Department of Water Resources Michael L. Peterson, Director

Including service to the Cities of Elk Grove and Rancho Cordova

SACRAMENTO COUNTY WATER AGENCY

October 2, 2019

Environmental Management 10590 Armstrong Ave. Mather, CA. 95655 Phn: (916) 875-8429

SUBJECT: 2018 Annual Water Quality Report and Consumer Confidence Report

Environmental Management:

Attached please find copies of the SCWA annual water quality reports made available to all Sacramento County Water Agency customers. These reports are prepared pursuant to Section 116470 of the Health and Safety Code, established by the State Water Resources Control Board. Also find a copy of the postcard with instructions on how and where to find copies of the online water quality reports.

These postcards were mailed to all customers in an effort to be more environmentally responsible and cut down the cost of printing and mailing an hard copy of the full Consumer Confidence Report. The contracted printing company (DFS) printed the first batch of postcards incorrectly. DFS had to reorganized and complete a reprint of the job which was mailed out on 07/03/2019. Please find the signed letter of explanation from DFS.

We are no longer printing the Consumer Confidence Reports, but have made them available online at the following link: <u>http://www.saccountyccr.net</u>. I've also included the CCR Certifications Forms (eCCR Delivery Certification Form) verifying mailout of the postcards and availability of the water quality reports online for the following small water systems:

- Hood (PWSID: 3400101);
- East Walnut Grove/ Delta Estates (PWSID: 3400106);
- Southwest Tract (PWSID: 3400156);
- Northgate 880 (PWSID: 3400173).

The Walnut Grove Post Master does not home deliver mail, but requires the residents to visit the post office to pick up mail; therefore, copies of the EWG CCR and notification of the availability of the East Walnut Grove CCR were given to residents by posting the information in conspicuous public locations in the area. If you have any questions or comments regarding this report, please do not hesitate to contact me or Sarah Grant (875-6881). Thank you.

Sincerely,

Aaron Wyley

Aaron Wyley Principal Engineering Technician Sacramento County Water Agency 10151 Florin Road Sacramento, Ca. 95829 (916) 875-5815

Attachments; cc: Forrest Williams, SCWA Sarah Grant, SCWA Steven Scott, SCWA Adam Wilkinson Ange Twagirayezu, SCWA James Sacayanan, SCWA File

"Managing Tomorrow's Water Today"

Attention landlords, businesses, schools and other groups:

Each year, Sacramento County Water Agency provides its customers with an Annual Water Quality Report to let them know how our water quality stacks up against established federal and state drinking water standards. We encourage you to review this report as it provides details about the source and quality of the drinking water delivered to your community in 2018.

In an effort to be more environmentally responsible, we are no longer printing these reports, but have made them available on the Internet. Visit us online to view your water quality report at www.saccountyccr.net. If you wish to have a paper copy, you can print one directly from our website. You can also receive a printed version by contacting our Customer Service Center at 311.

For a translation in Spanish, call Juan Perez at (916) 875-6916.

Para recibir asistencia en la traducción al Español de este documento, los clientes pueden llamar a Juan Perez al 916-875-6916. Este reporte Please share this information with tenants, contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien. Por favor comparta Sacramento County Water Agency. esta información con sus inquilinos, estudiantes y otros usuarios en su lugar de residencia quienes no son los clientes cuyos nombres aparecen en la factura del agua de Sacramento County Water Agency.

students and other water users at your location who are not billed customers of

DEPARTMENT OF WATER RESOURCES SACRAMENTO COUNTY WATER AGENCY

10151 Florin Road, Sacramento, CA 95829

BOARD OF SUPERVISORS: Phil Serna (District 1) Patrick Kennedy (District 2) Susan Peters (District 3) Sue Frost (District 4) Don Nottoli (District 5)

PRESORTED FIRST CLASS U.S. POSTAGE PAID SACRAMENTO, CA PERMIT #24

SACRAMENTO COUNTY WATER AGENCY 2018 WATER QUALITY REPORT - HOOD & EAST WALNUT GROVE/ DELTA ESTATES (See Note #1)

	rces Control Boar		PHG or			НС	DOD	EAST WALNUT GROVE		
CONSTITUENT	SAMPLE DATE	UNITS	(MCLG) or [MRDLG]	MCL OR [MRDL]	MAJOR SOURCES IN DRINKING WATER	RANGE (LO-HI)	WEIGHTED AVERAGE	RANGE (LO-HI)	WEIGHTE	
	DAIL	onno	[iiitb20]			(2011)	ATENACE	(2011)		
					Erosion of natural deposits; runoff from orchards; glass and electronics					
2 Arsenic	2017 - 2018	PPB	0.004	10	production wastes.	ND	ND	ND - 9.9	7.6	
Fluoride (Natural Source)	2017 - 2018	PPM	1	2	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.	ND	ND	0.15 - 0.16	0.16	
ISTRIBUTION SYSTEM	2017-2010	FFIVI		2		ND	ND	0.13 - 0.10	0.10	
3 Chlorine Residuals	2018	PPM	[4]	[4.0]	Drinking water disinfectant added for treatment.	0.56 - 1.55	1.11	0.38 - 7.5	1.06	
4 Total Trihalomethanes	2018	PPB	n/a	80	Byproduct of drinking water disinfection.	42 - 68	55	36 - 78	49	
5 Haloacetic Acids	2018	PPB	n/a	60	Byproduct of drinking water disinfection.	9.7 - 14	11.9	8.7 - 14	10.8	
					Erosion of natural deposits; water additive that promotes strong teeth;					
6 Fluoride (Treatment - Distribution)	2018	PPM	1	2	discharge from fertilizer and aluminum factories.	0.72 - 1	0.91	0.68 - 0.89	0.79	
ICROBIOLOGICAL CONTAMINANTS						LEVEL	FOUND	LEVEL	FOUND	
		# of Positive								
Total Coliform Bacteria	2018	Samples	(0)	>1	Naturally present in the envirionment.		0		0	
ECONDARY STANDARDS - Aesthetic			(0)				DOD	EAST WAL	-	
stablished by the State Water Resou		d (State Bo	oard)			RANGE	WTD. AVG.	RANGE	WTD. AV	
Color	2014 - 2018	Units	n/a	15	Naturally-occurring organic materials.	ND - 5	3	ND - 5	3	
7 Manganese	2014 - 2018	PPB	n/a	50	Leaching from natural deposits.	210 - 240	220	39	39	
Odor-Threshold	2015 - 2017	Units	n/a	3	Naturally-occurring organic materials.	2 - 2.5	2.25	1.5 - 2	1.8	
Turbidity	2015 - 2017	Units	n/a	5	Soil runoff.	ND - 0.22	0.11	ND - 0.18	ND	
Zinc	2015 - 2017	PPM	n/a	5	Runoff / leaching from natural deposits; industrial wastes	ND - 0.071	ND	ND	ND	
Total Dissolved Solids	2015 - 2017	PPM	n/a	1000	Runoff/leaching from natural deposits.	580 - 630	605	430 - 450	440	
Specific Conductance (E.C.)	2015 - 2017	umhos/cm	n/a	1600	Substances that form ions when in water; seawater influence.	1000 - 1100	1050	740 - 770	755	
Chloride	2015 - 2017	PPM	n/a	500	Runoff/leaching from natural deposits; seawater influence.	210 - 220	215	120 - 130	125	
THER CONSTITUENTS ANALYZED										
рН	2015 - 2017	Units	n/a	MO		8 - 8.1	8.05	8.3 - 8.4	8.4	
8 Total Hardness (as CaCO3)	2015 - 2017	PPM	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	250 - 280	265	47	47	
9 Total Hardness (as CaCO3)	2015 - 2017	Grains	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	14.6 - 16.4	15.5	2.75	2.75	
Total Alkalinity (as CaCO3)	2015 - 2017	PPM	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	200 - 210	205	200	200	
Bicarbonate (as HCO3)	2015 - 2017	PPM	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	240 - 250	245	240	240	
Carbonate (as C03)	2015 - 2017	PPM	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	ND	ND	2.2 - 5.3	3.8	
Sodium	2015 - 2017	PPM	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	100 - 110	105	150	150	
Calcium	2015 - 2017	PPM	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	69 - 77	73	11	11	
Magnesium	2015 - 2017	PPM	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	19 - 22	21	4.6 - 4.8	4.7	
EAD & COPPER			BUIG							
CONTAMINANT	SAMPLE DATE	UNITS	PHG or (MCLG)	ACTION LEVEL	MAJOR SOURCES IN DRINKING WATER	NUMBER OF SAMPLES	90TH % LEVEL DETECTED		IBER DING AL	
	2016	PPB	(0.2)	15	Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits.	6	ND			
Lead					Internal corrosion of household plumbing systems; erosion of natural deposits;					
Copper	2016	PPM	(0.3)	1.3	leaching from wood preservatives.	6	0.11		0	
	0010	000	(0,0)	45	Internal corrosion of household water plumbing systems; discharges from	40	0.0050			
9 ₩	2016	PPB	(0.2)	15	industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits;	16	0.0059		1	
Copper	2016	PPM	(0.3)	1.3	leaching from wood preservatives.	16	0.34		0	
			, , ,		EXCEEDENCE:					
Every year, we conduc	ted more than 4	0 test to a	nalvze over	40 contaminants	per test. The following contaminants exceeded the seconda	arv standards	maximum cor	ntaminant leve	el.	
CONTAMINANT:	SAMPLE DATE		PHG or (MCLG)	MCL or [MRDL]	QUALITY EFFECTS / SOURCE OF CONTAMINANT:		SULT:		TION:	
			, í							
langanese	2/7/2018	PPB	n/a	50	Leaching from natural deposits.	2	10	Third Street	Well (W-19)	
langanese	5/7/2018	PPB	n/a	50	Leaching from natural deposits.	2	20	Third Street	Well (W-19)	
langanese	9/26/2018	PPB	n/a	50	Leaching from natural deposits.		240		Well (W-19)	

LEGEND

ALRegulatory Action Level	NANot Analyzed
MFLMillion Fibers Per Liter	n/aNot Applicable
MOMonitored Only	NDNon Detected
MPNMost Probable Number	NLNotification Level

NR.....Not Required NTU.....Nephelometric Turbidity Units PDWS....Primary Drinking Water Standard pCi/I.....Pico Curies per liter

PPB.....Parts per billion (ug/l) PPM.....Parts per million (mg/l) PPT.....Parts per trillion, or Nanograms per liter TOC.....Total Organic Carbon TT.....Treatment Technique WTP.....Water Treatment Plant

DEFINITIONS

Average: The annual average of all tests for a particular substance.

Detection Limit for Reporting: The limit at or above which a contaminant is detected.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements

Public Health Goal (PHG). The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency

Range (Lo - Hi): The range between the lowest and highest values of a specific substance measured throughout the course of the year.

Regulatory Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Weighted Average (WTD AVG): An average of water quality samples in which each sample is assigned a weight. Each sample's contribution (or weight) is based on the amount of water the corresponding water source produces for the whole system. Instead of each of the sample results contributing equally to the final average, some of the results contribute more than others.

NOTES:

The state allows SCWA to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

SCWA closely monitors the Arsenic levels in the East Walnut Grove water system. Monthly samples are collected to test for Arsenic at the Grove Street Well (W-108), the well filters and a point in the distribution system. 2 3

On Wednesday June 27, 2018, at 03:56 am, our operators discovered a malfunctioning chlorine feeder was adding too much disinfectant into the East Walnut Grove distribution system. After isolating the feeder, operators took

- chlorine residuals in the distribution system and found chlorine residuals exceeding the MRDL of 4.0 mg/L at two (2) of ten (10) sample locations in the system (6.5 mg/L and 7.5 mg/L). SCWA crews immediately flushed the system and quickly removed the highly chlorinated water. Follow up samples all tested well below the MRDL of 4.0 mg/L. The overall average chlorine residual reading is 1.06 mg/L, also well below the MRDL. SCWA reported the incident to Sacramento County Environmental Management Department. At the time of this incident, no complaints were made by customers about taste or odor of chlorine in the water. Disinfection of drinking water maintains chlorine residuals in the finished drinking water to prevent regrowth of microorganisms as water passes through the distribution system. Some people who use water containing chlorine well in excess of the MRDL could experience irritating effects to the eyes and nose. Some people who drink water containing chlorine well in excess of the MRDL could experience stomach discomfort.
- Total Trihalomethanes = sum of results for Chloroform, Bromoform, Dibromochloromethane, & Bromodichloromethane. Some people who drink water containing trihalomethanes in excess of the MCL over many years 4 may experience liver, kidney, or central nervous system problems, and may have an increased risk of getting cancer.
- Haloacetic Acids = sum of results for Bromochloroacetic acid, Dibromoacetic acid, Dichloroacetic acid, Monochloroacetic acid, & Trichloroacetic acid
- The East Walnut Grove water system is fluoridated to reduce tooth decay in children. Studies show that water fluoridation reduces tooth decay by 20 to 40 percent. The California State Water Resources Control Board advised SCWA 6 to implement the CDC's recommended optimal fluoride content of 0.7 ma/L and control range of 0.6 ma/L - 1.2 ma/L. Information about fluoridation. oral health and current issues is available from $http://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/Fluoridation.shtml.\\$
- 7 Manganese exceeded the MCL of 50 PPB in the Hood water system in 2017. Water naturally contains small amounts of manganese. Manganese in food or drinking water presents few adverse effects; however, elevated concentrations of manganese in water may stain laundry, produce an undesirable odor and taste, contribute to microbial growth and turbidity, or form a coating inside pipes which can peel off as solid precipitates.
- Hardness units are PPM. General guidelines for classification of water hardness are: 0 60 PPM as soft; 61 120 PPM as moderately hard; 121 180 PPM as hard; and greater than 180 PPM as very hard.
- 9 Most commercial companies use "grain" units. Conversion: 17.1 PPM = 1 grain.
- 10 Hood's Lead and Cooper concentrations were obtained from the 90th percentile of six (6) tap water samples taken throughout the distribution system. The MCLs for lead and copper are set at "Action Levels."
- 11 East Walnut Grove's Lead and Copper concentrations were obtained from the 90th percentile of sixteen (16) tap water samples taken throughout the distribution system. The MCLs for lead and copper are set at "Action Levels." Customers who exceeded the Action Levels for Lead and Copper were given the information on testing their water, as well as the names of laboratories.

For more detailed information regarding SCWA water quality, call Aaron Wyley @ (916) 875-5815.

State Mandated Information for Nitrate, Arsenic & Lead:

Arsenic:

While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Lead:

If present, elevated levels of lead can cause serious health problems, especially for pregnant women, infants and young children; as they are typically more vulnerable to lead in drinking water than the general population. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Sacramento County Water Agency is responsible for providing high quality drinking water, but cannot control the variety for materials used in plumbing components. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. If you are concerned about lead in your water, you may wish to have your water tested. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. Additional information on lead in drinking water, testing methods and steps you can take to minimize exposure is available from the USEPA Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

(To be submitted with a copy of the CCR)

Water System Name: EAST WALNUT GROVE

Water System Number: 3400106

The water system named above hereby certifies that its Consumer Confidence Report was distributed on <u>June 28, 2019</u> (*date*) to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the State Water Resources Control Board, Division of Drinking Water (DDW).

Name:	AARON WYLEY		
Signature:	Aaron Wyley		
Title:	Principal Engineering Technician		
Phone Number:	(916) 875-5815	Date:	October 2, 2019
	Signature: Title:	Signature: Aaron Wyley	Signature:Aaron WylsyTitle:Principal Engineering Technician

- CCR was distributed by mail or other direct delivery methods (attach description of other direct delivery methods used).
- CCR was distributed using electronic delivery methods described in the Guidance for Electronic Delivery of the Consumer Confidence Report (water systems utilizing electronic delivery methods must complete the second page).
- Good faith" efforts were used to reach non-bill paying consumers. Those efforts included the following methods:
 - Posting the CCR at the following URL: <u>www.saccountyccr.net</u>
 - Mailing the CCR to postal patrons within the service area (attach zip codes used)
 - Advertising the availability of the CCR in news media (attach copy of press release)
 - Publication of the CCR in a local newspaper of general circulation (attach a copy of the published notice, including name of newspaper and date published)
 - Posted the CCR in public places: East Walnut Grove Post Office, 14165 River Rd., Walnut Grove, Ca. (916) 776-1315 & Walnut Grove Library, 14177 Market St., Walnut Grove, Ca.
 - Delivery of multiple copies of CCR to single-billed addresses serving several persons, such as apartments, businesses, and schools
 - Delivery to community organizations (attach a list of organizations)
 - Publication of the CCR in the electronic city newsletter or electronic community newsletter or listserv (attach a copy of the article or notice)
 - Electronic announcement of CCR availability via social media outlets (attach list of social media outlets utilized)
 - Other (attach a list of other methods used)
 - *For systems serving at least 100,000 persons*: Posted CCR on a publicly-accessible internet site at the following URL: <u>www.saccountyccr.net</u>

Water systems utilizing electronic distribution methods for CCR delivery must complete this page by checking all items that apply and fill-in where appropriate.

- Water system mailed a notification that the CCR is available and provides a direct URL to the CCR on a publicly available website where it can be viewed (attach a copy of the mailed CCR notification). URL: www.saccountyccr.net
- Water system emailed a notification that the CCR is available and provides a direct URL to the CCR on a publicly available site on the Internet where it can be viewed (attach a copy of the emailed CCR notification). URL: www._____
- Water system emailed the CCR as an electronic file email attachment.
- Water system emailed the CCR text and tables inserted or embedded into the body of an email, not as an attachment (attach a copy of the emailed CCR).
- *Requires prior DDW review and approval.* Water system utilized other electronic delivery method that meets the direct delivery requirement.

Provide a brief description of the water system's electronic delivery procedures and include how the water system ensures delivery to customers unable to receive electronic delivery.

SCWA mailed postcards with the referenced URL location to 134 addresses (including the Hood water

system). The Walnut Grove Post Master does not home deliver mail, but requires the residents to visit

the post office to pick up mail. Copies of the CCR as well as notification of the availability of the East

Walnut Grove CCR was given to residents by posting the information in a conspicuous public location

(i.e., the East Walnut Grove Post Office & Walnut Grove Library). The postcard notification also

advised customers can receive a printed version of the CCR by calling our Customer Service Center at

(916) 875-RAIN (7246).

The contracted printing company (DFS) finished the first batch of postcards incorrectly.

DFS had to organize and complete a reprint of the job, which was mailed out on 07/03/2019.

This form is provided as a convenience and may be used to meet the certification requirement of section 64483(c), California Code of Regulations.

(To be submitted with a copy of the CCR)

Water System Name: HOOD

Water System Number: 3400101

The water system named above hereby certifies that its Consumer Confidence Report was distributed on <u>June 28, 2019</u> (*date*) to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the State Water Resources Control Board, Division of Drinking Water (DDW).

Name:	AARON WYLEY		
Signature:	Aaron Wyley		
Fitle:	Principal Engineering Technician		
Phone Number:	(916) 875-5815	Date:	October 2, 2019
5 Г	ignature: ïtle:	ignature: Aaron Wyley	ignature: <u>Aaron Wyley</u> Title: Principal Engineering Technician

- CCR was distributed by mail or other direct delivery methods (attach description of other direct delivery methods used).
- CCR was distributed using electronic delivery methods described in the Guidance for Electronic Delivery of the Consumer Confidence Report (water systems utilizing electronic delivery methods must complete the second page).
- Good faith" efforts were used to reach non-bill paying consumers. Those efforts included the following methods:
 - Posting the CCR at the following URL: <u>www.saccountyccr.net</u>
 - Mailing the CCR to postal patrons within the service area (attach zip codes used)
 - Advertising the availability of the CCR in news media (attach copy of press release)
 - Publication of the CCR in a local newspaper of general circulation (attach a copy of the published notice, including name of newspaper and date published)
 - Posted the CCR in public places: (attach a list of locations)
 - Delivery of multiple copies of CCR to single-billed addresses serving several persons, such as apartments, businesses, and schools
 - Delivery to community organizations (attach a list of organizations)
 - Publication of the CCR in the electronic city newsletter or electronic community newsletter or listserv (attach a copy of the article or notice)
 - Electronic announcement of CCR availability via social media outlets (attach list of social media outlets utilized)
 - Other (attach a list of other methods used)
 - For systems serving at least 100,000 persons: Posted CCR on a publicly-accessible internet site at the following URL: www.saccountyccr.net
 - *For privately-owned utilities*: Delivered the CCR to the California Public Utilities Commission

Water systems utilizing electronic distribution methods for CCR delivery must complete this page by checking all items that apply and fill-in where appropriate.

- Water system mailed a notification that the CCR is available and provides a direct URL to the CCR on a publicly available website where it can be viewed (attach a copy of the mailed CCR notification). URL: <u>www.saccountyccr.net</u>
- Water system emailed a notification that the CCR is available and provides a direct URL to the CCR on a publicly available site on the Internet where it can be viewed (attach a copy of the emailed CCR notification). URL: www.______
- Water system emailed the CCR as an electronic file email attachment.
- Water system emailed the CCR text and tables inserted or embedded into the body of an email, not as an attachment (attach a copy of the emailed CCR).
- *Requires prior DDW review and approval.* Water system utilized other electronic delivery method that meets the direct delivery requirement.

Provide a brief description of the water system's electronic delivery procedures and include how the water system ensures delivery to customers unable to receive electronic delivery.

SCWA mailed postcards with the referenced URL location to 134 addresses (including the East Walnut

Grove water system). The postcard notification also advised customers can receive a printed version of

the CCR by calling our Customer Service Center at (916) 875-RAIN (7246).

The contracted printing company (DFS) finished the first batch of postcards incorrectly.

DFS had to organize and complete a reprint of the job, which was mailed out on 07/03/2019.

This form is provided as a convenience and may be used to meet the certification requirement of section 64483(c), California Code of Regulations.

SACRAMENTO COUNTY WATER AGENCY 2018 WATER QUALITY REPORT - ARDEN PARK VISTA, NORTHGATE & SOUTHWEST TRACT (See Note #1)

	TED PRIMARY STANDARDS - Mandatory	·	Boord)									
CONSTIT		SAMPLE DATE:		PHG OR (MCLG) or [MRDLG]	MCL OR [MRDL]	MAJOR SOURCES IN DRINKING WATER	ARDEN P RANGE (LO-HI)	PARK VISTA WEIGHTED AVERAGE	NORT RANGE (LO-HI)	HGATE WEIGHTED AVERAGE	SWT (RANGE (LO-HI)	SEE #2) WEIGHTED AVERAGE
INORGAN	NIC CONTAMINANTS											
	Arsenic	2016 - 2018	PPB	0.004	10	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes.	ND - 3.5	ND	3.7 - 5.2	4.2	ND - 6	4.1
	Barium	2016 - 2018	PPM	2	1	Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits.	ND	ND	ND - 0.15	0.14	ND - 0.24	0.11
	Chromium (Total Cr)	2016 - 2018	PPB	(100)	50	Discharge from steel and pulp mills and chrome plating; erosion of natural deposits.	ND	ND	ND - 0.15	ND	ND - 13	ND
				(· · · /								
2	Hexavalent Chromium	2016 - 2018	PPB	0.02	n/a	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits.	ND - 4.2	2.3	4.2 - 12	7.7	ND - 9	6.7
3		2010-2010	TTD	0.02	Iva	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer	110 - 4.2	2.0	4.2 * 12	1.1	110 - 3	0.7
	Fluoride (Natural Source)	2016 - 2018	PPM	1	2	and aluminum factories.	ND	ND	0.13 - 0.19	0.14	ND	ND
	Nitrate (as N)	2018	PPM	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits.	ND - 5.3	1.7	0.6 - 4	1.5	ND - 7	4.0
	TED ORGANIC CHEMICALS	•										
	Tetrachloroethylene (PCE)	2013 - 2018	PPB	0.06	5	Discharge from factories, dry cleaners and auto shops (metal degreaser).	ND	ND	ND	ND	ND - 1	ND
	Trichloroethylene (TCE)	2013 - 2018	PPB	1.7	5	Discharge from metal degreasing sites and other factories.	ND	ND	ND	ND	ND - 0.91	ND
	CTIVE CONTAMINANTS Gross Alpha Activity	2014 - 2018	pCi/L	(0)	15	Erosion of natural deposits.	ND - 3.6	ND	ND - 3	ND	ND - 10.8	3.4
	Uranium	2014 - 2013	pC/L	0.43	20	Erosion of natural deposits.	ND - 3.0	ND	ND - 3.5	ND	ND - 10.0	ND
	UTION SYSTEM	2011 2011	pore	0.10			110 110	110	110 0.0	110	110	110
	Chlorine Residuals	2018	PPM	[4]	[4.0]	Drinking water disinfectant added for treatment.	ND - 1.52	0.87	0.68 - 1.56	1.08	0.29 - 1.1	0.67
5	Total Trihalomethanes	2017 - 2018	PPB	n/a	80	Byproduct of drinking water disinfection.	ND - 1	0.2	ND - 1.3	0.3	1.2	1.2
6	Haloacetic Acids	2017 - 2018	PPB	n/a	60	Byproduct of drinking water disinfection.	ND	ND	ND - 3.3	0.8	ND	ND
7	Fluoride (Treatment Related- Distribution)	2018	PPM	1	2	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.	0.62 - 0.79	0.70	NA	NA	NA	NA
	IOLOGICAL CONTAMINANTS	2018	FPIVI		2	ana aranmatti idoloties.		FOUND		FOUND		. FOUND
			# of Positive									
	Total Coliform Bacteria	2018	Samples	(0)	>1	Naturally present in the envirionment.	0		0		0	
	DARY STANDARDS - Aesthetic Standard							Park Vista		hgate		est Tract
	shed by the State Water Resources Cont Color	2014 - 2018	Board) Units	n/a	15	Naturally-occurring organic materials.	RANGE	WTD. AVG. ND	RANGE ND	WTD. AVG.	RANGE ND - 5	WTD. AVG. ND
	Iron	2014 - 2018	PPB	n/a	300	Leaching from natural deposits; industrial wastes.	ND	ND	ND - 100	ND	ND - 5 ND - 230	ND
	Manganese	2014 - 2018	PPB	n/a	50	Leaching from natural deposits.	ND - 38	ND	ND	ND	ND - 76	ND
	Odor-Threshold	2014 - 2018	Units	n/a	3	Naturally-occurring organic materials.	ND	ND	ND	ND	ND - 2	ND
	Turbidity	2014 - 2018	Units	n/a	5	Soil runoff.	ND - 0.28	ND	ND - 0.46	0.17	ND - 16	0.3
1	Total Dissolved Solids	2014 - 2018	PPM	n/a	1000	Runoff/leaching from natural deposits.	94 - 320	222	180 - 450	311	49 - 420	308
	Specific Conductance (E.C.)	2014 - 2018	umhos/cm	n/a	1600	Substances that form ions when in water; seawater influence.	90 - 480	304	320 - 730	535	89 - 740	504
	Chloride	2014 - 2018	PPM	n/a	500	Runoff/leaching from natural deposits; seawater influence.	2.1 - 27	11.7	18 - 65	41	ND - 76	29
	Sulfate CONSTITUENTS ANALYZED	2014 - 2018	PPM	n/a	500	Runoff/leaching from natural deposits; industrial wastes.	2.3 - 28	12.9	3.9 - 27	17.2	ND - 38	21
	pH	2014 - 2018	Units	n/a	MO		7.4 - 7.9	7.8	7.9 - 8	8.0	NR	NR
	Total Hardness (as CaCO3)	2014 - 2018	PPM	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	36 - 220	137.3	71 - 310	171.4	24 - 360	233
9b	Total Hardness (as CaCO3)	2014 - 2018	Grains	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	2.1 - 12.9	8.0	4.2 - 18.1	10.0	1.4 - 21	13.6
	Total Alkalinity (as CaCO3)	2014 - 2018	PPM	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	39 - 180	126.2	90 - 250	156.4	NR	NR
	Bicarbonate (as HCO3)	2014 - 2018	PPM	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	48 - 220	152.1	110 - 300	188.0	NR	NR
	Sodium	2014 - 2018	PPM PPM	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface. Due to chemicals naturally occuring in the soil below the earth's surface.	4 - 16 6.2 - 45	11.6 28.3	24 - 32	28.0	1.8 - 29 NR	19 NR
	Calcium Magnesium	2014 - 2018 2014 - 2018	PPM	n/a n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	6.2 - 45 4.9 - 27	15.9	14 - 58	33.3		NR
	COPPER (See Note 10 & 11)	2014 - 2010	FFIVI	II/d	IVIO	Due to chemicals naturally occurring in the soli below the caller's surface.	4.9 - 27					INFX
								10.5	8.7 - 40	21.0	NR	
and the second se	CONTAMINANT	SAMPLE DATE	UNITS	PHG or (MCLG)	ACTION LEVEL	MAJOR SOURCES IN DRINKING WATER		BER OF	90TH %	21.0 6 LEVEL ECTED	NR	MBER DING AL
>	CONTAMINANT	DATE		(MCLG)		Internal corrosion of household water plumbing systems; discharges from industrial	SAN	BER OF IPLES	90TH % DETI	6 LEVEL ECTED	NR	
APV			РРВ		LEVEL		SAN	BER OF	90TH % DETI	6 LEVEL	NR	
		DATE		(MCLG)	LEVEL	Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.	SAN	BER OF IPLES	90TH 9 DETI	6 LEVEL ECTED	NR NUT EXCEE	
	Lead Copper	2016 2016	PPB PPM	(MCLG) (0.2) (0.3)	15 1.3	Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial	SAN	BER OF MPLES 35 35	90TH 9 DETI	6 LEVEL ECTED	NR NUI EXCEE	DING AL 1 0
	Lead	DATE 2016	РРВ	(MCLG) (0.2)	LEVEL 15	Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits.	SAN	BER OF IPLES	90TH 9 DETI	6 LEVEL ECTED	NR NUI EXCEE	DING AL
E E	Lead Copper Lead	2016 2016	PPB PPM	(MCLG) (0.2) (0.3)	15 1.3	Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial	SAN	BER OF MPLES 35 35	90TH 9 DETI	6 LEVEL ECTED		DING AL 1 0
NORTHGATE	Lead Copper Lead Copper	2016 2016 2016 2016 2016	PPB PPM PPB PPM	(MCLG) (0.2) (0.3) (0.2) (0.3)	15 1.3 1.3 15 1.3	Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.	SAN	BER OF IPLES 35 35 18 18	90TH 9 DETI 0	6 LEVEL ECTED ND .19 ND .36		DING AL 1 0 0 0 0
NORTHGATE	Lead Copper Lead	2016 2016 2016	PPB PPM PPB	(MCLG) (0.2) (0.3) (0.2)	15 1.3 15	Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits.	SAN	BER OF IPLES 35 35 18	90TH 9 DETI 0	6 LEVEL ECTED		DING AL 1 0 0
NORTHGATE	Lead Copper Lead Copper	DATE 2016 2016 2016 2016 2016 2016	PPB PPM PPB PPM	(MCLG) (0.2) (0.3) (0.2) (0.3) (0.2)	LEVEL 15 1.3 15 1.3 15	Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; crosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; discharges from industrial wood preservatives. Internal corrosion of household plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from manufactures; erosion of natural deposits. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits.	SAN	BER OF IPLES 35 35 18 18	90TH 9 DETI 0	6 LEVEL ECTED .19 .36 ND		DING AL 1 0 0 0 0
SWT NORTHGATE	Lead Copper Lead Copper Lead	DATE 2016 2016 2016 2016 2016 2016	PPB PPM PPB PPM PPB PPM	(MCLG) (0.2) (0.3) (0.2) (0.3) (0.2) (0.3)	LEVEL 15 1.3 15 1.3 15 1.3 15 1.3	Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits.	SAN	BER OF IPLES 35 35 18 18 5	90TH 9 DETI 0	6 LEVEL ECTED ND .19 ND .36		DING AL
TWS UNREG	Lead Copper Lead Copper Lead Copper Lead Copper ULATED CONTAMINANT MONITORING	DATE 2016 2016 2016 2016 2016 2016 RULE (UCMR 3) - SAMPLE	PPB PPM PPB PPM PPB PPM Established	(MCLG) (0.2) (0.3) (0.2) (0.3) (0.2) (0.3) by USEPA (LEVEL 15 1.3 15 1.3 15 1.3 15 1.3	Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits.	SAN	BER OF IPLES 35 35 18 18 5 5 5 9ark Vista	90TH 9 DETI 0 0 0 0 0 0 0 0 0 0	& LEVEL ECTED ND .19 .36 ND .054 .hgate	NR NUT EXCEE	DING AL 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INREGU	Lead Copper Lead Copper Lead Copper ULATED CONTAMINANT MONITORING MINANT	DATE 2016 2016 2016 2016 2016 2016 2016 RULE (UCMR 3) - SAMPLE DATE	PPB PPM PPB PPM PPB PPM Established UNITS	(MCLG) (0.2) (0.3) (0.2) (0.3) (0.2) (0.3) by USEPA (PHG	LEVEL 15 1.3 15 1.3 15 1.3 See 12) Notification Level	Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; crosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; discharges from industrial wood preservatives. Internal corrosion of household plumbing systems; discharges from industrial wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits.	SAN	BER OF IPLES	90TH 9 DETI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 LEVEL ECTED	NR NUI EXCEE	DING AL 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Lead Copper Lead Copper Lead Copper ULATED CONTAMINANT MONITORING MINANT Chloroform (Trichloromethane)	DATE 2016 2016 2016 2016 2016 2016 RULE (UCMR 3) - SAMPLE DATE 2013 - 2018	PPB PPM PPB PPM PPB PPM Established	(MCLG) (0.2) (0.3) (0.2) (0.3) (0.2) (0.3) by USEPA (PHG n/a	LEVEL 15 1.3 15 1.3 15 1.3 See 12) Notification	Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits.	Arden F RANGE ND	BER OF MPLES 35 35 18 18 5 5 5 Park Vista WTD. AVG. ND	90TH 9 DETI 0 0 0 0 Nort RANGE ND	& LEVEL ECTED ND .19 .36 ND .054 .hgate	NR NUT EXCEE Southw RANGE ND - 2.6	DING AL 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Lead Copper Lead Copper Lead Copper ULATED CONTAMINANT MONITORING MINANT Chloroform (Trichloromethane) Dichlorodifluoromethane (Freon 12)	DATE 2016 2016 2016 2016 2016 2016 2016 2016	PPB PPM PPB PPM Established UNITS PPB	(MCLG) (0.2) (0.3) (0.2) (0.3) (0.2) (0.3) by USEPA (PHG n/a	LEVEL 15 1.3 15 1.3 15 1.3 See 12) Notification Level n/a 1	Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household water plumbing systems; discharges from industrial wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.	Arden f RANGE ND	BER OF MPLES 35 35 35 35 35 35 35 5 5 5 5 7 ark Vista WTD. AVG. ND	90TH 9 DETI 0 0 0 0 Nort RANGE ND	& LEVEL ECTED ND .19 .36 .054 .054 .054 .054 .054 .054 .054 .054	NR NUT EXCEE Southw RANGE ND - 2.6	DING AL 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Lead Copper Lead Copper Lead Copper ULATED CONTAMINANT MONITORING MINANT Chloroform (Trichloromethane) Dichlorodifluoromethane (Freon 12) Trichloropropane (1.2,3-TCP)	DATE 2016 2016 2016 2016 2016 2016 2016 2016 2016 2018 2013 - 2018 2018 2018	PPB PPM PPB PPM Established UNITS PPB PPM PPB	(MCLG) (0.2) (0.3) (0.2) (0.3) (0.2) (0.3) by USEPA (PHG n/a n/a	LEVEL 15 1.3 15 1.3 15 1.3 See 12) Notification Level n/a 1 5	Internal corrosion of household water plumbing systems; clischarges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; crosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; etrosion of natural deposits. Internal corrosion of household water plumbing systems; etrosion of natural deposits. Internal corrosion of household water plumbing systems; etrosion of natural deposits. Internal corrosion of household water plumbing systems; etrosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; etrosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; etrosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; etrosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; etrosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; etrosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; etrosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; etrosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; etrosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; etrosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; etrosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; etrosion of natural deposits; leaching from swood preservatives. Internal corrosion of household plumbing systems; etrosion of natural deposits; leaching from swood preservatives. Internal corrosion of household plumbing syste	Arden I RANGE ND NR	BER OF MPLES 35 35 35 35 35 35 35 35 5 5 5 5 7 ark Vista WTD. AVG. ND	90TH 9 DETI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	& LEVEL ECTED ND .19 .36 .36 .054 .19 .36 .054 .054 .054 .054 .054 .054 .054 .054	NR NUT EXCEE Southw RANGE ND - 2.6 ND - 0.0015 ND	DING AL 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Lead Copper Lead Copper Lead Copper ULATED CONTAMINANT MONITORING MINANT Chloroform (Trichloromethane) Dichlorodifluoromethane (Freon 12)	DATE 2016 2016 2016 2016 2016 2016 2016 2016	PPB PPM PPB PPM Established UNITS PPB	(MCLG) (0.2) (0.3) (0.2) (0.3) (0.2) (0.3) by USEPA (PHG n/a	LEVEL 15 1.3 15 1.3 15 1.3 See 12) Notification Level n/a 1	Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household and cardiac effects. Language HEALTH EFFECTS LANGUAGE Some people who drink water containing dichlorodifluoromethane far in excess of the notification level may experience neurological and cardiac effects. Long-term exposures to dichlorodifluoromethane resulted in smaller body weight in laboratory animals. Some people who use water containing 1,2,3-trichloropropate in excess of the notification level over many years may have an increased risk of getting cancer, based on studies in laboratory animals.	Arden f RANGE ND	BER OF MPLES 35 35 35 35 35 35 35 5 5 5 5 7 ark Vista WTD. AVG. ND	90TH 9 DETI 0 0 0 0 Nort RANGE ND	& LEVEL ECTED ND .19 .36 .054 .054 .054 .054 .054 .054 .054 .054	NR NUT EXCEE Southw RANGE ND - 2.6 ND - 0.0015	DING AL 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LMS CONTAI	Lead Copper Lead Copper Lead Copper ULATED CONTAMINANT MONITORING MINANT Chloroform (Trichloromethane) Dichlorodifluoromethane (Freon 12) Trichloropropane (1,2,3-TCP) Vanadium	DATE 2016 2016 2016 2016 2016 2016 2016 RULE (UCMR 3) - SAMPLE 2013 - 2018 2018 2018 2018 2015	PPB PPM PPB PPM Established UNITS PPB PPM PPB	(MCLG) (0.2) (0.3) (0.2) (0.3) (0.2) (0.3) by USEPA (PHG n/a n/a n/a	LEVEL 15 1.3 15 1.3 15 1.3 See 12) Notification Level n/a 1 5 50	Internal corrosion of household water plumbing systems; clischarges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; crosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; etrosion of natural deposits. Internal corrosion of household water plumbing systems; etrosion of natural deposits. Internal corrosion of household water plumbing systems; etrosion of natural deposits. Internal corrosion of household water plumbing systems; etrosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; etrosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; etrosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; etrosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; etrosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; etrosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; etrosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; etrosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; etrosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; etrosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; etrosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; etrosion of natural deposits; leaching from swood preservatives. Internal corrosion of household plumbing systems; etrosion of natural deposits; leaching from swood preservatives. Internal corrosion of household plumbing syste	Arden F RANGE ND NR ND	BER OF IPLES 35 35 35 35 35 35 35 5 5 5 5 5 5 7 ark Vista WTD. AVG. ND NR ND	90TH 9 DETI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 LEVEL ECTED ND .19 .05 .36 .054 .054 .054 .054 .054 .054 .054 .054	NR NUT EXCEE Southw RANGE ND - 2.6 ND - 0.0015 ND ND - 23	DING AL 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LEGEND

AL.....Regulatory Action Level MFL.....Million Fibers Per Liter MO.....Monitored Only MPN.....Most Probable Number

- IN.....Most

DEFINITIONS

Average: The annual average of all tests for a particular substance. Detection Limit for Reporting: The limit at or above which a contaminant is detected.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible.

Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

NA.....Not Analyzed

n/a.....Not Applicable

ND.....Non Detected

NL.....Notification Level

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements

Public Health Goal (PHG). The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency

Range (Lo - Hi): The range between the lowest and highest values of a specific substance measured throughout the course of the year.

Regulatory Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

NR.....Not Required

NTU.....Nephelometric Turbidity Units

pCi/I.....Pico Curies per liter

PDWS....Primary Drinking Water Standard

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Weighted Average (WTD AVG): An average of water quality samples in which each sample is assigned a weight. Each sample's contribution (or weight) is based on the amount of water the corresponding water source produces for the whole system. Instead of each of the sample results contributing equally to the final average, some of the results contribute more than others.

NOTES:

- 1 The state allows SCWA to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.
- 2 Southwest Tract (SWT) receives its water from Fruitridge Vista Water Company which received a portion of its water from the City of Sacramento. Data which is reported by Fruitridge Vista Water Company for 2018 does include water quality data from the City of Sacramento. Please call Beth Arnoldy with Fruitridge Vista Water Company at (916) 443-2607 with questions regarding this data.

PPB.....Parts per billion (ug/l)

PPM.....Parts per million (mg/l)

PPT.....Parts per trillion, or Nanograms per liter

TOC.....Total Organic Carbon

TT.....Treatment Technique

WTP.....Water Treatment Plant

- 3 There is currently no MCL for hexavalent chromium. The previous MCL of 10 PPB was withdrawn on September 11, 2017. Chromium-6 is one of the forms of chromium making up total chromium which has a California MCL of 50 PPB. For more information about Chromium-6, please visit the StateWater Resources Control Board's website: www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/Chromium6.shtml
- 4 The State Water Resources Control Board (State Board) allows the measurement of gross alpha radiation as a surrogate for Uranium.
- 5 Total Trihalomethanes = sum of results for Chloroform, Bromoform, Dibromochloromethane, & Bromodichloromethane.
- 6 Haloacetic Acids = sum of results for Bromochloroacetic acid, Dibromoacetic acid, Dichloroacetic acid, Monochloroacetic acid, & Trichloroacetic acid
- 7 The Arden Park Vista water system's facilities are fluoridated to reduce tooth decay in children. Studies show that water fluoridation reduces tooth decay by 20 to 40 percent. The California State Water Resources Control Board advised SCWA to implement the CDC's recommended optimal fluoride content of 0.7 mg/L and control range of 0.6 mg/L 1.2 mg/L. Information about fluoridation, oral health and current issues is available from http://waterboards.ca.gov/drinking_water/certlic/drinkingwater/Fluoridation.shtml.
- 8 On Systems that collect less than 40 samples per month, the Total Coliform Bacteria MCL is no more than one (1) monthly sample return total coliform positive, per the Total Coliform Rule (TCR). A positive TC sample triggers collection of samples for E. coli at the source (i.e., groundwater wells) per the federal Ground Water Rule (GWR). In 2018, all samples taken per the GWR returned negative (absent) for E. coli.
- 9a Hardness units are PPM. General guidelines for classification of water hardness are: 0 60 PPM as soft; 61 120 PPM as moderately hard; 121 180 PPM as hard; and greater than 180 PPM as very hard.
- 9b Most commercial companies use "grain" units. Conversion: 17.1 PPM = 1 grain.
- 10 SCWA Level for Lead & Copper is measured at the 90th percentile sampling of thirty-five (35) homes at the tap for Arden Park Vista (APV), sixteen (18) for Northgate & five (5) for Southwest Tract (SWT).
- 11 Effective January 18, 2017, The State Water Resources Control Board requires the Sacramento County Water Agency (SCWA) to provide one-time assistance with lead sampling to all public, private and/ or charter schools that submit a written request to and are served water by SCWA. In 2018, SCWA received three (3) requests for lead sampling at schools served in the Arden Park Vista water system (Arden Middle School, Mariemont Elementary & Sierra Oaks K-8).
- 12 Unregulated Contaminants Monitoring Rule (UCMR 3 / 2013 2015 Monitoring) with notification levels help to determine where certain contaminants occur and whether they need to be regulated. All contaminants tested for during the screening survey conducted in the Arden Park Vista water system returned non-detect. The Northgate water system was not required to sample for the UCMR3; however, Chloroform and Trichloropropate (1,2,3-TCP) are regularly monitored by SCWA at all of its groundwater wells. For more information on the levels of unregulated contaminants found in Fruitridge Vista Water Company's samples, please call Fruitridge Vista Water Company at (916) 443-2607.

For more detailed information regarding SCWA water quality, call Aaron Wyley @ (916) 875-5815.

SACRAMENTO COUNTY WATER AGENCY 2018 WATER QUALITY REPORT - ARDEN PARK VISTA, NORTHGATE & SOUTHWEST TRACT (See Note #1)

State Mandated Information for Nitrate, Arsenic & Lead:

Nitrate: Nitrate in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity.

Arsenic:

While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Lead:

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Sacramento County Water Agency is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

(To be submitted with a copy of the CCR)

Water System Name:	NORTHGATE 880
Water System Number:	3400173

The water system named above hereby certifies that its Consumer Confidence Report was distributed on <u>June 28, 2019</u> (*date*) to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the State Water Resources Control Board, Division of Drinking Water (DDW).

Certified by:	Name:	AARON WYLEY		
	Signature:	Aaron Wyley		
	Title:	Principal Engineering Technician		
	Phone Number:	(916) 875-5815	Date:	October 2, 2019
			-	

- CCR was distributed by mail or other direct delivery methods (attach description of other direct delivery methods used).
- CCR was distributed using electronic delivery methods described in the Guidance for Electronic Delivery of the Consumer Confidence Report (water systems utilizing electronic delivery methods must complete the second page).
- Good faith" efforts were used to reach non-bill paying consumers. Those efforts included the following methods:
 - Posting the CCR at the following URL: <u>www.saccountyccr.net</u>
 - Mailing the CCR to postal patrons within the service area (attach zip codes used)
 - Advertising the availability of the CCR in news media (attach copy of press release)
 - Publication of the CCR in a local newspaper of general circulation (attach a copy of the published notice, including name of newspaper and date published)
 - Posted the CCR in public places: (attach a list of locations)
 - Delivery of multiple copies of CCR to single-billed addresses serving several persons, such as apartments, businesses, and schools
 - Delivery to community organizations (attach a list of organizations)
 - Publication of the CCR in the electronic city newsletter or electronic community newsletter or listserv (attach a copy of the article or notice)
 - Electronic announcement of CCR availability via social media outlets (attach list of social media outlets utilized)
 - Other (attach a list of other methods used)
- *For systems serving at least 100,000 persons*: Posted CCR on a publicly-accessible internet site at the following URL: <u>www.saccountyccr.net</u>
- *For privately-owned utilities*: Delivered the CCR to the California Public Utilities Commission

Water systems utilizing electronic distribution methods for CCR delivery must complete this page by checking all items that apply and fill-in where appropriate.

- Water system mailed a notification that the CCR is available and provides a direct URL to the CCR on a publicly available website where it can be viewed (attach a copy of the mailed CCR notification). URL: <u>www.saccountyccr.net</u>
- Water system emailed a notification that the CCR is available and provides a direct URL to the CCR on a publicly available site on the Internet where it can be viewed (attach a copy of the emailed CCR notification). URL: www.______
- Water system emailed the CCR as an electronic file email attachment.
- Water system emailed the CCR text and tables inserted or embedded into the body of an email, not as an attachment (attach a copy of the emailed CCR).
- *Requires prior DDW review and approval.* Water system utilized other electronic delivery method that meets the direct delivery requirement.

Provide a brief description of the water system's electronic delivery procedures and include how the water system ensures delivery to customers unable to receive electronic delivery.

SCWA mailed postcards with the referenced URL location to 2,993 addresses (including the SWT & APV

water systems). The postcard notification also advised customers can receive a printed version of the

CCR by calling our Customer Service Center at (916) 875-RAIN (7246).

The contracted printing company (DFS) finished the first batch of postcards incorrectly.

DFS had to organize and complete a reprint of the job, which was mailed out on 07/03/2019.

This form is provided as a convenience and may be used to meet the certification requirement of section 64483(c), California Code of Regulations.

(To be submitted with a copy of the CCR)

Water System Number: 3400156

The water system named above hereby certifies that its Consumer Confidence Report was distributed on <u>June 28, 2019</u> (*date*) to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the State Water Resources Control Board, Division of Drinking Water (DDW).

me:	AARON WYLEY		
nature:	Aaron Wyley		
le:	Principal Engineering Technician		
one Number:	(916) 875-5815	Date:	October 2, 2019
gr 10	nature: e:	nature: Aaron Wyley	nature: <i>Aason Wyley</i> e: Principal Engineering Technician

- CCR was distributed by mail or other direct delivery methods (attach description of other direct delivery methods used).
- CCR was distributed using electronic delivery methods described in the Guidance for Electronic Delivery of the Consumer Confidence Report (water systems utilizing electronic delivery methods must complete the second page).
- Good faith" efforts were used to reach non-bill paying consumers. Those efforts included the following methods:
 - Posting the CCR at the following URL: <u>www.saccountyccr.net</u>
 - Mailing the CCR to postal patrons within the service area (attach zip codes used)
 - Advertising the availability of the CCR in news media (attach copy of press release)
 - Publication of the CCR in a local newspaper of general circulation (attach a copy of the published notice, including name of newspaper and date published)
 - Posted the CCR in public places: (attach a list of locations)
 - Delivery of multiple copies of CCR to single-billed addresses serving several persons, such as apartments, businesses, and schools
 - Delivery to community organizations (attach a list of organizations)
 - Publication of the CCR in the electronic city newsletter or electronic community newsletter or listserv (attach a copy of the article or notice)
 - Electronic announcement of CCR availability via social media outlets (attach list of social media outlets utilized)
 - Other (attach a list of other methods used)
 - For systems serving at least 100,000 persons: Posted CCR on a publicly-accessible internet site at the following URL: www.saccountyccr.net
 - *For privately-owned utilities*: Delivered the CCR to the California Public Utilities Commission

Water systems utilizing electronic distribution methods for CCR delivery must complete this page by checking all items that apply and fill-in where appropriate.

- Water system mailed a notification that the CCR is available and provides a direct URL to the CCR on a publicly available website where it can be viewed (attach a copy of the mailed CCR notification). URL: <u>www.saccountyccr.net</u>
- Water system emailed a notification that the CCR is available and provides a direct URL to the CCR on a publicly available site on the Internet where it can be viewed (attach a copy of the emailed CCR notification). URL: www.______
- Water system emailed the CCR as an electronic file email attachment.
- Water system emailed the CCR text and tables inserted or embedded into the body of an email, not as an attachment (attach a copy of the emailed CCR).
- *Requires prior DDW review and approval.* Water system utilized other electronic delivery method that meets the direct delivery requirement.

Provide a brief description of the water system's electronic delivery procedures and include how the water system ensures delivery to customers unable to receive electronic delivery.

SCWA mailed postcards with the referenced URL location to 2,993 addresses (including the Northgate &

APV water systems). The postcard notification also advised customers can receive a printed version of

the CCR by calling our Customer Service Center at (916) 875-RAIN (7246).

The contracted printing company (DFS) finished the first batch of postcards incorrectly.

DFS had to organize and complete a reprint of the job, which was mailed out on 07/03/2019.

This form is provided as a convenience and may be used to meet the certification requirement of section 64483(c), California Code of Regulations.

Certificate of Bulk Mailing – Domestic Postage: Mailers must affix meter, PC Postage®, Fee for Certificate or (uncanceled) postage stamps here in paymentof total fee due. CA 9 neopost' Use Up to 1,000 pieces (1 certificate for total number) 010.693Current 15-1-10 Price List For each additional 1,000 pieces, or fraction thereof (Notice 123) Acceptance employee must cancel postage affixed (by round-date) at the time of mailing Duplicate Copy If payment of total fee due is being paid by Permit Imprint, include the PostalOne![®] Transaction Number here: Postage for Number of Number of Class of Mail Identical Weight Each Mailpiece Pieces to the First Class Pieces Paid Pound 64.00 2,993 Verified Total Number of Total Postage Paid Fee Paid Pounds for Mailpieces 47.28 \$10.69 \$767.10 Mailed For Mailed By County of Sacramento DFS-513505 Postmaster's Certification It is hereby certified that the number of mailpieces presented and the associated postage and fee were verified. This certificate does not provide evidence that a piece was mailed to a particular address. (Postmaster or Designee)

PS Form 3606-D, January 2016 PSN 7530-17-000-5548

See Reverse for Instructions

Certificate of Bulk Mailing - Domestic Postage: Mailers must affix meter, PC Postage®, Fee for Certificate or (uncanceled) postage stamps here in payment of total fee due. neopost Use JUL - 3 2019 Up to 1,000 pieces (1 certificate for total number) Current \$008 554 Price List For each additional 1,000 pieces, or fraction thereof (Notice 123) Acceptance employee must cancel postage affixed (by round-date) at the time of mailing ? Duplicate Copy If payment of total fee due is being paid by Permit Imprint, include the Number of Number of Class of Mail Postage for PostalOne!® Transaction Number here: Identical Weight Each Mailpiece Pieces to the First Class Paid Pound Pieces 64.00 134 Verified Fee Paid Total Number of Total Postage Paid for Mailpieces Pounds \$8.55 \$46.90 2.11 Mailed For Mailed By DFS-513505 County of Sacramento **Postmaster's Certification** It is hereby certified that the number of mailpieces presented and the associated postage and fee were verified. This certificate does not provide evidence that a piece was mailed to a particular address. 11,0

PS Form 3606-D, January 2016 PSN 7530-17-000-5548

(Postmaster or Designee)

See Reverse for Instructions

Document Fulfillment Services 2930 Ramona Ave. #100 Sacramento CA 95826 (916) 374-9002 (916) 374-9011

Incident Report

Title	Sac County Postcards Presorting Error
Date Created	7-10-2019
Date of Error	7-1-2019
Job Information	Preprinted Postcard Mailer for Sac County
Department	Account Services
Manager/Lead	Deanna Dockter
Root Cause	The proper presorting information wasn't properly relayed, causing the job to be printed incorrectly (without preflight presorting done or proper IMB barcoding)
Corrective Action	DFS paid for and organized the complete reprint of this job. The job was mailed on 07-03-19. Moving forward, all postcard mailings will require team discussion before mailing.
Created By	Drew Absher
Sign-Off	RD

 $N_{H} = 0$ $m_{e} m_{e} m_{e} = 0.023 Th = 0.12$

Letter Date: July 30, 2019

Attention: Sarah Grant

C/O Danny Ernst, County of Sacramento Printing Services Division

On June 25, 2019 Sacramento County provided a job to DFS that required special handling, including presort services for postal discounts using a Permit Indicia. DFS incorrectly handled the job as a non-presort job. Due to the quantity of pieces for this job a respray of addresses by DFS was not possible, nor was a manual sort of this job.

DFS notified the County that the job was mishandled by DFS, and could not be mailed on time. The resolution was for DFS to pay for the cost of the production and services for reproducing the job. The job was then mailed on Tuesday, July 3rd.

All postcard and/or special jobs will be handled by a team at DFS. This will include an Account Service Representative, Account Service Manager, Production Manager, and COO. All jobs will require sign off by Management prior to starting services on these job types.

Drew Absher, Account Service Representative

Deanna Dockter, Manager of Account Services