WATER CONSERVATION

As a reminder to residents, the City of Chino has permanent water conservation measures in place which include but are not limited to prohibition of the following:

- ✓ Allowing irrigation water to run off into a gutter, ditch, drain, driveway, sidewalk, street or onto pavement or other hard surface.
- ✓ Outdoor irrigation of landscape for more than fifteen minutes of watering per day per station.
- ✓ Automated irrigation of landscape during the hours of six a.m. to eight p.m.
- ✓ Outdoor irrigation of landscape on rainy days.
- Washing down hard or paved surfaces.
- ✓ Washing of automobiles, trucks, trailers, boats, airplanes, and other types of mobile equipment, unless done with a hand held bucket or hand held hose equipped with a positive shutoff nozzle for quick rinses.

Please call the City's water conservation hotline at (909) 334-3282 to get more information about water conservation or to report prohibited water use. Also, visit the following websites to learn more about saving water:

www.bewaterwise.com

www.cbwcd.org

To learn more about water saving rebates visit www. socalwatersmart.com.

COMMENTS OR QUESTIONS

If you have questions regarding the quality of your water or the information contained in this report, please contact Uchenna Ezea, at (909) 334-3441, 7:00 a.m. to 3:00 p.m., Monday through Thursday. Written inquiries may be sent to: City of Chino, Public Works - Water Section, P.O. Box 667, Chino, CA 91708, Attention: Uchenna Ezea.

The public is encouraged to participate in discussions concerning the City's drinking water. Meetings of the Chino City Council are typically scheduled on the first and third Tuesday of each month beginning at 7:00 p.m. at City Hall, 13220 Central Avenue in Chino, California.

Please share this information with all other people who drink this water, especially those who may not have received this report directly. If you are a landlord or manage a multiunit dwelling, please contact us at (909) 334-3265 to request additional copies of this report to ensure your tenants receive this important information.

Report your observations of prohibited water use by calling the City's water conservation hotline at (909) 334-3282 or by completing an online report on the City's website: www.cityofchino.org/residents/report_a_concern. City of Chino Public Works Department P.O. Box 667

Chino, CA 91708-0667

MPORTANT INFORMATION ABOUT YOUR DRINKING WATER QUALITY ESTE INFORME CONTIENE INFORMACIÓN MUY MPORTANTE SOBRE SU AGUA POTABLE. TRADÚZCALO Ó HABLE CON ALGUIEN QUE LO ENTIENDA BIEN. TAMBIÉN PUEDE LLAMAR AL NÚMERO DE TELÉFONO 909) 334-3441 DE LUNES A JUEVES.

2020 Consumer Confidence Report

The City of Chino is pleased to provide you with this Annual Water Quality Report, also known as the Consumer Confidence Report. In accordance with State requirements, this report is intended to provide you, the consumer, with information regarding the quality of drinking water the City of Chino provided in 2020. In this report you will find important information on our water sources and water conservation. This report can also be found on the City's website: www. eityofchino.org/waterqualityreport. The title of these annual reports has been adjusted to match the year in which the City provided your drinking water supply.

SOURCE WATER SUPPLY

The City of Chino's drinking water supply is a blend of surface water (rivers, lakes, streams) and groundwater (wells). Surface water is imported from Northern California by the Metropolitan Water District (MWD) of Southern California via the State Water Project aqueduct, and is treated at the Agua de Lejos Water Treatment Plant located in Upland. Groundwater supplies are extracted via local wells operated by the City of Chino or by the Chino Basin Desalter Authority (CDA). In 2020, treated groundwater represented approximately 66% of your drinking water supply, while the remaining 34% was produced by the Agua de Lejos Water Treatment Plant.

Source water assessments were conducted in 2001, 2007 and 2017 to determine the contamination vulnerabilities of the City of Chino's active wells. You may request a summary of the assessments by contacting the State Water Resources Control Board Division of Drinking Water (SWRCB-DDW) District Engineer at (909) 383-4328.

WATER QUALITY REGULATIONS

The Federal Safe Drinking Water Act requires the United States Environmental Protection Agency (USEPA) to safeguard drinking water by establishing standards that limit the amount of contaminants in drinking water. In California, the SWRCB-DDW also safeguards drinking water by establishing standards that are at least as stringent as the USEPA standards. Definitions of the various State and Federal standards are found within this report. More information about contamination and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791). In 2020, drinking water supplied by the City of Chino met all State and Federal drinking water health standards.

WATER TREATMENT FACILITY EXPANSION

The City of Chino is currently in the construction phase of expanding our water treatment capabilities at our Eastside Water Treatment Facility. This Project will double the facility's maximum daily groundwater production from 5 million gallons per day (MGD) to 10 MGD. The expansion will include additional ion exchange and carbon filtration units which will be plumbed into existing reservoirs located at the Eastside Facility. This expansion will help serve the southern portion of our water distribution system by maximizing our groundwater resource and reducing the City's reliance on imported water.

WATER QUALITY MONITORING

The City of Chino safeguards its water supply by exceeding the monitoring frequency required by the USEPA and SWRCB-DDW. The City of Chino's drinking water sources (local wells and imported water) are monitored for contaminants such as organic compounds, inorganic compounds, microorganisms, radionuclides, and aesthetic-related contaminants. The City of Chino's water distribution system is also monitored at various locations to ensure good water quality throughout the system. In 2020, the City's water supply was tested for contaminants at state-certified laboratories.

The SWRCB-DDW allows certain supply sources and contaminants to be monitored less than once per year because the concentrations of these contaminants do not change frequently. Although the City's water supply was tested for more than two-hundred contaminants in 2020, regulations require the report to describe only the contaminants that were detected. The water quality data is typically reported in parts per billion (ppb), which is the equivalent of micrograms per liter (μ g/l), or otherwise as listed under the units sub-heading.

IMPORTANT HEALTH INFORMATION

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly persons, and infants, can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA Centers for Disease Control (CDC) guidelines describing appropriate means to lessen the risk of infection caused by *cryptosporidium* and other contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791.

CONTAMINANTS THAT MAY BE PRESENT IN SOURCE WATER

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or human activity. Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the SWRCB-DDW prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. Chino's source waters are blended or treated to yield a combined product that must comply with State and Federal standards.

NITRATE

Nitrate (reported as nitrogen (N) in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should seek advice from your health care provider.

LEAD

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with old pipelines and home plumbing. The City of Chino is responsible for providing high quality drinking water, but cannot control the variety of existing materials used in your household plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may want to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791, or at http://www.epa.gov/lead.

Channing Variety Number of Control Number of Contro Number of Control Number of Co	2020 Drinking	g W	ater	Quali	ty	GROUNDWATER (CITY WELLS)		GROUNDWATER (CDA)		SURFACE WATER (IMPORTED)			
Framework <	Contaminant	Units	Year Tested	MCL { NL } <tt></tt>	MCLG (PHG)	Range	Average	Range	Average	Range	Average	MCL Violation	Possible Sources of Contaminant
Check	Primary Standards												
Incide VII VIII VIIII VIIII VIIII VIIII VIIIII VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Clarity												
Induction pf Note Part of an and depuis Part of and depuis Part of and depuis Part of and depuis Cons here pf3 200 6.0 0.0 Note Part of and depuis Part of and depuis </td <td>Turbidity</td> <td>NTU</td> <td>2018</td> <td>5.00</td> <td>NA</td> <td>0.1 - 0.45</td> <td>0.28</td> <td>0.21</td> <td>0.21</td> <td>ND - 0.21</td> <td>0.5</td> <td>No</td> <td>Soil run-off</td>	Turbidity	NTU	2018	5.00	NA	0.1 - 0.45	0.28	0.21	0.21	ND - 0.21	0.5	No	Soil run-off
Concepting Prob Prob <td>Radionuclides</td> <td>C*0</td> <td>2010</td> <td>15</td> <td>0</td> <td>704 454</td> <td>2.21</td> <td>0.705</td> <td>0.705</td> <td></td> <td>0.0</td> <td>Na</td> <td></td>	Radionuclides	C * 0	2010	15	0	704 454	2.21	0.705	0.705		0.0	Na	
Number 20 ItaliantPrice	Gross Alpha Cross Bota	pC1/I pCi/l	2018	15	0	./04 - 4.54	2.21 NA	0.705 NA	0.705 NA	ND - 4.0 NA		No	Erosion of natural deposits
Image Formation F	Radium 228	nCi/l	2018	5	(0.019)	NA	NA	NA	NA	NA	NA	No	Frosion of natural denosits
Integration Answime Accel Constrained Pipe Accel Accel Constrained PipePipe Pipe Pipe Pipe PipePipe Pipe Pipe Pipe Pipe PipePipe Pipe Pipe Pipe Pipe Pipe PipePipe Pipe Pipe Pipe Pipe Pipe Pipe Pipe 	Uranium	pCi/I	2018	20	(0.43)	0.84 - 6.7	2.42	NA	NA	NA	4.1	No	Erosion of natural deposits
Anima No Non-adminutpake prediction scale predictin scale prediction scale predictin scale predictin scale	Inorganic	1			(and the second
Aread: UP UP <th< td=""><td>Aluminum</td><td>ppb</td><td>2018</td><td>1000</td><td>600</td><td>ND - 13</td><td>13</td><td><50</td><td><50</td><td>ND - 110</td><td>53</td><td>No</td><td>Erosion of natural deposits; residue from some surface water treatment pr</td></th<>	Aluminum	ppb	2018	1000	600	ND - 13	13	<50	<50	ND - 110	53	No	Erosion of natural deposits; residue from some surface water treatment pr
Chroninn pp0 2018 30 20 31 0.3 32 1 1 0.3 1 N <td>Arsenic</td> <td>ppb</td> <td>2018</td> <td>10</td> <td>(0.004)</td> <td>1.1 - 1.6</td> <td>1.4</td> <td><2</td> <td><2</td> <td>ND - 2.8</td> <td>0.6</td> <td>No</td> <td>Erosion of natural deposits; runoff from orchards, glass and electronics ma</td>	Arsenic	ppb	2018	10	(0.004)	1.1 - 1.6	1.4	<2	<2	ND - 2.8	0.6	No	Erosion of natural deposits; runoff from orchards, glass and electronics ma
Paulic Pipe	Chromium	ppb	2018	50	100	5.8 - 12	8.5	<10	<10	NA	NA	No	Erosion of natural deposits; discharge from steel or pulp mills
Number Parts Parts <t< td=""><td>Flouride</td><td>ppm</td><td>2018</td><td>2</td><td>1</td><td>0.13 - 0.21</td><td>0.16</td><td><0.1</td><td><0.1</td><td>NA</td><td>NA</td><td>No</td><td>Erosion of natural deposits; water additive that promotes strong teeth; disc</td></t<>	Flouride	ppm	2018	2	1	0.13 - 0.21	0.16	<0.1	<0.1	NA	NA	No	Erosion of natural deposits; water additive that promotes strong teeth; disc
Predmen Prob	Nitrate (as N)	nnm	2020	10	10	1 60 - 3 75	2 87(a)(b)	44	44	ND - 42	14	No	Pactories Run-off and leaching from fertilizer use: leaching from sentic tank and sev
And And <td>Perchlorate</td> <td>pph</td> <td>2020</td> <td>6</td> <td>(1)</td> <td>ND - 3.2</td> <td>1.8 (b)</td> <td><4</td> <td><4</td> <td>NA NA</td> <td>NA NA</td> <td>No</td> <td>Perchlorate is an inorganic chemical used in solid rocket propellant, firewo</td>	Perchlorate	pph	2020	6	(1)	ND - 3.2	1.8 (b)	<4	<4	NA NA	NA NA	No	Perchlorate is an inorganic chemical used in solid rocket propellant, firewo
Synthetic Organic function		TT*					110 (0)						and a variety of industries. It usually gets into drinking water as a result of from historic aerospace or other industrial operations that used or use, stor salts; Present in some fertilizers
Dibene pp 2019 0.01 </td <td>Synthetic Organic</td> <td></td>	Synthetic Organic												
1,2,3 Frichwampane ppb 200 0.005 ND ND ND ND ND ND Industrial discharges; soli fingiguin 12,3 Frichwampane ppb 200 160 160 ND ND ND ND ND ND Industrial discharges; soli fingiguin Stending 2010 100 600 ND 13 4 4 ND ND ND ND ND ND Stending Agent/NBAS pp 2018 0.30 NA NA ND ND ND ND ND ND Gaming Agent/NBAS pp 2018 0.30 NA NA 4.40 4.50 ND ND ND ND ND Gaming Agent/NBAS PP 2018 0.30 NA NA 4.40 4.50 ND 1.50 ND ND ND ND ND ND Gaming Agent/NBAS PP 2018 0.30 NA NA 1.40 ND 1.50 ND	Dibromochloropropane(DBCP)	ppb	2018	0.2	NA	.012023	0.018	<0.01	<0.01	NA	NA	No	Banned nematocide that may still be present in soils due to run-off/leachin cotton, vineyards, tomatoes, and tree fruit
Picharamppb2018500500For11NNNNoIntradiction of matural deposits residual frammental deposits residual fra	1,2,3-Trichloropropane	ppb	2020	0.005	0.0007	ND	ND (b)	< 0.005	< 0.005	ND	ND	No	Industrial discharges; soil fumigation
Scound 10Scound 10 <td>Picloram</td> <td>ррь</td> <td>2018</td> <td>500</td> <td>166</td> <td>NA</td> <td>NA</td> <td><1</td> <td><1</td> <td>NA</td> <td>NA</td> <td>No</td> <td>Herbacide runoff</td>	Picloram	ррь	2018	500	166	NA	NA	<1	<1	NA	NA	No	Herbacide runoff
Autominumpp218100600ND-111313NDFactor of natural depaits residual frames unclose trastanet processAutominumppm218630NA11113NDNDNDMutrally-accurring organic materialsOdio ThresholdTUU2185<0NA1111132NoMutrally-accurring organic materialsOdio ThresholdTUU208500NA01-0.450.280.210.21NDSONoNoSolitzanceTotal Disolved Solidppm2081000NA20-0040740400410 <t< td=""><td>Secondary Standards</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Secondary Standards												
Framing Agents (MIAAS)pm20180.5NANANANANDNDNOMunicipal and industrial waste dickarges0400-ThrwidingTDN20185.00NA0.1 + 0.41.20.210.210.2NoSuiture-fait form intrait dynsit industrialTurbidingPT20185.00NA0.1 + 0.40.210.210.210.20NoSuiture-fait form intrait dynsit industrialSpecia ConductancePF20181000NA401-301.84.0030-614.00NoSuiture-fait form intrait dynsit specialCopperPF20181000NAND-7.31.64.005.00NANoSuiture-fait form intrait dynsit special industrial disk trait dynsit special industrial disk trait dynsit special industrial disk trait dynsit special industrial dynsit spec	Aluminum	ppb	2018	1000	600	ND - 13	13	<50	<50	ND -110	53	No	Erosion of natural deposits: residual from some surface treatment process
Oder function Tit Unit Solution Solution <thsolution< th=""> Solution <th< td=""><td>Foaming Agents(MBAS)</td><td>ppm</td><td>2018</td><td>0.5</td><td>NA</td><td>NA</td><td>NA</td><td><0.08</td><td><0.08</td><td>ND</td><td>ND</td><td>No</td><td>Municipal and industrial waste discharges</td></th<></thsolution<>	Foaming Agents(MBAS)	ppm	2018	0.5	NA	NA	NA	<0.08	<0.08	ND	ND	No	Municipal and industrial waste discharges
Turbidiy NP OB Solo NA 0.1-0, 40 0.24 0.21 0.20 0.50 No Solitares Specific Conducance PP 0.08 1.000 NA 470-130 470 480 480 40-10 420 No Non-office-informatured posits Non-office-informat	Odor-Threshold	TON	2018	3	NA	1	1	<1	<1	1 - 3	2	No	Naturally-occurring organic materials
Total Disolved Solid p/S 200 0000 NA 250-90 4/N 5/N 5/N 1/N Run-officabing from natural deposits from in weter in we	Turbidity	NTU	2018	5.00	NA	0.1 - 0.45	0.28	0.21	0.21	ND - 2.1	0.5	No	Soil run-off
Specific Conductance PyCrn PyDr <	Total Dissolved Solid	ppm	2020	1000	NA	250 - 490	407	340	340	190 - 390	262	No	Run-off/leaching from natural deposits
Copper Lineppb20181000NAND - 7.31.6<500SNNA	Specific Conductance	µS/cm	2018	1600	NA	470 -1300	718	480	480	360 - 610	452	No	Substances that form ions when in water
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Copper	ppb	2018	1000	NA	ND - 3	1	<50	<50	NA	NA	No	Internal corrosion of household plumbing; erosion of natural deposits; lead
Characteringppm ppm20182.50NA1.7.53.41.101.102.0-24.7NoRun-off Acting from natural deposits; industrial wastesOther Monifored Parameters u	Zinc Chlorida	ppo	2018	5000	NA NA	ND - 7.3	1.0	<50 110	<50 110	NA 26 62		NO No	Run-off from natural deposits and industrial discharge
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sulfate	nnm	2018	250	NA NA	26-69	43	110	110	20 - 02	49	No	Run-off/leaching from natural deposits: industrial wastes
Alkalinity Bicarbonateppm2018NANANA150 - 25017774747473 - 200111NANaturally-occuring Naturally-occuringBicarbonateppm2018NANANA24 - 57747489 - 300137NANaturally-occuringCalciumppm2018NANA24 - 57747423 - 9237NANaturally-occuringCalciumppm2018NANA75. 5 - 12844-4NANANaturally-occuringMagnesiumppm2018NANA10. 5519111184. 18.011.1NANaturally-occuringPdUnits2018NANA10. 551974777778. 8.18NANANaturally-occuringPdUnits2018NANA10. 52191120. 2.52.3NANaturally-occuringPdUnits2018NANA170 - 5274777778. 8.18NANAPd2018NANA170 - 522.77.47.87.88.18NANAPd2018NANA170 - 522.99.85003.6NANAPaTotal Organic Carbonppm2018NANA170 - 522.5NANaturally-occuring; industrial waste discharges	Other Monitored Parameters	PP	2010	250	1478	20-05	45	1	1	01 01		110	Run-on/Raching from natural deposits, industrial wastes
Bicarbonate ppm 2018 NA NA NA NA 10-300 74 9-300 137 NA Naturally-occuring Boron ppb 2018 NA NA A 24-57 31 31 74 74 97-300 104 NA Rurally-occuring Calcium ppm 2018 NA NA 75 57 47 47 23-92 37 NA Naturally-occuring Magnesium ppm 2018 NA 0.02 56-12 8.4 <1	Alkalinity	ppm	2018	NA	NA	150 - 250	177	74	74	73 - 240	111	NA	Naturally-occuring
Beron ppb 2018 NA NA 24 - 57 31 < 100 100 100 100 100 NA Run-fifexching from natural deposits; industrial wastes Calcium ppb 2018 NA (c) NA NA 57.51 8.7 47 47.9 23.02 37 NA Naturally-ocuring Magnesiun ppb 2018 NA NA NA 11.0 - 35 19 11 41. 84.4 NA NA Naturally-ocuring PdH Diff 2018 NA NA 11.0 - 35 19 11 11 84.4 NA Naturally-ocuring Pdmassiun ppm 2018 NA NA 13.9 27.7 7.7 7.8 8 NA Naturally-ocuring Solium ppm 2018 NA NA 19.3 2.4 1.7 7.7 7.8 8 NA Naturally-ocuring Solium ppm 2018 NA NA 19.3 2.4 1.4 1.6 8.0 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3	Bicarbonate	ppm	2018	NA	NA	180 - 300	212	74	74	89 - 300	137	NA	Naturally-occuring
Calciumppm2018NANANA57-1508747 </td <td>Boron</td> <td>ppb</td> <td>2018</td> <td>NA</td> <td>NA</td> <td>24 - 57</td> <td>31</td> <td><100</td> <td><100</td> <td>120 - 160</td> <td>104</td> <td>NA</td> <td>Run-off /leaching from natural deposits; industrial wastes</td>	Boron	ppb	2018	NA	NA	24 - 57	31	<100	<100	120 - 160	104	NA	Run-off /leaching from natural deposits; industrial wastes
Chromium VI (Hexavalent Chromium) MagnesiumPpb2018NA (c)0.005.6 - 128.4 <1 <1 NANANoIndustrial dischargesMagnesiumPpm2018NANANA1.0 - 35 $>$ 1118.4 + 18.011.1NANaturally-occuringPdUnits2018NANANA1.0 - 35 $>$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ NA NANAPotassiumPpm2018NANA1.9 - 32 $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ NA NANASodiumPpm2018NANA10 - 52 $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ NA NANAIadassign $?$ $?$ NA	Calcium	ppm	2018	NA	NA	57 - 150	87	47	47	23 - 92	37	NA	Naturally-occuring
Magnesiumpp p Units2018NANAIIIIIIIIIIIIIIIIIIINANat/recurringPdUnits2018NANANA7.32 - 7.6 7.7 7.7 7.7 7.7 7.7 7.8 8NANAPotasiumppm2018NANA1.9 - 3.2 2.4 11 $2.0 - 2.5$ 2.3NANaturally-occuringSodiumppm2018NANANA1.9 - 3.2 2.4 11 $2.0 - 2.5$ 2.3NANaturally-occuringTotal Ardness (CaCO3)ppm2018NANANA 7.0 5.9 5.9 5.9 3.6 3.8 NALeaching from natural deposits seawater influenceTotal Organic Carbonppm2018 $$ NANA NA NA NA NA NA NA NA NA Varadium $vo2018CT.NA$	Chromium VI (Hexavalent Chromium)	ppb	2018	NA (c)	0.02	5.6 - 12	8.4	<1	<1	NA	NA	No	Industrial discharges
prime Potasium Sodiumppm2018 2018NANANA1/21/41/41/7<	Magnesium	ppm Units	2018	NA NA	NA NA	11.0 - 35	19	11		8.4 - 18.0		NA	Naturally-occuring
For solution Solutionppm2018NANAI	pH Potassium	nnm	2018	NA NA	NA NA	19-32	24	1./	1.7	2.0 - 2.5		NA	NA Naturally-occuring
Solution Total Hardness (CaCO3)Ppm Ppm2018NA NANA NA170 - 520258 258100 100100 100100 80 - 300138 130NA 130 - 520Iab of the information account of the in	Sodium	ppm	2018	NA	NA	1.9 - 3.2	2.4	29	29	9.8 - 50.0	37.6	NA	Run-off from natural deposits: seawater influence
Total Organic Carbon Vanadiumppm pb2018 $<$ TT> (50)NANA NANA NA $<$ NA NA <td>Total Hardness (CaCO3)</td> <td>ppm</td> <td>2018</td> <td>NA</td> <td>NA</td> <td>170 - 520</td> <td>258</td> <td>160</td> <td>160</td> <td>80 - 300</td> <td>138</td> <td>NA</td> <td>Leaching from natural deposits</td>	Total Hardness (CaCO3)	ppm	2018	NA	NA	170 - 520	258	160	160	80 - 300	138	NA	Leaching from natural deposits
Vanadiumppb2018 $\{50\}$ NANANANANAND - 5.02.6NoNaturally-occuring; industrial waste dischargesDistribution System MonitoringMicrobialUnitsYear EtMCL/MRDL(MRDL)Range $A \lor \rightarrow e$ Range $A \lor \rightarrow e$ $A \lor \rightarrow e$ Range $A \lor \rightarrow e$ Range $A \lor \rightarrow e$ Range $A \lor \rightarrow e$	Total Organic Carbon	ppm	2018	<tt></tt>	NA	NA	NA	< 0.3	< 0.3	1.8 - 2.6	2.2	NA	Various natural and man made sources.
Distribution System MonitoringMicrobialUnitsYear TestedMCL [MRDL](MCLG [MRDLG]Range $A = BageAverageRangeAverageMCL ViolationPossible Sources of ContaminantTotal Coliform Bacteria%20205.0% (d)000.0%MCL ViolationNoNaturally present in the environment0.0%0.0%0.0%0.0%0.0%0.0%0.0%0.0%NoNoNaturally present in the environment0.0%0.0%0.0%NoNoNoNaturally present in the environment0.0%0.0%0.0%NoNoNaturally present in the environment$	Vanadium	ppb	2018	{50}	NA	NA	NA	NA	NA	ND - 5.0	2.6	No	Naturally-occuring; industrial waste discharges
MicrobialUnitsYear TestedMCL (MRDL)(MCL G) (MRDL)RangeArrageRangeAverageRangeMCL violationPossible Sources of ContaminantTotal Coliform Bacteria%20205.0% (d)000000.20%0.20%NoNaturally present in the environmentDisinfection Byproducts and ResidusUnitsYear TestedMCL (MRDL)PHG (MRDL)PHG (MRDL) 0.0% 0.0% 0.0% 0.20% NoNaturally present in the environmentTTHMs(Total Trihalomethane)ppb202060NA $27 - 5 - 5$ NoByproduct of drinking water disinfectionHaloacetic acid (HAAS)ppb202060NA $21 - 5 - 5$ NoByproduct of drinking water disinfectionChoprer & Leadppm2020[4 as CL2][4 as CL2] 90% PC $1.16 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -$	Distribution System Monitoring												
Total Coliform Bacteria%20205.0% (d)0000.0%0.00%0.00%0.20%0.20%NoNaturally present in the environmentDisinfection Byproducts and ResidualsUnitsYear TestedMCL [MRDL]PHG [MRDLG] \mathbb{C} \mathbb{C} MCL ViolationTTHMs(Total Trihalomethane)ppb202080NA $\mathbb{C}^2 \cdot \mathbb{C}$ \mathbb{C}^2 NoBy-product of drinking water chlorinationHaloacetic acid (HAA5)ppb202060NA $\mathbb{C}^2 \cdot \mathbb{C}$ \mathbb{C}^2 NoBy-product of drinking water chlorinationChlorineppm2020[4 as CL2][4 as CL2]11/16-1.31 \mathbb{C}^2 No. of SchoolsAL ViolationCopper & LeadVintsYear TestedALPHG90% PercentileNumberSitesNo. of SchoolsAL ViolationCopperpph20181300(300)26233000NoInternal corrosion of household plumbingCopperpph201815(0.2)5.73307NoInternal corrosion of household plumbing	Microbial	Units	Year Tested	MCL [MRDL]	(MCLG) [MRDLG]	Range	Average	Range	Average	Range	Average	MCL Violation	Possible Sources of Contaminant
Distinction Byproducts and ResidualsUnitsYear TestedMCL [MRDL]PHG [MRDLG]PHG [MRDLG]RangeAverageMCL ViolationTTHMs(Total Trihalomethane)ppb202080NA $27 \cdot 59$ 52 NoBy-product of drinking water chlorinationHaloacetic acid (HAA5)ppb202060NA $2 \cdot 16$ 11NoBy-product of drinking water disinfectionChlorineppm2020[4 as CL2][4 as CL2][4 as CL2] $1.16 \cdot 1.31$ 1.25 NoDrinking water disinfectant added for treatmentCopper & LeadUnitsYear TestedALPHG90% PercentileNumberSitesNo. of SchoolsAL ViolationCopper functionppb20181300(300)2623300NoInternal corrosion of household plumbingLeadppb201815(0.2)5.73307NoInternal corrosion of household plumbing	Total Coliform Bacteria	%	2020	5.0% (d)		0 - 0%	0.00%	0.00%	0.00%	0 - 2.0%	0.20%	No NOL VILLI	Naturally present in the environment
Hinds for a finite for a fi	TTHMs(Total Tribalamathana)	Units	Year Tested		PHG [MKDLG]		Kange			Average		NCL Violation	By product of drinking water chloringtion
Chlorine ppm 2020 [4 as CL2] [4 as CL2] 1.1c 1.1c 1.2c No Drinking water disinfectant added for treatment Copper & Lead Units Year Tested AL PHG 90% Percentile Number Sites No. of Schools AL Violation Possible Sources of Contaminant Copper & Lead ppb 2018 1300 (300) 262 33 0 0 No. of Schools AL Violation Copper & Lead ppb 2018 1300 (300) 262 33 0 0 No. Internal corrosion of household plumbing Lead 15 (0.2) 5.7 33 0 7 No Internal corrosion of household plumbing	Haloacetic acid (HAA5)	ppb	2020	60	NA		27 - 59			52 11		No	By-product of drinking water chormation By-product of drinking water disinfection
Copper & LeadUnitsYear TestedALPHG90% Percentile ValueNumber of SitesSitesNo. of Schools Requesting SamplesAL ViolationPossible Sources of ContaminantCopperppb20181300(300)2623300No.No.No.Internal corrosion of household plumbingLeadppb201815(0.2)5.73307No.Internal corrosion of household plumbing	Chlorine	ppb	2020	[4 as CL2]	[4 as CL2]		1.16 - 1.31			1.25		No	Drinking water disinfectant added for treatment
Copperppb20181300(300)2623300NoInternal corrosion of household plumbingLeadppb201815(0.2)5.73307NoInternal corrosion of household plumbing	Copper & Lead	Units	Year Tested	AL	PHG	90% Percer	ntile Nun	ıber	Sites	No. of	Schools	AL Violation	Possible Sources of Contaminant
Copper Leadppb20181300(300)2623300NoInternal corrosion of household plumbingLeadppb201815(0.2)5.73307NoInternal corrosion of household plumbing						Value	of S	ites Ex	ceeding AI	Requestin	g Samples		
Leadppb201815(0.2)5.73307NoInternal corrosion of household plumbing	Copper	ppb	2018	1300	(300)	262	3.	3	0		0	No	Internal corrosion of household plumbing
	Lead	ppb	2018	15	(0.2)	5.7	3.	3	0		1	No	Internal corrosion of household plumbing

FOOTNOTES

(a) = This report describes the range of measured nitrate concentration in blended groundwater prior to delivery to the City of Chino's distribution system. The average nitrate concentration is based on an annual average. Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 ppm may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should seek advice from your health care provider. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity.

(b) = Based on composite analysis of source production after treatment/blending and prior to delivery to the City of Chino's distribution system.

(c) = There currently is no MCL for hexavalent chromium. The previous MCL of 0.010 mg/L was withdrawn on September 11, 2017.

(d) = No more than 5% of monthly water samples shall test positive for coliform bacteria. The "average" is equal to the percentage of positive water samples for coliform bacteria.

ocesses anufacturing

charge from fertilizer and aluminum

vage; erosion of natural deposits orks, explosives, flares, matches, f environmental contamination re, or dispose of perchlorate and its

g from former use on soybeans,

ching from wood preservatives

WATER QUALITY STANDARDS AND DEFINITIONS

Maximum Contaminant Level (MCL): The maximum amount of a substance that is allowed in drinking water. Primary MCLs are established as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are established to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The amount of a substance in drinking water below which there is no known or expected potential risk to health. MCLGs are established by the EPA.

Public Health Goal (PHG): The amount of a substance in drinking water below which there is no known or expected potential risk to health. PHGs are established by the California EPA.

Primary Drinking Water Standard: MCLs and MRDLs for contaminants that may affect health. It also includes the monitoring, reporting, and water treatment requirements for these MCLs and MRDLs.

Secondary Drinking Water Standard: MCLs for contaminants that may affect the color, taste, and aesthetic properties of water.

Regulatory Action Level (AL): The amount of a substance which, if exceeded, triggers treatment or other requirements that a water system must follow.

Notification Level (NL): Used to provide information to public water systems and others about certain nonregulated chemicals in drinking water that lack maximum contaminant levels (MCLs).

Maximum Residual Disinfection Level (MRDL): The maximum amount of a disinfectant allowed in drinking water. Addition of a disinfectant is required for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The amount of a disinfectant added for water treatment below which there is no known or expected potential risk to health. MRDLGs do not consider the health benefits resulting from the required application of disinfectants to control microbial contaminants.

Treatment Technique (TT): A required process intended to remove or reduce the amount of contaminants in drinking water. TT = 1 NTU

Regulatory Action Level (AL): The amount of a substance which, if exceeded, triggers treatment or other requirements that a water system must follow.

- NTU = Nephelometric Turbidity Unit or unit measure of clarity;
- pCi/L = picocuries per liter or the measure of radioactivity;
- TON = Threshold Odor Number or unit of measure for odor;
- μS/cm = microsiemens per centimeter or the measure of electrical conductance;
- ppm = parts per million or milligrams per liter
 (mg/l);
- ppb = parts per billion or micrograms per liter
 (µg/l);
- NA = Not Applicable because monitoring is not required or no established standard;
- **ND** = Not Detected in laboratory analysis