City of Galt 2019 Annual Drinking Water Consumer Confidence Report

THIS REPORT CONTAINS IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER Please take a few minutes to read your annual water quality report. From the information inside, you will learn: • Sources of your drinking water

- What is in the water you drink
- Water quality test results
- Common water-related concerns Water conservation tips

Este informe contiene información muy importante sobre el agua potable (para tomar). Por favor, tradúzcalo o hable con alguien que selo pueda leer.

If you have any questions regarding this report or concerning your water quality, please contact the Public Works Utilities Division at (209) 366-7260. The Utilities Division is working daily to improve the water quality and efficiency of our system for the citizens of Galt. Supplying sufficient, safe drinking water is our foremost concern.

CITY OF GALT 2019 ANNUAL DRINKING WATER CONSUMER CONFIDENCE REPORT

This Report, prepared May 2020, is designed to inform you about the quality of water the City delivers to you every day. The City's mission is to provide you with a safe and dependable supply of drinking water and we want you to understand our ongoing efforts to improve the water treatment process and protect our water resources. The City is committed to ensuring the quality of your water and maintaining excellent customer service.

Este informe, preparado en mayo de 2020, es un resumen de la calidad del agua potable que proveímos el año pasado. Este informe muestra que el agua es segura y que reúne los requisitos estatales como agua saludable. El estado requiere que hagamos

pruebas regularmente para asegurarnos de la calidad del agua potable. Nosotros estamos comprometidos a proveerle información para tener al cliente informado ya que él es nuestro mejor aliado. Si desea hablar con alguien en español sobre este reporte, comuníquese con El Condado (South County Services) al (209) 745-9174.

Where does the City of Galt get its water?

The City of Galt supplies water through the operation of six active wells throughout the City. These wells draw water from the Sacramento Valley groundwater basin. The water is treated to remove iron and manganese to improve taste and reduce odor. Some wells are also treated to remove arsenic, a naturally occurring contaminant. In addition, low levels of chlorine are added as a disinfectant.

The City's water system is a closed system with all wells contributing to the water delivered throughout the City. The water distribution system is a loop system and any of the wells can contribute to the supply of water as needed. In total, the wells pumped 1,390 million gallons of water in 2019.

Public comment about the water system and contributions to the decisions about the system can be made at the City of Galt Council meetings the first and third Tuesday of the month. Source water assessments were done for these locations in 2003, There have been no contaminants detected in the water supply, however the source is still considered vulnerable to activities located near the drinking water source We will be updating the source water assessments in 2021. More information, including individual well data, may be obtained by contacting Jose Avila, Water System Supervisor of the City's Public Works Utilities Division, at (209) 366-7260.

Summary of Testing Results

The City tests its water system extensively to ensure that we deliver safe drinking water. Water quality and testing standards are set by the State Water Resources Control Board (State Board). The constituent amounts reported are based on a "flow weighted average" from all wells in the system and these figures can be used as an indication of the overall water quality. The City of Galt failed to monitor for Nitrates 2019 accordance with section64431, Article 4, chapter 15, Division 4, Title 22 Tests were performed in 2018 and 2020.

The enclosed table shows the results of our monitoring for the period of January 1 to December 31, 2019. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the United States Environmental Protection Agency's (US EPA) Safe Drinking Water Hotline (1-800-426-4791).

The City regularly monitors the water system at various points for indications of bacterial contamination and other constituents such as trihalomethanes (which are by-products of the disinfectant treatment process), and other potentially harmful contaminants. We also examine other desirable characteristics of the water. Our filtered water has low turbidity as well as low levels of total dissolved solids. These factors make our water aesthetically pleasing and better tasting.

Additional General Information on Drinking Water

The State Board and the US EPA require that the language in this section be included in this notice. Some people may be more vulnerable to contaminants in drinking water than the general population. Immune-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune-system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice from their health care providers. US EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are also available from the Safe Drinking Water Hotline (1-800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the land surface or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, may come from sewage treatment plants, septic systems, agricultural and livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants can be naturally-occurring or the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the US EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

While your drinking water meets the federal and state standards, it does contain low levels of arsenic. The standard balances the current understanding of arsenic's possible health effects against the costs of removing it from drinking water. The US EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems. Some people who drink water containing arsenic in excess of the Maximum Contaminant Level (MCL) over many years may experience skin damage or circulatory system problems, and may have an increased risk of getting cancer.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Galt is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Contaminant	Violation	Sample	Average	Value	Units	MCL	PHG	Likely Source of
	Yes/No	Year*	Value	Range			(MCLG)	Contamination
Table 1: Microbi	ological Conta	aminants						
Total Coliform Bacteria (Total Coliform Rule)	No	2019	100%	N/A	Absence/ Presence	Presence in 3 or more monthly samples	(0)	Naturally present in the environment.
Heterotrophic				ND-				
Plate Count	No	2019	.75	22	Number	TT	N/A	Naturally present in the environment.
Table 2: Lead a	nd Copper**							
Lead	No	2018	90 th % = 0.0016	ND- .00099	ppm	AL=0.015	0	Internal corrosion of household plumbing; erosion of natural deposits.
Copper	No	2018	90 th % = 0.08	ND- .18	ppm	AL=1.3	1.3	Internal corrosion of household plumbing; erosion of natural deposits.
Table 3: Sodium	and Hardnes	SS						
		-	-					
Sodium	No	2018	32.5	19-49	ppm	N/A	N/A	Leaching from natural deposits.
Hardness	No	2018	38.25	2.8-97	ppm	N/A	N/A	Leaching from natural deposits.
Table 4: Primary	Drinking Wa	ter Standar	ds					
Arsenic	No	2019	4.7	2.4-10	ppb	10	0	Erosion of natural deposits; runoff from orchards; glass & electronics waste.
Barium	No	2018	114	ND-250	ppb	1000	1000	Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits.
Boron	No	2018	220	110-280	ppb	N/A	N/A	Internal corrosion of galvanized pipes; erosion of natural deposits; discharge from electroplating and industrial chemical factories, and metal refineries; runoff from waste batteries and paints.
Nitrates	No	2018		ND - .00092	ppb	.01	.01	Runoff and Leaching from fertilizer use; Leaching from septic tanks and sewage; erosion of natural deposites
Fluoride	No	2018	0.05	ND-0.17	ppm	2	2	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories
Total Trihalomethanes	No	2019	1.35	.92-1.7	ppb	80	N/A	Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience liver, kidney, or

TEST RESULTS THROUGH 2019

Table 5: Radiological

Radium 226	No	2018	.023	0042.	pCi/L	5	0	Erosion of Natural Deposits
Radon 228	No	2018	.070	0351	pCi/L	5	0	Erosion of Natural deposits
Gross Alpha	No	2018	.345	0806	pCi/l	15	0	Erosion of Natural Deposits

Table 6: Secondary Drinking Water Standards (There are no PHG/MCLG for these constituents because these MCLs are set on the basis of aesthetics.)

Iron	No	2018	51.7	ND-190	ppb	300	N/A	Leaching from natural deposits; industrial wastes.
Manganese	No	2019	2.8	ND-18	ppb	50	N/A	Leaching from natural deposits.
Total Dissolved	No	2018	183	160-200	ppm	1000	N/A	Run-off/Leaching from natural deposits.
Solids								
Specific	No	2018	233	200-290	µS/cm	1600	N/A	Substances that form ions when in water;
Conductance								seawater influence
Sulfate	No	2018	3.3	ND-8.8	ppm	500	N/A	Run-off/leaching from natural deposits; industrial
								wastes.
pH	No	2018	7.7	7.01-8.38	pH Units	N/A	N/A	Measure of acidity/alkalinity.
Calcium	No	2018	7.87	.69-20	mg/l	N/A	250-500	Runoff/leaching from natural deposits
Magnesium	No	2018	4.45	.26-11	mg/l	N/A	N/A	Runoff/leaching from natural deposits
Chloride	No	2018	7.5	4.8-10	mg/l	N/A	250	Runoff/leaching from natural deposits, Industrial
								waste

Data presented in this report are from the most recent testing done in accordance with the regulations. In this table you may find terms and abbreviations you are not familiar with, the following definitions have been provided for your convenience:

Non-Detects (ND) - Laboratory analysis indicates that the contaminant is not present.

Parts per million (ppm) or Milligrams per liter (mg/l) Parts per billion (ppb) or Micrograms per liter (ug/l)

Parts per trillion (ppt) or Nanograms per liter (nanograms/l) Parts per quadrillion (ppq) or Picograms per liter (picograms/l)

Picocuries per liter (pCi/L) - Picocuries per liter is a measure of the radioactivity in water.

Nephelometric Turbidity Unit (NTU) - Nephelometric turbidity unit is a measure of the clarity of water. Turbidity of 5 NTU is just noticeable to the average person. *Regulatory Action Level (AL)* - The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements, that a water system must follow.

Notification Level (NL) - The concentration of a contaminant, which, if exceeded, triggers special statement to notify consumers about the exceeded constituent.

Treatment Technique (TT) - A required process intended to reduce the level of a contaminant in drinking water.

Maximum Contaminant Level Goal – "The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency."

Public Health Goal or (PHG) – "The level of a contaminant in drinking water which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. MCLGs and PHG's allow for a margin of safety.

Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs or (MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste and appearance of drinking water.

Primary Drinking Water Standard (PDWS) – MCLs, MRDLs, and treatment techniques for contaminants that affect health, along with their monitoring, and reporting, requirements.

Maximum Residual Disinfectant Level (MRDL) – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial.

Maximum Residual Disinfectant Level Goal (MRDLG) – The level of a drinking water disinfectant below which there no known or expected risk to health. MRDLG do not reflect the benefits the use of disinfectants to control microbial contaminants (Set by USEPA)

*The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

** Lead and Copper samples were taken at 33 residences and no Regulatory Action Levels (RAL) were exceeded including all schools in the District.

Covid-19

With the City of Galt's conventional water treatment plants and dose of chlorine there has been no reason to believe that our water would contain Covid-19. The CDC put out the following statement on April 23, 2020:

"The virus that causes COVID-19 has not been detected in drinking water. Conventional water treatment methods that use filtration and disinfection, such as those in most municipal drinking water systems, should remove or inactivate the virus that causes COVID-19."

Water Conservation

City of Galt will continue to be under water conservation measures in 2020. State regulations require the City to prepare and submit water conservation objectives and goals for the State to approve. In 2019, assembly Bill 1668 and Senate Bill 606 were passed and implemented. These bills direct water agencies, such as the City of Galt, to limit indoor water usage indicated in the table below.

Year	Goal Water Usage
(gallons per pers	on per day)
2022	55
2025	52.5
2030	50

The City is still under a Stage 2 Water Alert so please keep conserving water. Stage 2 allows for irrigation a maximum of three days a week.

-Customers with street addresses ending with an even number may irrigate only on Wednesday and/or Friday and/or Sunday.

-Customers with street addresses ending with an **odd** number may irrigate only on **Tuesday and/or Thursday and/or Saturday**.

- No watering is allowed on Mondays

For Water Conservation Tips check-out https://saveourwater.com/.

Water Hardness

The simple definition of water hardness is the amount of dissolved calcium and magnesium in the water. Hard water is high in dissolved minerals. Hardness is caused by compounds of calcium and magnesium, and by a variety of other metals. General guidelines for classification of hard water is shown in the table below. Water systems using groundwater as a source are concerned with water hardness, since as water moves through soil and rock it dissolves small amounts of naturally-occurring minerals and carries them into the groundwater supply.

Classification	hardness in mg-CaCO3/L
Soft	0–60
Moderately hard	61–120
Hard	121–180
Very hard	≥ 181

Prior to the new Industrial Deep Well in 2016, the average hardness level was 36.9 mg/L in CaCO3. Now that we have two wells that are over 1600 feet deep, we have naturally softer water than before. Softer water allows soap to dissolve more completely than with hard water. It is common for first time users of soft water to have a slimy experience in the shower. This is due to using more soap than is necessary with softer water.

Residents that have water softeners often experience water pressure loss. It is recommended that the water softener and the house service valves are both checked to make sure they are completely open. If pressure loss persists, there could be an issue with the water softener and it should be bypassed. If an obvious bypass valve or bypass feature does not exist, it is recommended that a plumber divert water around it to see if house pressure improves. If it does, the softener may need repair or replacement of filter, resin media or brine tank cleaning.

Help Protect Our Drinking Water System

Tampering with a public water system is a federal offense. Please report any suspicious activity occurring at any water facility or hydrant to the Galt Police Department at (209) 366-7000.

Consumer Confidence

Occasionally we are asked with genuine concern, "is our water safe"? We understand the concerns that people have. There has been media coverage of unfortunate things that have happened to some water supplies across the country. This is tragic, but only a very small percentage of the water districts are effected around the country. The City of Galt's water staff takes pride in the work they perform for their family, friends, and neighbors. We live and have friends and family here, and we drink and use this water on a daily basis. It is not just our job, it is our responsibility and we promise to assure the water produced is safe for our community.