2018 Consumer Confidence Report

Water System Name: West End Mutual Water Company, Inc. Report Date: March 11, 2019

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2018 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse West End Mutual Water Company a (760) 220-9362 para asistirlo en español.

Type of water source(s) in use: Two deep water wells

Name & general location of source(s): East Well and West Well near Willow Wells Road, Tract #5665,

Parcel 451-092-03

Drinking Water Source Assessment information: Contact the County Dept. of Health Services for info.

Time and place of regularly scheduled board meetings for public participation: Watch at notice board on Willow

Wells/well road or request to be

notified

For more information, contact: Phone: (760) 220-9362 Cindy Sacks

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (µg/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides*, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1 – SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA							
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria		
Total Coliform Bacteria (state Total Coliform Rule)	2	1 *	1 positive monthly sample	0	Naturally present in the environment		
Fecal Coliform or <i>E. coli</i> (state Total Coliform Rule)	0		A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive		Human and animal fecal waste		
E. coli (federal Revised Total Coliform Rule)	0		(a)	0	Human and animal fecal waste		

(a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER								
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	PHG	No. of Schools Requesting Lead Sampling	Typical Source of Contaminant
Lead (ppb)	Sept 2017	5	ND	None	15	0.2		Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	Sept 2017	5	0.098	None	1.3	0.3	Not applicable	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

	TABLE 3	- SAMPLING I	RESULTS FOR	SODIUM A	AND HARD	NESS		
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant		
Sodium (ppm)	Jun 2017	38		None	None	Salt present in the water and is generally naturally occurring		
Hardness (ppm)	Jun 2017	170		None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring		
TABLE 4 – DET	TECTION O	F CONTAMINA	ANTS WITH A	PRIMARY	DRINKING	WATER STANDARD		
					PHG			
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	(MCLG) [MRDLG]	Typical Source of Contaminant		
Fluoride (ppm)	Jun 2017	0.32		2.0	1.0	Water additive which promotes		
, , , , , , , , , , , , , , , , , , ,						strong teeth; erosion of natural deposits; discharge		
						from fertilizer and aluminum		
						factories		
Nitrate (ppm)	Jan 2018	1.1	1.1-1.2	10	10	Runoff from fertilizer use;		
As NO3-N						leaching from septic tanks, sewage; erosion of natural		
						deposits		
Hexavalent chromium	Jun 2017	9.1		See Hex	0.02	Runoff/leaching from natural		
(ppb)				Chrome		deposits		
Uranium (pCi/L)	Jun 2017	1.3		20	0.43	Erosion of natural deposits		
TABLE 5 – DETE	ECTION OF	CONTAMINA	NTS WITH A <u>S</u>	ECONDAR	Y DRINKIN	IG WATER STANDARD		
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant		
Chloride (ppm)	Jun 2017	22		500	none			
Copper (ppm)	Jun 2017	ND		1.0		Internal corrosion of household		
					0.3	plumbing systems; erosion of natural deposits; leaching from wood preservatives		
Iron (ppb)	Jun 2017	ND		300	none	Leaching from natural deposits; industrial wastes		
Odor (Threshold odor number)	Jun 2017	4 *		3	none	Naturally-occurring organic materials		
Specific Conductance (E.C) (µS/cm)	Jun 2017	470		1,600	none	Substances that form ions when in water; seawater influence		
pH Std. Units	Jun 2017	7.5		6.5-8.5	none			
Sulfate (ppm)	Jun 2017	99		500	none	Runoff/leaching from natural deposits; industrial wastes		
Total Dissolved Solids (ppm)	Jun 2017	290		1,000	none	Runoff/leaching from natural deposits		
TABLE 6 – DETECTION OF UNREGULATED CONTAMINANTS								
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level		Health Effects Language		
Vanadium (ppb)	Jun 2017	26		50		The babies of some pregnant women who drink water		

		containing vanadium in excess of the notification level may have an increased risk of developmental effects, based
		on studies in laboratory
		animals.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. West End Mutual Water Company is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT								
Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language				
Threshold odor	Had a value above MCL in June 2017. No idea why. No customer complaints.	Unknown, just one test in June 2017	Doing additional tests each quarter, as required	Odor is an aesthetic quality. Water is hard to drink if it smells.				
Gross alpha sampling not done on East Well	Sampling done in 2017 only done on West Well. We are not allowed to alternate well testing any more	June 2017- February 2019	Sampling on East Well in February 2019 with no gross alpha activity detected	See below				
Total Coliform MCL	See below	July 17-25, 2018	Chlorinated system and added gaskets to tank top hatches	See below				

Total Coliform MCL: Our water system failed the drinking water standard for total coliform during July 2018 due to insufficiently sealed hatches on the tank tops. We improved the seal with gaskets. Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other potentially-harmful bacteria may be present. Coliforms were found in more samples than allowed and this was a warning of potential problems.

Gross alpha sampling failure: Our system only tested the West Well in 2017 for the radionucleotides gross alpha. We have been alternating wells for these tests which occur every 9 years. The test was done in February 2019 with none detected. Certain minerals are radioactive and may emit a form of radiation known as alpha radiation. Some people who drink water containing alpha emitters in excess of the MCL over many years may have an increased risk of getting cancer.

For Water Systems Providing Groundwater as a Source of Drinking Water

Summary Information for Fecal Indicator-Positive Groundwater Source Samples, Uncorrected Significant Deficiencies, or Groundwater TT

	SPECIAL NOTICE FOR	UNCORRECTED SIG	GNIFICANT DEFICIENCIES	
Vents (5) on top of tar	nks did not have proper sc	reening. 24 mesh scre	eens were added in January 20	19
		•	se will be corrected during our	
	are not scheduled at this ti			
	VIOI A	TION OF GROUNDY	X/A TED TT	
	VIOLA	TION OF GROUND		
TT Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language
			the violation	Language
Coliforms are bacteria harmful, waterborne pathe drinking water distreatment or distributionany problems that were	that are naturally present of thogens may be present of thogens may be present of thogens when the present of t	in the environment or that a potential path and coliforms indicati are required to condu- tements.	and are used as an indicator hway exists through which conng the need to look for potentiat assessment(s) to identify processor.	that other, potentially ntamination may enter tial problems in water roblems and to correct
	re were required to condu- ired to take one corrective		sment. One Level 1 assessme leted this action.	ent was completed. In
During the past year no	Level 2 assessments were	e required to be comp	bleted for our water system.	