

TABLE OF CONTENTS

About the District	page 2
District at a Glance	page 3
Water Systems Information	page 4
Sources of Water	page 6
Definitions	page 7
Water Quality Results	page 8
Educational Information	page 21
Commitment To Community	page 23
Commitment To the Future	page 24
Community Resources	page 25
For the Kids	nage 26

John Thiel General Manager

Dear Neighbor,

Your trust in the safety and reliability of your drinking water is something we take very seriously at West Valley Water District (WVWD). As General Manager, I want you to know that providing clean, high-quality water to you and your family is not just our mission—it's our commitment.

I'm proud to share that, once again, WVWD met or exceeded all state regulatory standards for water quality in 2024. This achievement reflects the hard work and dedication of our entire team and our ongoing commitment to maintaining a reliable and resilient water system. As a public utility, this is your water system—and we are honored to manage it on your behalf.

At WVWD, our mission is to provide clean, high-quality, reliable, cost-effective, and sustainable water services to every community we serve. Looking ahead, we will continue to invest in our infrastructure, our workforce, and our region to ensure we meet the evolving needs of our customers today and for generations to come.

I invite you to review our **2024 Annual Water Quality Report,** which details our water quality performance, treatment processes, sources of supply, and community programs—including conservation, education, and system improvements. If you have any questions about the report or your water, please contact our Water Quality Department at (909) 875-1804.

Thank you for placing your trust in us and for taking an interest in your water and your community.

DISTRICT MANAGEMENT

John Thiel

General Manager

Linda Jadeski

Assistant General Manager

Joanne Chan

Director of Operations

Rocky Welborn

Director of Engineering

Jon Stephenson

Director of General Services

BOARD OF DIRECTORS

Greg Young

President, Division 5

Dan Jenkins

Vice President, Division 2

Angela Garcia

Director, Division 1

Kelvin Moore

Director, Division 3

Estevan Bennett

Director, Division 4

OUR COMMITMENT

MISSION

The West Valley Water District provides our community with high-quality and reliable water service in a cost-effective and sustainable manner.

VISION

The West Valley Water District will be a model for innovation and sustainability, with a commitment to our growing communities and our employees.

West Valley
Water District
Staff

WEST VALLEY WATER DISTRICT à a () Jance

Service to Community

Over 70 years of providing high quality and reliable water to our customers.

402 Miles of **Pipeline**

Over 100,000 Served

Trusted by over 100,000 customers to keep the water flowing.

Storage Tanks

Groundwater Wells

32 Square Miles

Providing water to 25,800 Inland Empire homes and businesses.

Water **Professionals**

Our Values

Innovation

WVWD fosters innovation, creativity, and ingenuity as we constantly seek to strengthen our services, programs, and practices.

Treatment

Sites

Regional **Partner**

WVWD is a proactive leader and partner in regional collaboration projects and programs that improve our community and the water supply.

Preferred Workplace

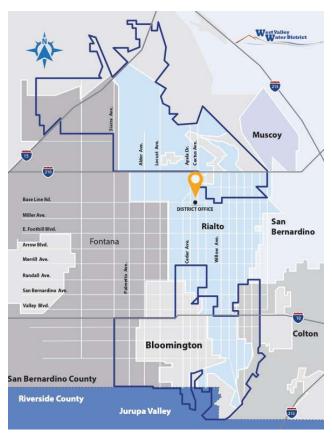
WVWD offers an empowering work environment that promotes diversity, equity, and inclusion where employees can succeed.

Public Trust & Integrity

WVWD fosters a culture of openness, transparency, and accountability to our community and stakeholders.

Sustainability

WVWD is committed to innovative solutions that support the long-term success of our organization.



Serving the communities of:

Bloomington, Colton, Fontana, Jurupa Valley, Rialto and Unincorporated San Bernardino County

Water Systems Information

At West Valley Water District (WVWD), our mission is to provide our our community with high-quality and reliable water service in a cost-effective and sustainable manner.

WVWD is a Special District governed by a five-member Board of Directors providing retail water to approximately 104,498 customers with over 25,800 commercial and residential service connections. WVWD serves quality drinking water to portions of Rialto, Colton, Fontana, Bloomington, and portions of the unincorporated area of San Bernardino County and a portion of city of Jurupa Valley in Riverside County.

The goal of our Annual Water Quality Report (WQR) is to inform our customers about the quality of our drinking water, the sources of our water, any monitored contaminants found in drinking water, and whether our system meets state and federal drinking water standards. Our water quality data is submitted to the State Water Resources Control Board, Division of Drinking Water (DDW), in order to monitor our compliance for all regulatory standards and assure high quality drinking water is consistently delivered directly to our customers.

Last year, as in years past, your tap water met all U.S. EPA and State drinking water health standards. West Valley Water District vigilantly safeguards its water supplies and, once again, we are proud to report that our system has never violated a maximum contaminant level or any other water quality standard.

This brochure is a snapshot of last year's water quality. Included are details about where your water comes from, what it contains, and how it compares to State standards. We are committed to providing you with information because informed customers are our best allies.

Public Participation

Public involvement is central to ensuring that we are meeting the highest water supply, water quality, and customer service standards. We welcome your input; please see below for ways you can be involved with West Valley Water District.

Click on the links below to view content and schedules.

MEETINGS | www.wvwd.org/meetings | SITIO WEB | www.wvwd.org

Contact Information

If you have any questions regarding the contents of this report or regarding water quality, please contact:

Janet Harmon

Water Quality Supervisor (909) 875-1804 ext. 371

Jesse Becerra

Water Quality Specialist (909) 875-1804 ext. 372.

Información para personas que no hablan inglés

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse West Valley Water District a 855 W. Base Line Rd., Rialto, CA 92376 para asistirlo en español.

SOURCE WATER ASSESSMENT

Between 2002 and 2008, WVWD, the California Department of Public Health conducted Source Water Assessments (SWA) of all our drinking water wells and surface water received at the Oliver P. Roemer Surface Water Treatment Plant.

As a result of the SWA, the following six water quality characteristics are being closely monitored; however, no contaminants have been detected above the Maximum Contaminant Levels (MCL) set by the State Water Resources Control Board (State Water Board).

Fecal Coliform and E. Coli Bacteria

Heavy recreational activities in both Lytle Creek and Lake Silverwood during warm summer months increase the vulnerability.

Methyl Tert- Butyl Ether (MTBE)

Sources located near gasoline service stations and underground gas storage tanks are vulnerable. A MTBE plume is leaching from the Colton Gasoline Storage Terminal.

Volatile Organic Chemicals (VOCs) and Synthetic Organic Chemicals (SOCs)

All WVWD groundwater wells were determined to be vulnerable to both VOCs and SOCs.

Perchlorate

Detected at low levels in four groundwater wells (Wells 11, 18A, 41, 42). All of these wells are primary water sources and have treatment systems installed. It is believed that the likely sources for perchlorate originate from former manufactures of rocket fuel/fireworks and fertilizer. The effected wells have ion exchange systems installed for perchlorate removal.

Nitrate

Some groundwater wells are vulnerable. Nitrate contamination is the result of leaching septic systems and past citrus farming.

Cryptosporidium

Microbial pathogen found in surface water throughout the U.S.

To view completed source water assessments, you may visit our District office located at:
855 W Base Line Rd. Rialto, California, 92376 or call (909) 875-1804.

West Valley Water District obtains water from both local and imported sources to serve its customers and routinely tests for contaminants from these sources in accordance with Federal and State Regulations.

LOCAL WATER

Groundwater

39.1% of WVWD's water supply is from its own groundwater wells, located in four local basins:

- Bunker Hill Basin
- Lytle Creek Basin
- North Riverside Basin
- Rialto-Colton Basin

21.6% of WVWD's water supply consists of additional groundwater purchased from San Bernardino Valley Municipal Water District through the Baseline Feeder Project. This water also comes from local wells in the Bunker Hill Basin.

Surface Water

28.2% of WVWD's water supply is surface water from Lytle Creek in the San Bernardino Mountains. This water is treated through WVWD's Oliver P. Roemer Water Filtration Facility.

IMPORTED WATER

State Water Project

11.1% of WVWD's water supply is surface water purchased from the State Water Project through San Bernardino Valley Municipal Water District.

This water is also treated through WVWD's Oliver P. Roemer Water Filtration Facility.

DEFINITIONS

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): This level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

Public Health Goal (PHG): The level of a contaminant in drinking water below, which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standard (PDWS): MCLs, MRDLs and treatment techniques (TTs) for contaminants that affect health, along with their monitoring and reporting requirements.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Nephelometric Turbidity Unit (NTU): A measure of clarity of water. Turbidity greater than 5 NTU is just noticeable to the average person.

Milligrams per Liter (mg/L): Or parts per million (ppm) corresponds to 1 second in 11.5 days.

Micrograms per Liter (μ g/L): Or parts per billion (ppb) corresponds to 1 second in nearly 32 years.

Nanograms per Liter (ng/L): Or parts per trillion (ppt) corresponds to 1 second in nearly 32,000 years.

Picograms per Liter (pg/L): Or parts per quadrillion (ppq) corresponds to 1 second in nearly 32,000,000 years.

Picocuries per Liter (pCi/L): Measurement commonly used to measure radionuclides in water.

Microsiemens per centimeter (μS/cm): A measure of conductivity.

Threshold Odor Number (TON): A measure of odor.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Running Annual Average (RAA): The yearly average which is calculated every 3 months using the previous 12 months' data.

Local Running Annual Average (LRAA): The RAA at one sample location.

Disinfection By-Product: Compounds which are formed from mixing of organic or mineral precursors in the water with ozone, chlorine, or chloramine. Total Trihalomethanes and Haloacetic Acids are disinfection by-products.

Secondary Drinking Water Standard (Secondary Standard): MCLs for contaminants that do not affect health but are used to monitor the aesthetics of the water.

Notification Level (NL): Health-based advisory levels established by the State Water Board for chemicals in drinking water that lack MCLs.

90th Percentile: The value in a data set in which 90 percent of the set is less than or equal to this value. The Lead and Copper Rule uses the 90th percentile to comply with the Action Level.

2024 West Valley Water District Water Quality Report - Distribution System

	202	24 We	est Valle	y Water	r District W	Vater (Quality	Report - Dis	stribution System
Parameter	Sample Date	Units	MCL	PHG (MCLG)	Result Type	Results	Violation Yes/No	l in Drinking	Health Effects
PRIMARY STA	NDARDS	- Manda	atory Heal	th-Related	l Standards				
Microbiologi	cal Conta	aminant	ts						
Total Coliform Bacteria	2024	%	5	(0)	Maximum Monthly Positive Samples	1	No	Naturally present in the environment.	Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found.
Disinfection	Byprodu	cts, Disi	nfectant R	esiduals, a	and Disinfectio	n Bypro	duct Pred	cursors	
Haloacetic Acid	s 2024	μg/L	LRAA = 60	N/A	Range Highest LRAA	ND - 16.6 10.0	No	Byproduct of drinking water disinfection.	Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.
Total Trihalomethane	2024 s	μg/L	LRAA = 80	N/A	Range Highest LRAA	ND - 46.4 31.0	No	Byproduct of drinking water disinfection.	Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience liver, kidney or central nervous system problems and have an increased risk of getting cancer.
Chlorine	2024	mg/L	MRDL = 4.0 (as Cl) 2	MRDLG = 4.0 (as Cl) 2	Range Highest RAA	0.33 -2.14 1.25	No No	Drinking water disinfectant added for treatment.	Some people who use water containing chlorine well in excess of the MRDL could experience irritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the MRDL could experience stomach discomfort.
Lead and Co	pper								
Lead	2024	µg/L	AL=15	0.2	# of Sites Sampled # of Sites Over AL 90th Percentile (µg/L)	40 0 ND	No	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits.	Infants and children who drink water containing lead in excess of the action level may experience delays in their physical or mental development. Children may show slight deficits in attention span and learning abilities. Adults who drink this water over many years may develop kidney problems or high blood pressure.
Copper	2024	mg/L	AL=1.3	0.3	# of Sites Sampled # of Sites Over AL 90th Percentile (mg/L)	40 0 0.18	No	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.	Copper is an essential nutrient, but some people who drink water containing copper in excess of the action level over a relative short amount of time may experience gastrointestinal distress. Some people who drink water containing copper in excess of the action level over many years may suffer liver or kidney damage. People with Wilson's Disease should consult their personal doctor.
Lead in Scho	ols								
Lead	2019	μg/L	AL = 15	0.2	# of Sites Sampled # of Sites Over AL 90th Percentile (µg/L) # of Schools Sampled	6 0 ND 1	No	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits.	Infants and children who drink water containing lead in excess of the action level may experience delays in their physical or mental development. Children may show slight deficits in attention span and learning abilities. Adults who drink this water over many years may develop kidney problems or high blood pressure.

2024 West Valley Water District Water Quality Report - Distribution System

Parameter	Sample Date	Units	MCL	PHG (MCLG)	Result Type	Results	Violation Yes/No	Major Sources in Drinking Water
SECONDARY ST	TANDARDS	S - Aesthe	tic Standar	rds ¹				
Color	2024	Units	15	N/A	Range Average	NR ND	No	Naturally-occurring organic materials.
Specific Conductance	2024	μS/cm	1,600	N/A	Range Average	300-540 375	No	Substances that form ions when in water; seawater influence.
Odor Threshold	2024	TON	3	N/A	Range Average	NR 1	No	Naturally-occurring organic materials.
Turbidity	2024	NTU	5	N/A	Range Average	ND - 1.8 0.23	No	Soil runoff.
OTHER PARAM	IETERS							
рН	2024	pH Units	No Standard	N/A	Range Average	7.1 - 8.2 7.8	No	Characteristic of water.
Total Alkalinity (as CaCO₃)	2024	mg/L	No Standard	N/A	Range Average	120 - 200 149	No	Naturally occurring.
Calcium	2024	mg/L	No Standard	N/A	Range Average	18-82 53	No	Erosion of salt deposits in soil and rock.

^{1.} Compliance with secondary standards are based on a annual average. Values above the MCL are acceptable, as long as the average is below the MCL.

AL - Regulatory Action Level; LRAA - Locational Running Annual Average; MCL - Maximum Contaminant Level; MCLG - Maximum Contaminant Level Goal; MRDL - Maximum Residual Disinfectant Level; MRDLG - Maximum Residual Disinfectant Level Goal; ND - Non-Detected; NL - Notification Level; NR - No Range; N/A - Not Applicable; NTU - Nephelometric Turbidity Units; PHG - Public Health Goal; RAA - Running Annual Average; TON - Threshold Odor Number

Note: This Water Quality Report (WQR) reflects changes in drinking water regulatory requirements during 2024. These revisions add the requirements of the federal Revised Total Coliform Rule, effective since April 1, 2016, to the existing state Total Coliform Rule. The revised rule maintains the purpose to protect public health by ensuring the integrity of the drinking water distribution system and monitoring for the presence of microbials (i.e., total coliform and E.coli bacteria). The U.S. EPA anticipates greater public health protection as the rule requires water systems that are vulnerable to microbial contamination to identify and fix problems. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment to determine if any sanitary defects exist. If found, these must be corrected by the water system. The state Revised Total Coliform Rule became effective July 1, 2021.

		_					_			
Parameter	Sample ¹ Date	Units	MCL	PHG (MCLG)	Resu l t Type	RES Baseline Feeder ³	Wells	Violation Yes/No	Major Sources in Drinking Water	Health Effects
PRIMARY ST	TANDARDS	- Mandato	ory Health	-Related St	andards					
Microbiolog	gica l Conta	minants								
Total Coliform Bacteria	2024	%	5	(0)	Maximum Monthly Positive Samples	o	o	No	Naturally present in the environment.	Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found.
Radioactive	Contamin	ants								
Gross Alpha Particle Activity	2021-2024	pCi/L	15	(0)	Range Average		ND-2.6 1.3	No	Erosion of natural deposits.	Certain minerals are radioactive and may emit a form of radiation known as alpha radiation. Some people who drink water containing alpha emitters in excess of the MCL over many years may have an increased risk of getting cancer.
Radium-226	2021-2022	pCi/L	5.0	0.05	Range Average		NR 0.89	No	Erosion of natural deposits.	Some people who drink water containing radium 226 or radium 228 in excess of the MCL over
Radium-228	2021-2022	pCi/L	5.0	0.019	Range Average	NR 2.4	NR 0.32	No	Erosion of natural deposits.	many years may have an increased risk of getting cancer
Uranium	2021-2022	pCi/L	20	0.43	Range Average	1.8-3.2 2.5	NR 2.0	No	Erosion of natural deposits.	Some people who drink water containing uranium in excess of the MCL over many years may have kidney problems or an increased risk of getting cancer.
Inorganic C	ontaminan	ts								
Arsenic	2024	μg/L	10	0.004	Range Average	ND-2.6 1.4	0.38 -7.6 ⁴ 3.6	No	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes.	Some people who drink water containing arsenic in excess of the MCL over many years may experience skin damage or circulatory system problems, and may have an increased risk of getting cancer.
Chromium (hexavalent)	2024	μg/L	10	0.02	Range Average	0.58-3.1 1.8	1.6-1.7 1.7	No	Erosion of natural deposits; transformation of naturally occurring trivalent chromium to hexavalent chromium by natural processes and human activities such as discharges from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities.	Some people who drink water containing helavalent chromium in excess of the MCL over many years may have an increased risk of getting cancer.
Flouride	2023-2024	mg/L	2.0	1.0	Range Average		0.29-0.34 0.30	No	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.	Some people who drink water containing fluoride in excess of the federal MCL of 4 mg/L over many years may get bone disease, including pain and tenderness of the bones. Children who drink water containing fluoride in excess of the state MCL of 2 mg/L may get d teeth.
Nitrate as Nitrogen	2024	mg/L	10	10	Range Average		0.47-3.5 1.7	No	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits.	Infants below the age of six months who drink water containing nitrate in excess of the MCL may quickly become seriously ill and, if untreated, may die because high nitrate levels can interfere with the capacity of the infant's blood to carry oxygen. Symptoms include shortness of breath and blueness of the skin. High nitrate levels may also affect the oxygen-carrying ability of the blood of pregnant women.

explosives, flares, matches and a variety of industries. It usually gets into drinking hormones are needed for normal prenatal growth and development of the							•		•		
Percholrate 2023- Percholrate 2024 Pg/L 6.0 1.0 Range ND = 0.59 NR ND	Parameter		Units	MCL			Baseline	_		1	Health Effects
Perchlorate is an inorganic chemical used in solid rocket propellant, fireworks, explosives, flares, matches and a variety of industries. It usually gets into drinking water as a result of environmental contamination from historic aerospace or other industrial operations that used or use, store, or dispose of perchlorate	PRIMARY ST	TANDARD:	S - Mandato	ory Hea l th	Related	Standard	ls				
Percholrate 2023- 2024 Percholrate 2023- 2024 Percholrate 2024 Percholrate 2024 Percholrate 2024 Percholrate 2024 Percholrate 2025- 2024 Percholrate 2024 Percholrate 2025- 2024 Percholrate Range ND - 0.59 ND	Inorganic C	ontamina	nts								
		2024				Average	ND	ND		inorganic chemical used in solid rocket propellant, fireworks, explosives, flares, matches and a variety of industries. It usually gets into drinking water as a result of environmental contamination from historic aerospace or other industrial operations that used or use, store, or	adverse effects associated with inadequate hormone levels. Thyroid hormones are needed for normal prenatal growth and development of the fetus, as well as for normal growth and development in the infant and child. In adults thyroid hormones are needed for normal metabolism and mental
											Some people who use water containing chlorine

N/A

N/A

No

Drinking water

disinfectant added for

in excess of the MRDL could experience irritating

effects to their eyes and nose. Some people who

drink water containing chlorine well in excess of the MRDL could experience stomach discomfort.

MRDL =

(as Cl₂)

4.0

MRDLG

(as CI2)

= 4.0

Range

Range 0.90-1.78 Average 1.40

	0			BUO	Danile	RESU	ILTS	\\:\-\:\-\:\-\:\-\:\-\:\-\:\-\:\-\:\-\:	
Parameter	Sample Date	Units	MCL	PHG (MCLG)	Result Type	Baseline Feeder ³	Wells	Violation Yes/No	Major Sources in Drinking Water
SECONDARY ST	ANDARDS -	Aesthetic Standa	ards²						Typical Source of Contaminant
Chloride	2023-2024	mg/L	500	N/A	Range Average	6.3 -21 12	2.5-8.2 4.5	No	Runoff/leaching from natural deposits; seawater influence.
Specific Conductance	2023-2024	μS/cm	1,600	N/A	Range Average	490-550 523	300-510 376	No	Substances that form ions when in water; seawater influence.
Color	2024	Units	15	N/A	Range Average	NR ND	ND-7.5 ND	No	Naturally-occurring organic materials.
Methyl tert-butyl ether (MTBE)	2024	μg/L	5	N/A	Range Average	NR ND	ND-7.3 ⁴ 0.88	No	Leaking underground storage tanks; discharge from petroleum and chemical factories.
Odor Threshold	2024	TON	3	N/A	Range Average	ND-1 1	NR 1	No	Naturally-occurring organic materials.
Sulfate	2023-2024	mg/L	500	N/A	Range Average	49-52 51	10-47 21	No	Runoff/leaching from natural deposits; industrial wastes.
Total Dissolved Solids	2023-2024	mg/L	1,000	N/A	Range Average	260-360 317	190-330 240	No	Runoff/leaching from natural deposits.
Turbidity	2024	NTU	5	N/A	Range Average	ND-1.2 0.28	ND - 2.7 0.18	No	Soil runoff.
OTHER PARAME	TERS								
рН	2023-2024	pH Units	No Standard	N/A	Range Average	7.8-7.9 7.9	7.5 - 8.0 7.7	No	Characteristic of water.
Total Alkalinity (as CaCO ₃)	2023-2024	mg/L	No Standard	N/A	Range Average	190-210 200	140-200 159	No	Naturally occurring.
Calcium	2023-2024	mg/L	No Standard	N/A	Range Average	76-79 77	47-78 58	No	Erosion of salt deposits in soil and rock.
Hardness	2023-2024	mg/L	No Standard	N/A	Range Average	240-250 247	140-240 177	No	Hardness is the sum of polyvalent cations present in the water, generally magnesium and calcium. The cations are usually naturally occurring.
Magnesium	2023-2024	mg/L	No Standard	N/A	Range Average	12-15 13	6.1 -12 8.1	No	Erosion of salt deposits in soil and rock.
Sodium	2023-2024	mg/L	No Standard	N/A	Range Average	14-18 16	9.2-16 12	No	Sodium refers to the salt present in the water and is generally naturally occurring.

Chlorine

2024

mg/L

	Sample		Notification	Bosnopso			SULTS	Violation	Major Sources in Drinking	
Parameter	Date 1	Units	Level	Level	Result Type	Baseline Feeder ³	Wells	Yes/No	Water	Health Effects
PFAS										
Perfluorobutane sulfonic acid [PFBS] ⁷	2024	ng/L	500	N/A	Range Average	NR ND	ND -3.6 1.5	No	Industrial facilities, landfills, treatment plants, stain-resistant carpeting, nonstick cookware, grease and waterproof food packaging, fabric softeners, waterproof clothing, cosmetics.	Perfluorobutane sulfonic acid exposures resulted in decreased thyroid hormone in pregnant female mice.
Perfluorohexane Sulfonic Acid [PFHxS] ⁷	2024	ng/L	3.0	N/A	Range Average	NR ND	ND-0.68 0.22	No	Industrial facilities, landfills, treatment plants, stain-resistant carpeting, nonstick cookware, grease and waterproof food packaging, fabric softeners, waterproof clothing, cosmetics.	Perfluorohexane sulfonic acid exposures resulted in decreased total thyroid hormone in male rats.
Perfluorooctanoic Acid [PFOA]	2024	ng/L	5.1	0.007	Range Average	NR ND	ND-2.5 ND	No	Industrial facilities, landfills, treatment plants, stain-resistant carpeting, nonstick cookware, grease and waterproof food packaging, fabric softeners, waterproof clothing, cosmetics.	Perfluorooctanoic acid exposures resulted in increased liver weight and cancer in laboratory animals.
Perfluorooctanesulfonic Acid [PFOS]	² 2024	ng/L	6.5	1.0	Range Average	NR ND	ND-1.5 ND	No	Industrial facilities, landfills, treatment plants, stain-resistant carpeting, nonstick cookware, grease and waterproof food packaging, fabric softeners, waterproof clothing, cosmetics.	Perfluorooctanesulfonic acid exposures resulted in immune suppression and cancer in laboratory animals.
DDW General Order 202	2-0001-D	OW PFAS	S Monitoring ⁶							
Department of Drinking	Water PF	AS Moni	toring							
Perfluorobutane sulfonic acid [PFBS] ⁷	2024	ng/L	500	5,000	Range Average	ND-4.8 2.1		No	Industrial facilities, landfills, treatment plants, stain- resistant carpeting, nonstick cookware, grease and waterproof food packaging, fabric softeners, waterproof clothing, cosmetics.	Perfluorobutane sulfonic acid exposures resulted in decreased thyroid hormone in pregnant female mice.
Perfluorohexane Sulfonic Acid [PFHxS] ⁷	2024	ng/L	3.0	20	Range Average	ND-22° 8.0		No	Industrial facilities, landfills, treatment plants, stain- resistant carpeting, nonstick cookware, grease and waterproof food packaging, fabric softeners, waterproof clothing, cosmetics.	Perfluorohexane sulfonic acid exposures resulted in decreased total thyroid hormone in male rats.
Perfluorooctanoic Acid [PFOA]	2024	ng/L	QRAA = 5.1	QRAA = 10	Range QRAA	ND-5.1 3.9		No	Industrial facilities, landfills, treatment plants, stain-resistant carpeting, nonstick cookware, grease and waterproof food packaging, fabric softeners, waterproof clothing, cosmetics.	Perfluorooctanoic acid exposures resulted in increased liver weight and cancer in laboratory animals.
Perfluorooctanesulfonic Acid [PFOS]	[©] 2024	ng/L	QRAA = 6.5	QRAA = 40	Range QRAA	ND-3.0 2.6		No	Industrial facilities, landfills, treatment plants, stain-resistant carpeting, nonstick cookware, grease and waterproof food packaging, fabric softeners, waterproof clothing, cosmetics.	Perfluorooctanesulfonic acid exposures resulted in immune suppression and cancer in laboratory animals.
EPA National Primary Dri	inking Wa	ter Prop	osal Hazard I	ndex						
PFAS Compounds- Hazard Index ⁸	2024	N/A	HI=1	N/A	Range RAA	ND-2.5 ND		No		

					RESULT	rs		
Parameter	Sample Date ¹	Units	Response Level	Result Type	Baseline Feeder ³	Wells	Violation Yes/No	Major Sources in Drinking Water


UNREGULATED CONTAMINANT MONITORING5

Fifth Unregulated Contaminant Monitoring Rule (UCMR5)

Lithium	2023	μg/L	N/A	N/A	Range Average	NR ND	NR ND	No	Lithium can be obtained from brine deposits in salt lakes and is used in the cathodes of lithium-ion batteries.

PFAS Compounds 2023 µg/L N/A N/A Range NR NR Industrial facilities, landfills, treatment plants, stain-resistant
Average ND NO carpeting, nonstick cookware, grease and waterproof food packaging, fabric softeners, waterproof clothing, cosmetics.

- 1. The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. For sample points that were monitored during the current reporting year, the current reporting year data was used. If a sampling point did not have monitoring data for the reporting year, the most current data was used. Contaminant results are based on the most current data for each sampling point.
- 2. Compliance with secondary standards are based on a annual average. Values above the MCL are acceptable, as long as the average is below the MCL.
- 3. Baseline Feeder includes sample stations, North and South Wells, Rialto Well 4A and Encanto Booster.
- 4. Well was flushed to waste during this reporting period.
- 5. Unregulated contaminant monitoring helps U.S. EPA and the State Water Resources Control Board to determine where certain contaminants occur and whether the contaminants need to be regulated.
- 6. State Water Resources Control Board Department of Drinking Water, DDW General Order 2022-0001-DDW, effective January 1, 2023, requires PFAS monitoring for Wells 11, 18A, 42 and Rialto Well 6 prior to treatment.
- 7. Single or confirmed sample.
- 8. EPA proposes the Hazard Index (HI) be calculated based on the following calculation: Hazard Index = ([GenXwater][10 ppt]) + ([PFBSwater][2000 ppt]) + ([PFNAwater][10 ppt])+ ([PFHxSwater][9.0 ppt]).
- 9. Well flushed to waste. Average of confirmation samples = 18.25 $\,\mathrm{ng/L}$.
- AL Regulatory Action Level; LRAA Locational Running Annual Average; MCL Maximum Contaminant Level; MCLG Maximum Contaminant Level Goal; MRDL Maximum Residual Disinfectant Level; MRDLG Maximum Residual Disinfectant Level Goal; ND Non-Detected; NL Notification Level; NR No Range; N/A Not Applicable; NTU Nephelometric Turbidity Units; PHG Public Health Goal; QRAA Quarterly Running Annual Average; RAA Running Annual Average; TON Threshold Odor Number

2024 West Valley Water District Water Quality Report - Surface Water

	Sample ¹			PHG	Result	RES	SULTS	Violation	Major Sources in	
Parameter	Date	Units	MCL	(MCLG)	Туре	Lytle Creek	State Water Project	Yes/No	Drinking Water	Health Effects
PRIMARY ST	ANDARDS -	- Mandato	ry Health	Related St	andards					
Microbiolog	ical Contai	minants								
Total Coliform Bacteria ³	2024	%	5	(0)	Maximum Monthly Positive Samples	o	0	No	Naturally present in the environment.	Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found.
Radioactive	Contamin	ants								
Gross Alpha Particle Activity	2022	pCi/L	15	(0)	Range Average	NR 2.8	NR 2.6	No	Erosion of natural deposits.	Certain minerals are radioactive and may emit a form of radiation known as alpha radiation. Some people who drink water containing alpha emitters in excess of the MCL over many years may have an increased risk of getting cancer.
Inorganic Co	ontaminan [.]	ts								
Arsenic	2024	μg/L	10	0.004	Range Average	NR 1.9	1.2-2.8 1.9	No	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes.	Some people who drink water containing arsenic in excess of the MCL over many years may experience skin damage or circulatory system problems, and may have an increased risk of getting cancer.
Chromium (hexavalent)	2024	μg/L	10	0.02	Range Average	NR 0.19	NR ND	No	Erosion of natural deposits; transformation of naturally occurring trivalent chromium to hexavalent chromium by natural processes and human activities such as discharges from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities.	Some people who drink water containing helavalent chromium in excess of the MCL over many years may have an increased risk of getting cancer.
Flouride	2024	mg/L	2.0	1.0	Range Average	NR 0.27	NR 0.076	No	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.	Some people who drink water containing fluoride in excess of the federal MCL of 4 mg/L over many years may get bone disease, including pain and tenderness of the bones. Children who drink water containing fluoride in excess of the state MCL of 2 mg/L may get mottled teeth.
Nitrate as Nitrogen	2024	mg/L	10	10	Range Average	0.20-0.32 0.26	0.16-0.65 0.38	No	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits.	Infants below the age of six months who drink water containing nitrate in excess of the MCL may quickly become seriously ill and, if untreated, may die because high nitrate levels can interfere with the capacity of the infant's blood to carry oxygen. Symptoms include shortness of breath and blueness of the skin. High nitrate levels may also affect the oxygencarrying ability of the blood of pregnant women.

2024 West Valley Water District Water Quality Report - Surface Water

Parameter	Sample ¹ Date	Units	MCL	PHG (MCLG)	Result Type	RES Lytle Creek	ULTS State Water Project	Violation Yes/No	Major Sources in Drinking Water
SECONDARY	STANDA	RDS - Aest	 hetic Star	l ıdards²		O.COK			Typical Source of Contaminant
Aluminum	2024	μg/L	200	N/A	Range Average	NR 39	46 - 380 ⁴ 104	No	Erosion of natural deposits; residual from some surface water treatment processes.
Chloride	2024	mg/L	500	N/A	Range Average	NR 1.2	NR 43	No	Runoff/leaching from natural deposits; seawater influence.
Specific Conductance	2024	μS/cm	1,600	N/A	Range Average	NR 330	NR 360	No	Substances that form ions when in water; seawater influence.
Color	2024	Units	15	N/A	Range Average	NR ND	NR 5	No	Naturally-occurring organic materials.
Manganese	2024	mg/L	50	N/A	Range Average	NR 1.2	7.4-34 18	No	Leaching from natural deposits.
Odor Threshold	2024	TON	3	N/A	Range Average	NR 1	NR 1	No	Naturally-occurring organic materials.
Sulfate	2024	mg/L	500	N/A	Range Average	NR 16	NR 29	No	Runoff/leaching from natural deposits; industrial wastes.
Total Dissolved Solids	2024	mg/L	1,000	N/A	Range Average	NR 220	NR 200	No	Runoff/leaching from natural deposits.
Turbidity	2024	NTU	5	N/A	Range Average	NR 0.54	NR 1.8	No	Soil runoff.
OTHER PARA	METERS								
рН	2024	pH Units N	lo Standard	N/A	Range Average	7.1-7.8 7.4	7.1-7.8 7.6	No (Characteristic of water.
Total Alkalinity (as CaCO₃)	2024	mg/L N	lo Standard	N/A	Range Average	130-170 151	61-76 69	No I	Naturally occurring.
Calcium	2024	mg/L N	lo Standard	N/A	Range Average	NR 48	NR 20	No I	Erosion of salt deposits in soil and rock.
Hardness	2024	mg/L N	lo Standard	N/A	Range Average	NR 150	NR 84	No g	Hardness is the sum of polyvalent cations present in the water, generally magnesium and calcium. The cations are usually naturally occurring.
Magnesium	2024	mg/L N	lo Standard	N/A	Range Average	NR 6.7	NR 8.6	No I	Erosion of salt deposits in soil and rock.
Sodium	2024	mg/L N	lo Standard	N/A	Range Average	NR 6.7	NR 38		Sodium refers to the salt present in the water and is generally naturally occurring.

2024 West Valley Water District Water Quality Report - Surface Water

						RI	ESULTS			
Parameter	Sample Date ¹	Units	Notification Level	Response Level	Result Type	Lytle Creek	State Water Project	Violation Yes/No	Major Sources in Drinking Water	Health Effects
PFAS										
Perfluorobutane sulfonic acid [PFBS] ^s	2024	ng/L	500	N/A	Range Average	NR ND	NR ND	No	Industrial facilities, landfills, treatment plants, stain-resistant carpeting, nonstick cookware, grease and waterproof food packaging, fabric softeners, waterproof clothing, cosmetics.	Perfluorobutane sulfonic acid exposures resulted in decreased thyroid hormone in pregnant female mice.
Perfluorohexane Sulfonic Acid [PFHxS]⁵	2024	ng/L	3.0	N/A	Range Average	NR ND	NR ND	No	Industrial facilities, landfills, treatment plants, stain-resistant carpeting, nonstick cookware, grease and waterproof food packaging, fabric softeners, waterproof clothing, cosmetics.	Perfluorohexane sulfonic acid exposures resulted in decreased total thyroid hormone in male rats.
Perfluorooctanoic Acid [PFOA]	2024	ng/L	5.1	0.007	Range Average	NR ND	NR ND	No	Industrial facilities, landfills, treatment plants, stain-resistant carpeting, nonstick cookware, grease and waterproof food packaging, fabric softeners, waterproof clothing, cosmetics.	Perfluorooctanoic acid exposures resulted in increased liver weight and cancer in laboratory animals.
Perfluorooctanesulfonic Acid [PFOS]	2024	ng/L	6.5	1.0	Range Average	NR ND	NR ND	No	Industrial facilities, landfills, treatment plants, stain-resistant carpeting, nonstick cookware, grease and waterproof food packaging, fabric softeners, waterproof clothing, cosmetics.	Perfluorooctanesulfonic acid exposures resulted in immune suppression and cancer in laboratory animals.

- 1. The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. For sample points that were monitored during the current reporting year, the current reporting year data was used. If a sampling point did not have monitoring data for the reporting year, the most current data was used. Contaminant results are based on the most current data for each sampling point.
- $2. Compliance \ with secondary standards \ are \ based \ on \ a \ annual \ average. \ Values \ above \ the \ MCL \ are \ acceptable, \ as \ long \ as \ the \ average \ is \ below \ the \ MCL.$
- $3.\ Coliform\ is\ after\ treatment\ through\ West\ Valley\ Water\ District's\ Oliver\ P.\ Roemer\ Surface\ Water\ Treatment\ Plant.$
- 4. Aluminum is reduced through West Valley Water District's Oliver P. Roemer Surface Water Treatment Plant.
- 5. Single or confirmed sample.

AL - Regulatory Action Level; LRAA - Locational Running Annual Average; MCL - Maximum Contaminant Level; MCLG - Maximum Contaminant Level Goal; MRDL - Maximum Residual Disinfectant Level; MRDLG - Maximum Residual Disinfectant Level Goal; ND - Non-Detected; NL - Notification Level; NR - No Range; N/A - Not Applicable; NTU - Nephelometric Turbidity Units; PHG - Public Health Goal; QRAA - Quarterly Running Annual Average; RAA - Running Annual Average; TON - Threshold Odor Number

							RESULT	S			
Parameter	Sample Date ¹	Units	MCL	PHG (MCLG)	Result Type	Fluidized Bed Reactors (FBR) ³	Oliver P. Roemer Filtration Facility ⁴	Ion Exchange Perchlorate Treatment ⁵	Violation Yes/No	Major Sources in Drinking Water	Health Effects
PRIMARY STANDARDS - Mandatory Health-Related Standards											
Microbiological Contam Total Coliform Bacteria	2024	%	5	(0)	Maximum Monthly Positive Samples	o	o	o	No	Naturally present in the environment.	Coliforms are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system.
Radiological											
Gross Alpha Particle Activity	2023- 2024	pCi/L	15	(0)	Range Average	1.9-2.2 2.1	N/A N/A	NR 3.7	No	Erosion of natural deposits.	Certain minerals are radioactive and may emit a form of radiation known as alpha radiation. Some people who drink water containing alpha emitters in excess of the MCL over many years may have an increased risk of getting cancer.
Radium-226	2024	pCi/L	5	0.05	Range Average	0.20-0.51 0.36	N/A N/A	N/A N/A	No	Erosion of natural deposits.	Some people who drink water containing radium 226 or radium 228 in excess of the
Radium-228	2024	pCi/L	5	0.019	Range Average	0.58-1.8 1.2	N/A N/A	N/A N/A	No	Erosion of natural deposits.	MCL over many years may have an increased risk of getting cancer
Uranium	2023	pCi/L	20	0.43	Range Average	2.4-3.1 2.8	N/A N/A	N/A N/A	No	Erosion of natural deposits.	Some people who drink water containing uranium in excess of the MCL over many years may have kidney problems or an increased risk of getting cancer.
Inorganic Chemicals											
Arsenic	2024	μg/L	10	0.004	Range Average	NR 0.48	0.71-1.4 1.1	0.54-1.2 0.87	No	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes.	Some people who drink water containing arsenic in excess of the MCL over many years may experience skin damage or circulatory system problems, and may have an increased risk of getting cancer.
Chromium (hexavalent)	2024	μg/L	10	0.02	Range Average	0.92-1.6 1.4	NR 0.18	2.1-2.3 2.2	No	Erosion of natural deposits; transformation of naturally occurring trivalent chromium to hexavalent chromium by natural processes and human activities such as discharges from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities.	Some people who drink water containing helavalent chromium in excess of the MCL over many years may have an increased risk of getting cancer.

		1100		unoj	macoi	DISCITOC N	•	uncy nope		acor iroacinon	ic i idiics
Parameter	Sample Date ¹	Units	MCL	PHG (MCLG)	Result Type	Fluidized Bed Reactors (FBR) ³	Oliver P. Roemer Filtration Facility 4	Ion Exchange Perchlorate Treatment ⁵	Violation Yes/No	Major Sources in Drinking Water	Health Effects
Inorganic Chem	icals										
Fluoride	2024	mg/L	2.0	1.0	Range Average	0.22-0.36 0.29	N/A N/A	NR 0.20	No	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories	Some people who drink water containing fluoride in excess of the Federal MCL of 4 mg/L over many years may get bone disease, including pain and tenderness of the bones. Children who drink water containing fluoride in excess of the state MCL of 2 mg/L may get mottled teeth.
Nitrate as Nitrogen	2024	mg/L	10	10	Range Average	ND-3.9 0.98	N/A N/A	2.0-7.4 5.5	No	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits.	Infants below the age of six months who drink water containing nitrate in excess of the MCL may quickly become seriously ill and, if untreated, may die because high nitrate levels can interfere with the capacity of the infant's blood to carry oxygen. Symptoms include shortness of breath and blueness of the skin. High nitrate levels may also affect the oxygen-carrying ability of the blood of pregnant women.
Perchlorate	2024	μg/L	6.0	1.0	Range Average	NR ND	N/A N/A	NR ND	No	Perchlorate is an inorganic chemical used in solid rocket propellant, fireworks, explosives, flares, matches and a variety of industries. It usually gets into drinking water as a result of environmental contamination from historic aerospace or other industrial operations that used or use, store, or dispose of perchlorate and its salts.	Perchlorate has been shown to interfere with uptake of iodide by the thyroid gland, and to thereby reduce the production of thyroid hormones, leading to adverse effects associated with inadequate hormone levels. Thyroid hormones are needed for normal prenatal growth and development of the fetus, as well as for normal growth and development in the infant and child. In adults thyroid hormones are needed for normal metabolism and mental function.
Volatile Organic	Chemica	als									
Methyl tert-butyl ether (MTBE)		µg/L	13	13	Range Average	ND-0.83 ND	N/A N/A	NR ND	No	Leaking underground storage tanks; discharge from petroleum and chemical factories.	Some people who use water containing methyl-tert-butyl ether in excess of the MCL may, over many years, have an increased risk of getting cancer.
Tetrachloroethyler (PCE)	^{ne} 2024	μg/L	5.0	0.06	Range Average	NR ND	N/A N/A	ND- 0.51 ND	No	Discharge from factories, dry cleaners, and auto shops (metal degreaser).	Some people who use water containing methyl-tert-butyl ether in excess of the MCL may, over many years, have an increased risk of getting cancer.
Trichloroethylene (TCE)	2024	μg/L	5.0	1.7	Range Average	ND-0.31 ND	N/A N/A	NR ND	No	Discharge from metal degreasing sites and other factories.	Some people who use water containing trichloroethylene in excess of the MCL over many years may experience liver problems and may have an increased risk of getting cancer.

							RESULTS				
Parameter	Sample	Units	MCL	PHG	Result	Fluidized Bed	Oliver P. Roemer	Ion Exchange Perchlorate	Violation	Major Sources in	Health Effects
	Date 1			(MCLG)	Type	Reactors (FBR) ³	Filtration Facility ⁴	Treatment ⁵	Yes/No	Drinking Water	
Disinfection By	oroducts	(DBP) ar	nd Disinf	ection Byp	roduct P	recursors					
Chlorine	2024	mg/L	MRDL = 4.0 (as Cl ₂)	MRDLG = 4.0 (as Cl ₂)	Range Average	1.08-2.51 1.51	1.29-2.10 1.57	0.33-2.14 1.25 ⁶	No	Drinking water disinfectant added for treatment.	Some people who use water containing chlorine in excess of the MRDL could experience irritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the MRDL could experience stomach discomfort.
Haloacetic Acids 5	2024	µg/L	80	N/A	Range Highest LRAA	NR ND	ND-6.0 3.3	N/A N/A	No	Byproduct of drinking water disinfection.	Some people who drink water containing haloacetic acids in excess of the MCL may, over many years, have an increased risk of getting cancer.
Total Trihalomethanes	2024	µg/L	60	N/A	Range Highest LRAA	NR ND	3.1-17.8 11	NR ND	No	Byproduct of drinking water disinfection.	Some people who drink water containing trihalomethanes in excess of the MCL may, over many years, experience liver, kidney or central nervous system problems and have an increased risk of getting cancer.
Control of DBP Precursors Total Organic Carbon (TOC)	2024	mg/L	тт	N/A	Range Average	ND-0.54 0.23	0.26-2.0 0.75	N/A N/A	No	Various Natural and manmade sources.	Total organic carbon has no health effects. However, total organic carbon provides a medium for the formation of disinfection byproducts. These byproducts include trihalomethanes (THMs) and haloacetic acids (HAAs).
							RESULTS	S			
							Oliver F	.			
Parameter	Sample Date ¹	Units	; M(CL PHO	-		Oliver F	lon Exchang	e Violati	l Maio	r Sources in Drinking Water
Parameter SECONDARY ST	Date 1			CL (MCI			Oliver F d Roeme R) ³ Filtratio	lon Exchang	e Violati	No Majo	r Sources in Drinking Water Source of Contaminant
	Date 1			CL (MCL	.G) Typ	e Reactors (FBI	Oliver F d Roeme R) ³ Filtratio	lon Exchang	e Violati	No Majo Typical Erosion o	
SECONDARY ST	Date 1	S - Aesth	etic Sta	ndards ²	Rang Avera	Reactors (FBI	Oliver F d Roeme R) ³ Filtratio Facility	lon Exchang Perchlorat Treatment	e Yes/I	Typical Erosion o some surf	Source of Contaminant f natural deposits; residual from ace water treatment processes.
SECONDARY ST	Date ¹ ANDARD 2024	S - Aesth µg/L	etic Sta 20 50	MCI (MCI mdards² no N//	Rang Avera Avera Rang Avera	Reactors (FBI ND-42 ge ND le 3.8-5.9 ge 4.8 le NR	Oliver F d Roeme Filtratio Facility ND-29 12.2 2.7-16	Ion Exchang Perchlorate Treatment NR ND 7.6-66	Yes/I	Typical Erosion o some surf Runoff/leddeposits;	Source of Contaminant If natural deposits; residual from ace water treatment processes. If natural actions a
SECONDARY ST Aluminum Chloride	Date 1 ANDARD 2024 2024	S - Aesth µg/L mg/L	etic Sta 20 50	ndards ² 00 N// 00 N// 5 N//	Rang Avera Rang Avera A Rang Avera	Reactors (FBI ND-42 ge ND le 3.8-5.9 ge 4.8 le NR ge ND	Oliver F Roeme Filtratio Facility ND-29 12.2 2.7-16 9.0 NR	Perchlorate Treatment NR ND 7.6-66 37 ND-7.5	Yes/I	Typical Erosion o some surf Runoff/ledeposits; Naturally- Substance	Source of Contaminant If natural deposits; residual from ace water treatment processes. aching from natural seawater influence.
SECONDARY ST Aluminum Chloride Color Specific	Date 1 ANDARD 2024 2024 2024	S - Aesth µg/L mg/L Units	20 50 19 1,60	ndards ² 00 N// 00 N// 5 N// 00 N//	Rang Avera Rang Avera Rang Avera Avera	Reactors (FBI ND-42 ge ND ND -42 ND ND -48 NR ND ND -48 NR ND ND -340-390 ND -363 ND -363 ND -0.010	Oliver F Roeme Filtratio Facility ND-29 12.2 2.7-16 9.0 NR ND	Perchlorate Treatment NR ND 7.6-66 37 ND-7.5 ND 450-490 470	Yes/I	Typical Frosion of some surf Runoff/ledeposits; Naturally- Substance water; see	Source of Contaminant If natural deposits; residual from ace water treatment processes. aching from natural seawater influence. occurring organic materials. es that form ions when in awater influence. corrosion of household systems; erosion of natural leaching from wood
SECONDARY ST Aluminum Chloride Color Specific Conductance	Date 1 CANDARD 2024 2024 2024 2024	S - Aesth µg/L mg/L Units µS/cm	20 50 1!	ndards ² 00 N// 00 N// 5 N// 00 N//	Rang Avera Rang Avera Rang Avera Rang Avera Rang Avera	Reactors (FBI ND-42 ge ND ge 3.8-5.9 ge 4.8 ge ND ge 340-390 ge 363 ge ND-0.010 ge ND-140	Oliver F Roeme Filtratio Facility ND-29 12.2 2.7-16 9.0 NR ND N/A N/A ND-0.018	Perchlorate Treatment NR ND 7.6-66 37 ND-7.5 ND 450-490 470	Yes/I	Typical Erosion o some surf Runoff/ledeposits; Naturally- Substance water; see Internal plumbing deposits; preservat	Source of Contaminant If natural deposits; residual from ace water treatment processes. aching from natural seawater influence. occurring organic materials. es that form ions when in awater influence. corrosion of household systems; erosion of natural leaching from wood ives. and industrial waste
SECONDARY ST Aluminum Chloride Color Specific Conductance Copper Foaming Agents	Date 1 2024 2024 2024 2024 2024	S - Aesth μg/L mg/L Units μS/cm	20 50 1!	ndards ² 00 N// 00 N// 5 N// 00 N// 0 N//	Rang Avera Rang Avera Rang Avera Rang Avera Rang Avera	Reactors (FBI ND-42 ge ND 18 3.8-5.9 ge 4.8 ge NR ge ND 19 340-390 ge 363 ge ND-0.010 ge ND-140 ge 42 ge ND-110	Oliver F Roeme Filtratio Facility ND-29 12.2 2.7-16 9.0 NR ND N/A N/A ND-0.01	Ion Exchange Perchlorate Treatment NR ND 7.6-66 37 ND-7.5 ND 450-490 470 NR ND ND-47	No.	Typical Erosion o some surf Runoff/ledeposits; Naturally- Substance water; see Internal plumbing deposits; preservat Municipal discharge	Source of Contaminant If natural deposits; residual from ace water treatment processes. aching from natural seawater influence. occurring organic materials. es that form ions when in awater influence. corrosion of household systems; erosion of natural leaching from wood ives. and industrial waste
SECONDARY ST Aluminum Chloride Color Specific Conductance Copper Foaming Agents (MBAS)	Date 1 CANDARD 2024 2024 2024 2024 2024	S - Aesth μg/L mg/L Units μS/cm mg/L	20 50 11 1.60 1.60 50	ndards ² 00 N// 00 N// 5 N// 00 N// 00 N// 00 N//	Rang Avera Rang Avera Rang Avera Rang Avera Rang Avera	Reactors (FBI ND-42 ge ND ge 3.8-5.9 ge 4.8 ge NR ge ND ge 340-390 ge ND-0.010 ge ND-0.010 ge ND-140 ge ND-140 ge ND-110 ge ND-110 ge ND-110	ND-29 12.2 2.7-16 9.0 NR ND N/A	Ion Exchange Perchlorate Treatment NR ND 7.6-66 37 ND-7.5 ND 450-490 470 ND-47 ND ND-47 ND ND-33	No.	Typical Erosion o some surf Runoff/ledeposits; Naturally- Substance water; see Internal plumbing deposits; preservat Municipal discharge	Source of Contaminant of natural deposits; residual from acc water treatment processes. aching from natural seawater influence. occurring organic materials. es that form ions when in awater influence. corrosion of household systems; erosion of natural leaching from wood ives. and industrial waste s.
SECONDARY ST Aluminum Chloride Color Specific Conductance Copper Foaming Agents (MBAS) Iron	Date 1 ANDARD 2024 2024 2024 2024 2024 2024 2024	S - Aesth µg/L mg/L Units µS/cm mg/L mg/L	20 50 11 1.60 1.60 300 300 300 300 300 300 300 300 300 3	ndards ² 200 N// 200 N// 5 N// 600 N// 600 N// 600 N// 600 N// 600 N//	Rang Avera Rang Avera Rang Avera Rang Avera Rang Avera Rang Avera Rang Avera Rang Avera	Reactors (FBI IND-42 ge ND IND	ND-29 12.2 2.7-16 9.0 NR ND N/A N/A ND-0.018 N/A N/A N/A NR ND NR	Ion Exchange Perchlorate Treatment NR ND 7.6-66 37 ND-7.5 ND 450-490 470 NR ND ND-47 ND ND-47 ND ND-33 16 0.90-1.1	No.	Typical Erosion o some surf Runoff/ledeposits; Naturally- Substance water; see Internal plumbing deposits; preservat Municipal discharge Leaching to Leaching to Leaching to Leaching to the see Internal plumbing deposits; preservat	Source of Contaminant If natural deposits; residual from acc water treatment processes. In aching from natural seawater influence. In accordance of the seawater influence of the seawater influence. In accordance of the seawater influence of the seawater influence. In accordance of the seawater influence of the seawater influence. In accordance of the seawater influence of the seawater influence. In accordance of the seawater influence of the seawater influence. In accordance of the seawater influence of the seawater influence. In accordance of the seawater influence of the seawater influence. In accordance of the seawater influence of the seawater influence. In accordance of the seawater influence of the
SECONDARY ST Aluminum Chloride Color Specific Conductance Copper Foaming Agents (MBAS) Iron Manganese Methyl tert-butyl	Date 1 CANDARD 2024 2024 2024 2024 2024 2024 2024 2024	S - Aesth µg/L mg/L mg/L µg/L µg/L	20 50 11 1.60 1.60 50 50 50 50 50 50 50 50 50 50 50 50 50	ndards ² 200 N// 200 N// 5 N// 600 N// 600 N// 600 N// 600 N// 600 N//	Rang Avera Rang Avera Rang Avera Rang Avera Rang Avera Rang Avera Rang Avera Rang Avera Rang Avera Rang Avera	Reactors (FBI In I	Oliver F Roeme Filtratio Facility ND-29 12.2 2.7-16 9.0 NR ND N/A N/A ND-0.01 ND N/A N/A NP ND N/A N/A NR ND N/A NR ND N/A NR ND NR ND N/A NR ND NR ND N/A NR ND NR ND N/A	D. Ion Exchange Perchlorate Treatment NR ND 7.6-66 37 ND-7.5 ND 450-490 470 ND-47 ND ND-47 ND ND-33 16 0.90-1.1 1.0 NR	No N	Typical Erosion o some surf Runoff/le deposits; Naturally- Substance water; sea Internal plumbing deposits; preservat Municipal discharge Leaching to Leaching to discharge chemical to the sea control of	Source of Contaminant If natural deposits; residual from acc water treatment processes. In aching from natural seawater influence. In accordance of the seawater influence of the seawater influence. In accordance of the seawater influence of the seawater influence. In accordance of the seawater influence of the seawater influence. In accordance of the seawater influence of the seawater influence. In accordance of the seawater influence of the seawater influence. In accordance of the seawater influence of the seawater influence. In accordance of the seawater influence of the seawater influence. In accordance of the seawater influence of the seawater influence. In accordance of the seawater influence of the
SECONDARY ST Aluminum Chloride Color Specific Conductance Copper Foaming Agents (MBAS) Iron Manganese Methyl tert-butyl ether (MTBE)	Date 1 CANDARD 2024 2024 2024 2024 2024 2024 2024 2024 2024	S - Aesth µg/L mg/L Units µS/cm mg/L mg/L µg/L µg/L	11.0 1.60 300 50 50 50 50 30 30 30 30 30 30 30 30 30 30 30 30 30	ndards ² 200 N// 200 N// 5 N// 60 N// 00 N//	Rang Avera Rang Rang Rang Rang Rang Rang Rang Ran	Reactors (FBI In I	ND-29 12.2 2.7-16 9.0 NR ND N/A N/A N/A NR ND N/A N/A NR ND N/A NR ND N/A NR ND N/A NR ND NR NR ND NR NR ND NR NR ND NR NR NR	NR ND 7.6-66 37 ND-7.5 ND 450-490 470 ND-47 ND ND-33 16 0.90-1.1 1.0 NR ND ND-1	No N	Typical Erosion o some surf Runoff/ledeposits; Naturally- Substance water; see Internal plumbing deposits; preservat Municipal discharge the discharge chemical substance water; see Internal plumbing deposits; preservat Municipal discharge the discharge chemical substance water; see Internal plumbing deposits; preservat Municipal discharge the discharge chemical substance water wate	Source of Contaminant If natural deposits; residual from acce water treatment processes. In aching from natural seawater influence. In occurring organic materials. It is that form ions when in awater influence. It is corrosion of household systems; erosion of natural leaching from wood ives. In and industrial waste is. If from natural deposits. If if it is in the petroleum and factories. In occurring organic materials.
SECONDARY ST Aluminum Chloride Color Specific Conductance Copper Foaming Agents (MBAS) Iron Manganese Methyl tert-butyl ether (MTBE) Odor Threshold	Date 1 CANDARD 2024 2024 2024 2024 2024 2024 2024 2024 2024 2024 2024	S - Aesth µg/L Units µS/cm mg/L µg/L µg/L µg/L µg/L µg/L	11.0 1.60 300 50 50 50 50 50 50 50 50 50 50 50 50 5	ndards ² no	Ranga Avera Ranga	Reactors (FBI In I	ND-29 12.2 2.7-16 9.0 NR ND N/A N/A ND-0.01 ND N/A N/A NR ND N/A N/A NR ND N/A N/A NR ND N/A N/A NR ND N/A N/A N/A	Description of the perchlorate o	No.	Typical Erosion o some surf Runoff/le, deposits; Naturally- Substance water; see Internal plumbing deposits; preservat Municipal discharge Leaching to Leaching to discharge chemical to Naturally- Runoff/le, deposits; Punoff/le, Runoff/le, deposits; Runoff/le, Run	Source of Contaminant If natural deposits; residual from acc water treatment processes. In aching from natural seawater influence. In occurring organic materials. It is that form ions when in awater influence. It is corrosion of household systems; erosion of natural leaching from wood ives. In and industrial waste is. If it is in a contaminant in a conta

							RESULTS				
Parameter	Sample Date ¹	Units	MCL	PHG (MCLG)	Result Type	Fluidized Bed Reactors (FBR) ³	Oliver P. Roemer Filtration Facility ⁴	Ion Exchange Perchlorate Treatment ⁵	Violation Yes/No	Major Sources in	Drinking Water
OTHER PARAMETERS											
рН	2024	pH Units	No Standard	N/A	Range Average	7.2-8.1 7.7	6.9-8.1 7.4	7.7-7.8 7.8	No	Characteristic of water	•
Total Alkalinity (as CaCO3)	2024	mg/L	No Standard	N/A	Range Average	140-170 159	72-160 128	120-160 140	No	Naturally occurring.	
Calcium	2024	mg/L	No Standard	N/A	Range Average	40-66 53	N/A N/A	66 - 68 67	No	Erosion of salt depositions for the sum	
Hardness	2024	mg/L	No Standard	N/A	Range Average	130-190 162	N/A N/A	190-200 195	No	Hardness is the sum cations present in generally magnesium The cations are usu occurring.	the water, and calcium.
Magnesium	2024	mg/L	No Standard	N/A	Range Average	6.2-8.5 7.5	N/A N/A	6.8-6.9 6.8	No	Erosion of salt deposition	ts in soil and
Sodium	2024	mg/L	No Standard	N/A	Range Average	10-12 11	N/A N/A	NR 15	No	Sodium refers to the the water and is gene occurring.	
Parameter	Sample Date ¹	Units	Notificati Level	on PH (MC			Oliver P. Roemer Filtration Facility ⁴	Ion Exchange Perchlorate Treatment ⁵	Violation Yes/No	Major Sources in Drinking Water	Health Effects
PFAS	PFAS										
Perfluorobutane sulfonic acid [PFBS] ^s	2024	ng/L	500	N/	Ran A Avera		N/A N/A	ND-4.0 1.0	No	Industrial facilities, landfills, treatment plants, stain-resistant carpeting, nonstick cookware, grease and waterproof food packaging, fabric softeners, waterproof clothing, cosmetics.	Perfluorobutane sulfonic acid exposures resulted in decreased thyroid hormone in pregnant female mice.
Perfluorohexane Sulfonic Acid [PFHxS]⁵	2024	ng/L	3.0	N/	A Ran A Avera		N/A N/A	ND-3.1 0.87	No	Industrial facilities, landfills, treatment plants, stain-resistant carpeting, nonstick cookware, grease and waterproof food packaging, fabric softeners, waterproof clothing, cosmetics.	Perfluorohexane sulfonic acid exposures resulted in decreased total thyroid hormone in male rats.
Perfluorooctanoic Acid [PFOA]	2024	ng/L	5.1	0.0	07 Ran Avera	-	N/A N/A	ND-5.3 1.5	No	Industrial facilities, landfills, treatment plants, stain-resistant carpeting, nonstick cookware, grease and waterproof food packaging, fabric softeners, waterproof clothing, cosmetics.	Perfluorooctanoic acid exposures resulted in increased liver weight and cancer in laboratory animals.
Perfluorooctanes- ulfonic Acid [PFOS]	2024	ng/L	6.5	1.0) Ran Avera		N/A N/A	ND-8.3 2.3	No	Industrial facilities, landfills, treatment plants, stain-resistant carpeting, nonstick cookware, grease and waterproof food packaging, fabric softeners, waterproof clothing, cosmetics.	Perfluorooctanesul- fonic acid exposures resulted in immune suppression and cancer in laboratory animals.

^{1.} The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. For sample points that were monitored during the current reporting year, the current reporting year data was used. If a sampling point did not have monitoring data for the reporting year, the most current data was used. Contaminant results are based on the most current data for each sampling point.

- 2. Compliance with secondary standards are based on a annual average. Values above the MCL are acceptable, as long as the average is below the MCL.
- 3. FBR includes Plant Effluent, Rialto Well 6 and WVWD Well 11.
- $4. \ Roemer includes \ Plant \ Effluent, Combined \ Filter \ Effluent, State \ Project \ Water, \ Lytle \ Creek \ and \ Zone \ 5-3 \ Reservoir.$
- 5. Ion Exchange includes Well 41 and Well 42 raw and treated water.
- 6. Results are from the distribution system.

AL - Regulatory Action Level; LRAA - Locational Running Annual Average; MCL - Maximum Contaminant Level; MCLG - Maximum Contaminant Level Goal; MRDL - Maximum Residual Disinfectant Level Goal; ND - Non-Detected; NL - Notification Level; NR - No Range; N/A - Not Applicable; NTU - Nephelometric Turbidity Units; PHG - Public Health Goal; RAA - Running Annual Average; TON - Threshold Odor Number

Educational Information

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (U.S. EPA) and the State Water Resources Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants and Their Presence in Drinking Water

- Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants that can be naturally-occurring or be the result of oil and gas production and mining activities.

Contaminants and Their Presence in Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

People Most Vulnerable to Contaminants

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised people such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, persons with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Contaminant Information

Nitrate in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity.

While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects, such as skin damage and circulatory problems.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. West Valley Water District is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/lead.

OUR COMMITMENT TO COMMUNITY

Earth Day 2025

WVWD welcomed our community's youngest water stewards to get a behind-the-scenes look at all things water! Our team of water pros taught them about a range of topics from how the District treats and deliver water to their homes to learning about the water cycle and taking care of drought-tolerant plants.

Tours and Field Trips

Through field trips and tours, students and community members gain valuable insights into the inner workings of water treatment facilities, understanding the processes involved in providing clean and safe water. The tours not only offer a behind-the-scenes look at the District's operations but also serve as practical means to educate students about the importance of water conservation.

SoCal STEAM Challenge

Formerly known as Inland Solar Challenge, SoCal STEAM is dedicated to cultivating a sustainable future by empowering the next generation of sustainability leaders in Southern California. Its mission is to provide students with comprehensive information and resources, igniting their passion for careers in STEAM fields.

Community Engagement

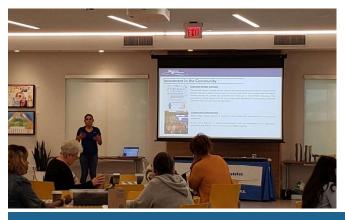
West Valley Water District (WVWD) actively participates in local events to engage directly with the community and support its outreach efforts. These events provide opportunities to share water-saving devices, educational materials, and important information, while promoting awareness about the value of responsible water use.

OUR COMMITMENT TO THE FUTURE

Oliver P. Roemer Expansion and Upgrade Project

West Valley Water District (WVWD) is upgrading their surface water treatment plant and expanding treatment capacity at the Oliver P. Roemer Water Filtration Facility (Roemer WFF). WVWD is expanding the Roemer facility to treat an additional 7.2 million gallons per day of California State Water Project (SWP) water. With this expansion, WVWD is seeking to implement a conjunctive use strategy which is critical for the long-term sustainable water management for the region.

Bloomington Alleyway Main Replacement Project



The Bloomington Alleyway Main Replacement Project will replace waterlines within the community of Bloomington that were constructed many years ago within the alleyways behind homes. Over the course of many decades, fences, buildings, and other structures have been constructed within the alleyways limiting the ability to read meters, locate shut off valves and perform regular and emergency maintenance.

New waterlines constructed within street right of way will improve fire flow and emergency response capabilities and provide a more dependable and reliable water service.

Community Resources

West Valley Water District is proud to offer our customers free resources that promote water conservation in our community!

Hands-on and Technical Workshops

Community members are encouraged to join us for our Spring and Fall workshops. Topics include how to care for drought-tolerant plants, turf conversion and much more!

Water Conservation Kit

Get the tools to help reduce at-home water usage! This **FREE** water conservation kit provides tools and devices that can improve water efficiency



Residential and Commercial Rebates Available

Upgrade to water-efficient appliances and landscape devices to reduce water use, lower bills, and support long-term sustainability.

For the Kids!

Be a Leak Detective!

Some leaks are harder to find than others. They can be sneaky and silent. Here is an experiment to help you track them down.

Check for toilet leaks

For this activity you will need:

- Food coloring or dye tablets
- A clock or watch
- A helpful grown-up
- A toilet

Instructions

- 1. Remove the lid off the toilet tank. (Ask an adult for help-the lid can be heavy and hard to move.)
- 2. Add a few drops of food coloring or a dye tablet into the tank. Do not flush the toilet.
- 3. Wait 10 minutes. If color appears in the toilet bowl without flushing, it has a leak.
- 4. Flush the toilet immediately after the experiment ends to avoid staining inside of the tank.

TAKE THE WATER SAVER PLEDGE!

WITH CREEK AND HALLE!

I pledge to conserve water every day, use it wisely, not waste it away. I will save every drop I can, every day of the week, Here is my plan!

I promise to:

If you have any questions about this report, please contact our Water Quality Department at 909-875-1804. Thank you!

OFFICE HOURS

Monday 8:00 am - 5:30 pm Tuesday 9:00 am - 5:30 pm Wednesday 8:00 am - 5:30 pm Thursday 8:00 am - 5:30 pm Friday 8:00 am - 5:30 pm

CUSTOMER SERVICE

(909) 875-1804, option 3 customerservice@wvwd.org

EMERGENCY SERVICES:

(909) 875-1804, option 7

