to the public, so please feel free to contact us if you are interested in obtaining that information. If you would like more information on the U.S. EPA's Unregulated Contaminant Monitoring Rule, please call the Safe Drinking Water Hotline at (800) 426-4791.

REGULATED SUBSTANCES											
			City of Chino		Chino Desalter Authority		Water Facilities Authority				
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	PHG (MCLG) [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Aluminum (ppm)	2024	1	0.6	ND	NA	<50	NA	0.041	ND-0.093	No	Erosion of natural deposits; residue from some surface water treatment processes
Arsenic (ppb)	2024	10	0.004	1.9	1.2–4.1	3	2.8–3.5	ND	NA	No	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Chlorine (ppm)	2024	[4.0 (as Cl2)]	[4 (as Cl2)]	0.44	0.29-0.68	NA	NA	NA	NA	No	Drinking water disinfectant added for treatment
Chromium, Total (ppb)	2024	50	(100)	9.6	7.8–11	<1	NA	NA	NA	No	Discharge from steel and pulp mills and chrome plating; erosion of natural deposits
Coliform Assessment and/or Corrective Action Violations (percent positive samples)	2024	TT	NA	1.2	0–1.2	NA	NA	NA	NA	No	Naturally present in the environment
Dibromochloropropane [DBCP] (ppt)	2024	200	3	10	ND-36	<0.01	NA	NA	NA	No	Banned nematocide that may still be present in soils due to runoff/leaching from former use on soybeans, cotton, vineyards, tomatoes, and tree fruit
Fluoride (ppm)	2024	2.0	1	0.2	0.2-0.3	<0.1	NA	0.10	ND-0.39	No	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories
Gross Alpha Particle Activity (pCi/L)	2024	15	(0)	4.1	0.99–4.1	<3	NA	1.3	0.07–2.66	No	Erosion of natural deposits
Gross Beta Particle Activity (pCi/L)	2024	50¹	(0)	4.17	1.8–4.17	NA	NA	NA	NA	No	Decay of natural and human-made deposits
HAA5 [sum of 5 haloacetic acids] (ppb)	2024	60	NA	4.8	ND-14	NA	NA	NA	NA	No	By-product of drinking water disinfection
Nitrate [as nitrogen] (ppm)	2024	10	10	2.14	1.2–8.4	3	2.9–4	0.7	ND-1.6	No	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits

				City of Chino		Chino Desalter Authority		Water Facilities Authority					
SUBSTANCE (UNIT OF MEASURE	. .)	YEAR SAMPLED	MCL [MRD		AMOUNT DETECTED	RANGE Low-High	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE	
Perchlorate (ppb))	2024	6	1	1.42	ND-3.7	0.17	<0.1–0.2	NA	NA	No	An inorganic inorganic chemical used in solid rocket propellant, fireworks, explosives, flares, matches, and a variety of industries; historic aerospace or other industrial operations that used or use, store, or dispose of perchlorate and its salts	
Radium 228 (pC	i/L)	2024	5	0.019	1.1	0.75-1.1	NA	NA	NA	NA	No	Erosion of natural deposits	
Total Organic Ca [TOC] (ppm)	arbon	2024	TT	NA NA	NA	NA	<0.3	NA	2.3	1.6–2.8	No	Naturally present in the environment	
TTHMs [total trihalomethanes]	(ppb)	2024	80	NA	41.1	14–57	NA	NA	NA	NA	No	By-product of drinking water disinfection	
Uranium (pCi/L))	2024	20	0.43	2.8	1.6–2.8	NA	NA	NA	NA	No	Erosion of natural deposits	
Tap water samples w	ere collecte	d for lead a	ind coppe	analyses from	ample sites th	roughout the co	mmunity						
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL (PHG (MCLG)	AMOUNT DETECTED (90TH %ILE)	RANGE LOW-HIGH	SITES ABOVE AL/TOTAL SITES	VIOLATION	TYPICAL SOU	RCE				
Copper (ppm)	2024	1.3	0.3	0.31	NA	0/49	No	Internal corr	osion of hous	sehold plumbir	ng systems; er	osion of natural deposits; leaching from wood preservatives	
Lead (ppb)	2024	15	0.2	3.8	NA	4/49	No	Corrosion of household plumbing systems; erosion of natural deposits					

SECONDART SUBSTAINCES											
				City of Chino		Chino Desalter Authority		Water Facilities Authority			
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	SMCL	PHG (MCLG)	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Aluminum (ppb)	2024	200	600	ND	NA	<50	NA	41	ND-93	No	Erosion of natural deposits; residual from some surface water treatment processes
Chloride (ppm)	2024	500	NS	20.7	10–27	98	98–98	37	2.8–64	No	Runoff/leaching from natural deposits; seawater influence
Odor, Threshold (TON)	2024	3	NS	0.33	ND-1	<1	NA	0.5	ND-2	No	Naturally occurring organic materials
Specific Conductance (µS/cm)	2024	1,600	NS	585	480–630	472	350–600	395	290–450	No	Substances that form ions when in water; seawater influence
Sulfate (ppm)	2024	500	NS	36.3	26–47	6.4	6.4–6.4	34	21–51	No	Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids (ppm)	2024	1,000	NS	363	300–410	304	270–400	228	170–260	No	Runoff/leaching from natural deposits
Turbidity (NTU)	2024	5	NS	0.167	0.1-0.2	<0.1	NA	0.6	0.1-0.2	No	Soil runoff
Zinc (ppm)	2024	5.0	NS	0.0009	ND-0.0056	<10	NA	NA	NA	No	Runoff/leaching from natural deposits; industrial wastes

UNREGULATED SUBSTANCES ³												
	City of	Chino	Chino Desalt	ter Authority	Water Facili	ties Authority						
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	TYPICAL SOURCE				
Alkalinity (ppm)	2024	155	140–170	85	62–130	112	68–180	Naturally occurring				
Boron (ppb)	2024	20	ND-120	<100	NA	NA	NA	Runoff/leaching from natural deposits; industrial wastes				
Calcium (ppm)	2024	73.7	54–84	44	32–53	32.5	14.8–60	Naturally occurring				
Chromium-6 (ppb)	2024	8.6	6.7–10	<1	<1-0.6	NA	NA	Industrial discharges				
Hardness, Total [as CaCO3] (ppm)	2024	248.33	180–280	147.8	110–170	119.1	69.9–190	Leaching from natural deposits				
Sodium (ppm)	2024	20.83	16–27	31.3	26–35	28.6	9.8–46	Runoff from natural deposits				
Vanadium (ppb)	2024	NA	NA	ND	NA	3	1.9-3.9	Naturally occurring; industrial waste discharge				

¹The SWRCB considers 50 pCi/L to be the level of concern for beta particles.

²The value reported under Amount
Detected for TOC is the lowest ratio
between percentage of TOC actually
removed to the percentage of TOC
required to be removed. A value of greater
than 1 indicates that the water system
is in compliance with TOC removal
requirements. A value of less than 1
indicates a violation of the TOC removal
requirements.

³Unregulated contaminant monitoring helps the U.S. EPA and SWRCB determine where certain contaminants occur and whether the contaminants need to be regulated.

Nitrate

Nitrate (reported as nitrogen or N) in drinking water at levels above 10 parts per million (ppm) is a health risk for infants less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 ppm may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should seek advice from your health-care provider.

Definitions

90th %ile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

AL (**Regulatory Action Level**): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs (SMCLs) are set to protect the odor, taste, and appearance of drinking water.

MCLG (Maximum Contaminant Level Goal):

The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. EPA.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

ND (**Not Detected**): Indicates that the substance was not found by laboratory analysis.

NS: No standard.

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

pCi/L (**picocuries per liter**): A measure of radioactivity.

PDWS (Primary Drinking Water Standard): MCLs and MRDLs for contaminants that affect

MCLs and MRDLs for contaminants that affect health, along with their monitoring and reporting requirements and water treatment requirements.

PHG (Public Health Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

ppb (μg/L) (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (mg/L) (parts per million): One part substance per million parts water (or milligrams per liter).

ppt (ng/L) (parts per trillion): One part substance per trillion parts water (or nanograms per liter).

TON (**Threshold Odor Number**): A measure of odor in water.

TT (**Treatment Technique**): A required process intended to reduce the level of a contaminant in drinking water.

μS/cm (microsiemens per centimeter): A unit expressing the amount of electrical conductivity of a solution.