Water System Name:

2019 Consumer Confidence Report

CalPortland Company-Oro Grande

v				
1 ,	_	1		
undwater)				
Loomis well primarily. Jacobs and Horton are use as needed. All wells are loc in the Mojave aquifer near Oro Grande.				
GeoMonitor Inc. 17152 D	arwin Ave	Hesperia CA 92345		
		1100001111, 011 725 15		
eetings for public participation:	N/A			
mett	Phone:	760-26-1135		
1	nber 31, 2019 and may include earned and water) mis well primarily. Jacobs and Hone Mojave aquifer near Oro Grand GeoMonitor Inc., 17152 Detectings for public participation:	mis well primarily. Jacobs and Horton are use the Mojave aquifer near Oro Grande. GeoMonitor Inc., 17152 Darwin Ave, the setings for public participation: N/A		

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).

Public Health Goal (PHG): The level of a contaminant in water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the water. Contaminants with SDWSs do not affect the health at the MCL levels.

Report Date:

6/22/2020

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (μ g/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

• *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of
 industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff,
 agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, and 6 list all of the water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1 – SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA								
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria			
Total Coliform Bacteria (state Total Coliform Rule)	(In a month)	2	1 positive monthly well sample ^(a) Tested negative within 24 hours each time	0	Naturally present in the environment			
Fecal Coliform or <i>E. coli</i> (state Total Coliform Rule)	(In the year)	0	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive	0	Human and animal fecal waste			
E. coli (federal Revised Total Coliform Rule)	(In the year)	0	(b)	0	Human and animal fecal waste			

⁽a) Two or more positive monthly samples is a violation of the MCL

⁽b) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

TABLE 2 -	TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER								
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	PHG	No. of Schools Requesting Lead Sampling	Typical Source of Contaminant	
Lead (ppb)	8/13/ 2015	5	0.0145	0	15	0.2	0	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits	
Copper (ppm)	8/13/ 2015	5	0.099	0	1.3	0.3	Not applicable	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives	

TABLE 3 – SAMPLING RESULTS FOR SODIUM AND HARDNESS						
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	11/20/2007	120		None		Salt present in the water and is generally naturally occurring

Hardness (ppm)	11/20/2007	490		None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring
TABLE 4	- DETECT	ION OF CONTA	AMINANTS WI	TH A PRIM	MARY WAT	ER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Gross Alpha (pCi/L)	08/02/19	4.7	4.1-5.6	15	None	Erosion of natural deposits
Arsenic (ppb)	10/28/2016	2.4	2.4	10		Erosion of natural deposits; runoff from orchards, runoff from glass and electronics production wastes
Barium (ppb)	10/28/2016	54	54	100		Discharge of oil drilling wastes and from metal refineries; erosion of natural deposits.
Fluoride (ppm)	10/28/2016	.5	.5	2	1	Erosion of natural deposits; water additive; discharge from fertilizer and alumni factories
TABLE 5 –	DETECTION	ON OF CONTAI	MINANTS WIT	H A SECO	NDARY WA	TER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant
Color (units)	11/21/2007	3	-	15	N/A	Naturally occurring organic materials
Iron (ppb)	7/27/2010	840		300		Leaching from natural deposits; industrial wastes
Turbidity (NTUs)	7/27/2010	3.5		5	N/A	Soil runoff
Total Dissolved Solids TDS (ppm)	7/27/2010	370		1000	N/A	Runoff/leaching from natural deposits
	8/11/2009	57		500	N/A	Runoff/leaching from natural deposits; seawater influence
Chloride (ppm)						
Chloride (ppm) Sulfate (mg/L)	7/27/2010	58		500	N/A	Runoff/leaching from natural deposits; industrial wastes
41 ,		58 6 – DETECTIO	N OF UNREGU			deposits; industrial wastes
41 ,			N OF UNREGU Range of Detections	LATED CC		deposits; industrial wastes

Additional General Information on Water

Water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in water is primarily from materials and components associated with service lines and home plumbing. *CalPortland Company* is responsible for providing high water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT								
Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language				
1-TTHM (Trihalomethane)	MCL 80 mcgs/L CPC 89.3 and 100.8 mcgs/L. Chlorine is used to kill bacteria. Too much chlorine breaks down into TTHM. A chlorine pump was malfunctioning in both cases, pumping too much chlorine into the water.	2 testing periods	Fixed the chlorine pump	High doses result in adverse effects on the central nervous system, liver, kidneys and heart				

For Water Systems Providing Groundwater as a Source of Water

TABLE 7 – SAMPLING RESULTS SHOWING FECAL INDICATOR-POSITIVE GROUNDWATER SOURCE SAMPLES							
Microbiological Contaminants (complete if fecal-indicator detected)	Total No. of Detections	Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant		
E. coli	(In the year)		0	(0)	Human and animal fecal waste		
Enterococci	(In the year)		TT	N/A	Human and animal fecal waste		
Coliphage	(In the year)		TT	N/A	Human and animal fecal waste		

VIOLATION OF GROUNDWATER TT								
TT Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language				