County Service Area 42 2021 Consumer Confidence Report General District Information #### **CSA 42** Is routinely monitored for constituents in the District's drinking water according to Federal and State laws. The tables show the results of the District's monitoring for the period of January 1st through December 31st, 2021. # Questions about this report or concerning the water system? Contact: Steve Samaras *Division Manager* (760) 955-9885 or (800) 554-0565 #### **Office Hours:** Monday through Friday 8:00 a.m. – 4:00 p.m. Closed on Holidays **Trevor Leja**Assistant Director "We are committed to providing safe and dependable drinking water each and every day. Our team strives for exceptional water quality, reliable infrastructure, and top-notch customer service." **Steve Samaras** *Division Manager* "I would like to remind our customers to continue your conservation efforts during this ongoing drought. Your conservation efforts make a positive difference and are appreciated." County Service Area 42 (CSA 42) was established by the County of San Bernardino Board of Supervisors on December 27, 1965, and is a Board-governed water district within the Department of Public Works, Special Districts Water and Sanitation Division (Department), that provides water services to a community of approximately 533 customers in Oro Grande. The water system consists of four ground water wells—three of which are active, one 246,000 gallon water tank, and approximately four miles of water line. There are 144 metered water connections utilizing the cellular read system. Management and staff of CSA 42 work as a team to ensure that the highest quality water is provided to our customers. A diligent regimen of testing and analysis for bacteriological, chemical, and radiological contaminants, along with physical qualities of the water is conducted throughout the year to ensure the highest water quality. It is important to keep customers informed about the quality of water delivered over the past year. This year's annual Consumer Confidence Report (CCR), contains information about the contaminants detected in 2021 and previous years. The Department's responsibility is to provide a safe and dependable supply of drinking water. In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board, (State Board), prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health. Additional information on bottled water is available on the California Department of Public Health website at https://www.cdph.ca.gov/Programs/CEH/DFDCS/Pages/FDBPrograms/FoodSafetyProgram/Water.aspx. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at 1-800-426-4791 or visit their website at https://www.epa.gov/dwstandardsregulations/drinking-water-contaminant-human-health-effects-information. This document is not a substitute for regulations; nor is it a regulation itself. Thus, it does not impose legally-binding requirements on the State Board or the Department, and may not apply to a particular situation based upon any member of the public. This CCR reflects changes in drinking water regulatory requirements during 2021. All water systems are required to comply with the state Total Coliform Rule. Beginning April 1, 2016, all water systems are also required to comply with the federal Revised Total Coliform Rule. The new federal rule maintains the purpose to protect public health by ensuring the integrity of the drinking water distribution system and monitoring for the presence of microbials (i.e., total coliform and E. coli bacteria). The USEPA anticipates greater public health protection as the new rule requires water systems that are vulnerable to microbial contamination to identify and fix problems. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment to determine if any sanitary defects exist. If found, these must be corrected by the water system. ### **iMUY IMPORTANTE!** Este informe contiene información muy importante sobre su agua beber. Tradúzcalo ó hable con alguien que lo entienda bien. ### WATER SOURCES Wells 1, 2 and 3: Ground Water; located in the Alto Subarea ### **SOURCE WATER PROTECTION TIPS** Protection of drinking water is everyone's responsibility. You can help protect your community's drinking water source in several ways: - Eliminate excess use of lawn and garden fertilizers and pesticides they contain hazardous chemicals that can leach into your drinking water source. - Prevent septic system leaching to source water. - Dispose of chemicals properly; take used motor oil to a recycling ### WATER CONSERVATION TIPS Did you know that the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? Luckily, there are many low-cost and no-cost ways to conserve water. Small changes can make a big difference—try one today and soon it will become second nature. - Take short showers—a 5 minute shower uses 10 to 25 gallons of water compared to up to 50 gallons for a bath. - Shut off water while brushing your teeth, washing your hair and shaving to save up to 500 gallons a month. - Use a water-efficient showerhead. They are inexpensive, easy to install, and can save you up to 740 gallons a month. - Fix leaking toilets and faucets. - Teach your kids about water conservation to ensure a future generation that uses water wisely. ### The subsequent tables provide many terms and abbreviations that customers may not be familiar with. To understand these terms, the district has provided the following definitions and general information: 1, 2, 3-trichloropropane (1,2,3-TCP) had a notification level (NL) of 5 ppt until December 14, 2017, when the MCL of 5 ppt became effective. Hexavalent Chromium there is currently no MCL for hexavalent chromium. The previous MCL of 0.010 ma/L was withdrawn on September Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming. **Maximum Contaminant Level** (MCL) The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and techno-logically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. **Maximum Contaminant Level** Goal (MCLG) The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency. **Maximum Residual Disinfectant** Level (MRDL) The level of a disinfectant added for water treatment that may not be exceeded at the customer's tap. Maximum Residual Disinfectant Organic chemical contaminants, Level Goal (MRDLG) The level of a disinfectant added for water treatment below which there is no known or expected health risk. MRDLGs are set by the U.S. Environmental Protection Agency. MG Million gallons Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. Million Fibers per Liter (MFL) million fibers per liter is a measure of the presence of asbestos fibers that are longer than 10 micrometers Millirems per year (mrem/yr) measure of radiation absorbed by the body. Nephelometric Turbidity Unit (NTU) nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average Non-Detect (ND) laboratory analysis indicates that the constituent is not present or not tested. including synthetic and volatile organic chemicals, that are byproduct of industrial processes and petroleum production, and can also come from gas stations, urban stormwater run-off, agricultural Parts per billion (ppb) one part per billion corresponds to one minute in 2,000 years. application, and septic systems. Parts per million (ppm) one part per million corresponds to one minute in two years or a single penny in \$10,000. Parts per quadrillion (ppq) one part per quadrillion corresponds to one minute in 2,000,000,000 years. Parts per trillion (ppt) one part per trillion corresponds to one minute in 2,000,000 years. Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. Picocuries per liter (pCi/L) Picocuries per liter is a measure of the radioactivity in water. Primary Drinkina Water Standard (PDWS) MCLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. ### Public Health Goal (PHG) The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. ### Regulatory Action Level (AL) The concentrations of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. UCMR4 Statement Additional Unregulated Pollutants were added to the UCMR4 monitoring list. Sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water are included on the following pages: | | | | | County | of San Ber | nardino | – CSA | 42 | | | | | |--|-------------------|-----------|---------|----------------------|---|-----------------------------|---|------|--|---|------|------------------------------| | Microbiological
Contaminants | Highes
of Dete | | | f Months
iolation | ٨ | ICL | | MCLG | Sample
Year | Typical Source of Bacteria | | | | Total Coliform
(State Total Coliform Rule) | 0 | | | 0 | 1 positive monthly sample | | | 0 | 2021 | Naturally present in the environment | | | | Fecal Coliform or <i>E. Coli</i>
(State Total Coliform Rule) | 0 | | | 0 | repeat sampl 0 liform positiv these is also f | | A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or E. coli positive | | of | - | 2021 | Human and animal fecal waste | | E. Coli
(Federal Revised Total
Coliform Rule) | 0 | | 0 (a) 0 | | (a) | | | 2021 | Human and animal fecal waste | | | | | (a) Routine and repeat sam positive routine sample | | | | | | | | | | repeat samples following E. coli- | | | | Lead and Copper | Units | Act
Le | | PHG | 90th
Percentile | | | | Sample
Year | Likely Source of Contaminiation | | | | Lead (Pb) | ppb | 1 | 5 | 0.2 | ND | 5 samples,
0 exceeded AL | | 2021 | Internal corrosion of household
water plumbing systems;
discharges from industrial
manufacturers; erosion of natura
deposits | | | | | Copper (Cu) | ppm | 1. | .3 | 0.3 | 0.74 | 5 samples,
0 exceeded AL | | 2021 | Internal corrosion of household
plumbing systems; erosion of
natural deposits; leaching from
wood preservatives | | | | | | | | | Ra | dioactive C | ontamin | ants | | | | | | | Contaminant | Prima | ry MCL | | PHG
(MCLG) | Range of
Detections | Average
Level | MC
Violat | | Sample
Year | Likely Source of Contamination | | | | Gross Alpha | 15 p | oCi/L | | 0.00 | ND - 4.1 | 2.5 | NC | | 2021 | Erosion of natural deposits | | | | | | | | Prima | ry Inorgan | ic Contar | ninan | its | | | | | | Contaminant | Prima | ry MCL | | PHG
(MCLG) | Range of Detections | Average
Level | MC
Violat | | Sample
Year | Likely Source of Contamination | | | | Nitrate as N
(NO3-N) | 10 բ | opm | | 10 | ND | ND | NC |) | 2021 | Runoff and leaching from
fertilizer use; leaching from sept
tanks and sewage; erosion of
natural deposits | | | | Fluoride
(F) | 2.0 | ppm | | 1 | 0.54-0.61 | 0.57 | NC |) | 2021 | Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories | | | | | | | | | | | | | | Leaching from natural deposit | | | | Contaminant | Primary MCL | (MCLG) | Detections | Level Level | MCL
Violation | Sample
Year | Likely Source of Contamination | | | |-------------------------|---|--------|------------|-------------|------------------|----------------|--|--|--| | Nitrate as N
(NO3-N) | 10 ppm | 10 | ND | ND | NO | 2021 | Runoff and leaching from
fertilizer use; leaching from septic
tanks and sewage; erosion of
natural deposits | | | | Fluoride
(F) | 2.0 ppm | 1 | 0.54-0.61 | 0.57 | NO | 2021 | Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories | | | | Arsenic | 10 ppb | 0.004 | 2-2.4 | 2.13 | NO | 2021 | Leaching from natural deposits
Erosion of natural deposits; runoff
from orchards; glass and
electronics production wastes | | | | | Disinfectant Punyadusts and Chamical Disinfectant | | | | | | | | | | Disintectant Byproducts and Chemical Disintectant | | | | | | | | | | |---|-------------------|------------|---------------------|------------------|------------------|----------------|---|--|--| | Contaminant | Primary MCL | PHG (MCLG) | Range of Detections | Average
Level | MCL
Violation | Sample
Year | Likely Source of Contamination | | | | CI Res Total
(Field) | MRDL = 4.0
ppm | MRDLG = 4 | 0.26-1.89 | 0.90 | NO | 2021 | Drinking water disinfectant added for treatment | | | | Total Trihalomethanes* (TTHM) | 80 ppb | 0 | ND-101 | 57.4 | NO | 2021 | Byproduct of drinking water chlorination | | | | Total Haloacetic Acids
(HAA5) | 60 ppb | N/A | 10.9-28 | 19 | NO | 2021 | Byproduct of drinking water disinfection | | | ## SECONDARY STANDARDS | Contaminant | MCL | PHG
(MCLG) | Range of
Detections | Average
Level | MCL
Violation | Sample
Year | Likely Source of Contamination | |-----------------------------|---------------|---------------|------------------------|------------------|------------------|----------------|---| | Odor Threshold | 3 TON | N/A | 1 | 1 | NO | 2021 | Naturally occurring organic materials | | Turbidity | 5 NTU | N/A | 0.1-4 | 0.98 | NO | 2021 | Soil runoff | | Chloride (CI) | 500 mg/L | N/A | 64-65 | 64.33 | NO | 2021 | Runoff/leaching from natural deposits; seawater influence | | Specific Conductance (E.C.) | 1600 umhos/cm | N/A | 720-740 | 730 | NO | 2021 | Substances that form ions when in water; seawater influence | | Total Dissolved Solids/TDS | 1000 ppm | N/A | 150-470 | 350 | NO | 2021 | Runoff/leaching from natural deposits | | Iron | 300 ug/L | N/A | 360-450 | 405 | YES | 2021 | Leaching from natural deposits | | Mangansese | 50 ug/L | N/A | ND-28 | 18.33 | NO | 2021 | Leaching from natural deposits | ### **ADDITIONAL CONSTITUENTS** | ADDITIONAL CONSTITUENTS | | | | | | | | | | | |--|---------|---------------|------------------------|------------------|------------------|----------------|-------------------------------------|--|--|--| | Contaminant | MCL | PHG
(MCLG) | Range of
Detections | Average
Level | MCL
Violation | Sample
Year | Likely Source of Contamina-
tion | | | | | Aggressive Index | N/A | N/A | 12.4-12.5 | 12.5 | N/A | 2021 | N/A | | | | | pH (Lab) | N/A | N/A | 7.7-7.8 | 7.7 | N/A | 2021 | N/A | | | | | Alkalinity, Total (as CaCO3)
(mg/L) | N/A | N/A | 260-280 | 270 | N/A | 2021 | N/A | | | | | Bicarbonate (HCO3)
(mg/L) | N/A | N/A | 320-340 | 330 | N/A | 2021 | N/A | | | | | Hardness, Total
(as CaCO3)(mg/L) | N/A | N/A | 230-240 | 233.3 | N/A | 2021 | N/A | | | | | Total Anions
(meq/L) | N/A | N/A | 7.7-7.9 | 7.83 | N/A | 2021 | N/A | | | | | Calcium (Ca)
(mg/L) | N/A | N/A | 71-75 | 72.7 | N/A | 2021 | N/A | | | | | Magnesium (Mg)
(mg/L) | N/A | N/A | 13-14 | 13.3 | N/A | 2021 | N/A | | | | | Potassium (K)
(mg/L) | N/A | N/A | 7-8.5 | 7.8 | N/A | 2021 | N/A | | | | | Sodium (Na)
(mg/L) | N/A | N/A | 85-91 | 88.7 | N/A | 2021 | N/A | | | | | Sulfate (SO4)
(mg/L) | 500 ppm | N/A | 23-32 | 26.7 | NO | 2021 | N/A | | | | | Boron (B)
(mg/L) | 1 ppm | N/A | 200-250 | 233.3 | NO | 2021 | N/A | | | | | Zinc (Zn)
(mg/L) | 5 ppm | N/A | ND | ND | NO | 2021 | N/A | | | | | Synthetic Organic Contaminants including Pesticides and Herbicides | | | | | | | | | |--|----------------|---------------------------|--------------|--------------|------------------|--|--|--| | Contaminants
(CCR units) | Sample
Date | Average
Level
(PPM) | MCL
(PPM) | PHG
(PPB) | MCL
Violation | Health Effects
Language | Major Source in Drinking Water | | | 1,2,3 -
Trichloropropane | 2021 | ND | 0.000005 | 0.0007 | NO | Some people who drink water containing 1,2,3 trichloropropane in excess of the MCL over many years may have an increased risk of getting cancer. | Discharge from industrial and agricultural chemicals factories; leaching from hazardous waste site; used as cleaning and maintenance solvent, paint and varnish remover, and cleaning and degreasing agent; byproduct during the production of other compounds and pesticides. | | ### **DETECTION OF UNREGULATED CONSTITUENTS** | Chemical or Constituent | Sample | Average | Range of | Notification | Health Effects Language | |-------------------------|--------|---------|------------|--------------|--| | (CCR Units) | Date | Level | Detections | Level | | | Vanadium (ppb) | 2021 | 3.3 | ND-6.1 | 15 | The babies of some pregnant women who drink water containing vanadium in excess of the notification level may have an increased risk of developmental effects, based on studies in laboratory animals. | ### **SHOULD CUSTOMERS BE CONCERNED?** Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe drinking water hotline at 1-800-426-4791. Secondary Standards: There are no PHGs, MCLGs, or mandatory standard health effects language for these constituents because secondary MCLs are set on the basis of aesthetics. Some people who drink water containing fluoride in excess of the federal MCL of 4mg/L over many years may get bone disease, including pain and tenderness of the bones. Children who drink water containing fluoride in excess of the State MCL of 2 mg/L may get mottled teeth. *Total Trihalomethanes: In September of 2021, CSA 42 exceeded the MCL for Total Trihalomethanes (TTHM). TTHM compliance is based on the Running Annual Average (RAA) and CSA 42's RAA exceeded the MCL. The Department has made operational changes to reduce the TTHM levels. Per the County Environmental Health Services Division, CSA 42 is now monitoring for TTHMs on a quarterly basis to ensure that TTHMs remain below the MCL. TTHMs are a byproduct of drinking water disinfection. Some people who drink water containing TTHMs in excess of the MCL over many years may experience liver, kidney or central nervous system problems, and may have an increased risk of getting cancer. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Department is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at https://www.epa.gov/ground-water-and-drinking-water/basic-information-about-lead-drinking-water. Infants below the age of six months who drink water containing nitrate in excess of the MCL may quickly become seriously ill and, if untreated, may die because high nitrate levels can interfere with the capacity of the infant's blood to carry oxygen. Symptoms include shortness of breath and blueness of the skin. High nitrate levels may also affect the oxygen-carrying ability of the blood of pregnant women. Iron MCL Violation: "Iron was found at levels that exceed the secondary MCL of 300 μ g/L. The iron MCL was set to protect you against unpleasant aesthetic effects (e.g., color, taste, and odor) and the staining of plumbing fixtures (e.g., tubs and sinks) and clothing while washing. The high iron levels are due to leaching of natural deposits. Well #3 that has elevated iron levels has been disconnected from the water distribution system.