EMESCAL WALLEY WATER DISTRICT

2018 WATER QUALITY REPORT

The Quality Of The Water You Drink

Temescal Valley Water District has prepared this 2018 Consumer Confidence Report to describe where our water comes from, what it contains and how it compares with state and federal drinking water standards for safety, appearance, taste and smell.

Temescal Valley's water supply comes from Northern California via the California Aqueduct. It begins as snow melt in the Northern Sierra Nevada mountains. Before reaching the Aqueduct, it travels through the Sacramento-San Joaquin Delta, then through 444 miles of the Aqueduct to the Metropolitan Water District's Henry J. Mills Treatment Plant in Riverside, where it is treated before delivery to Temescal Valley and on to our customers.

Dry 2018 water year comes to an end in California

During 2018 Californians were bidding farewell to a dry water year (October 2017-September 2018), which saw precipitation totals fall below the annual average for much of the state. The return to drier than average conditions was a let-down following an extremely wet water year in 2017 that had helped bring about drought relief.

Temescal Valley Water District continues to reduce our reliance on potable water by expanding our non-potable water delivery system to developments in the Valley. We are currently at a Stage I Normal Conservation Conditions which asks customers to use water wisely and to practice water conservation measures to prevent the waste and unreasonable use of water and to promote water conservation. Please see additional conservation measures on our website. We know water conservation is a challenge with this dry weather, but we can all make a difference by working together as a community.

Learn more on efficient irrigation and rebates at www.temescalvwd.com

Continuous Testing

Temescal Valley's supplier, the Western Municipal Water District works with the Metropolitan Water District of Southern California, the State Water Resources Control Board and independent certified testing laboratories to continuously monitor the quality of the water supplies. Metropolitan, the supplier of most of the water

Western serves, has one of the most sophisticated water quality monitoring and treatment programs in the world.

They perform continuous daily monitoring and several hundred additional samplings each month. Western and Temescal Valley perform

even more testing, with 100 bacteriological samplings and 20 physical samplings taken from 40 different locations each month.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it

In this issue:

Our Water Supply

Terms To Know 2

2018 Water Quality Table 3

Special Health Information 4

Este informe contiene información muy importante sobre su agua potable.
Tradúzcalo o hable con alguien que lo entienda bien.

If you have questions, suggestions or comments about the information contained in this 2018 Water Quality Report please contact Paul Bishop at (951) 277-1414 ext. 6324. If you are a landlord or manage a multi-dwelling, please contact us to order as many additional copies of the report as you need for distribution to your tenants or visit our website at www.temescalvwd.com

General Water Quality Info continued...

dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturallyoccurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board

(State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (800) 426-4791.

cm)

Terms To Know

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste and appearance of drinking water.

Primary Drinking Water Standards (PDWS): MCLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWDs do not affect the health at the MCL levels.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Maximum Residual Disinfectant Level (MRDL): The Highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a disinfectant added for water treatment below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

 $\textbf{Treatment Technique (TT):} \ A \ required \ process \ intended \ to \ reduce \ the \ level \ of \ a \ contaminant \ in \ drinking \ water.$

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Abbreviations

MCL	Maximum Contaminant Level	HAA5	Haloacetic Acids (Five)
PHG	Public Health Goal	LRAA	Locational Running Annual Average
NTU	Nephelometric Turbidity Units	SI	Saturation Index (Langelier)
NA	Not Applicable	μS/cm	MicroSiemen per centimeter; or micromho per centimeter (µmho/c
ppb	Parts per billion or micrograms per liter (µg/L)	ppt	Parts per trillion or nanograms per liter (ng/L)
ppm	Parts per million or milligrams per liter (mg/L)	TOC	Total Organic Carbon
ND	None Detected	NL	Notification Level
N	Nitrogen	pCi/L	PicoCuries per Liter
TTHM	Total Trihalomethanes		

This report is based on requirements supplied by the State Water Resources Control Board, Division of Drinking Water revised through January 2018 and data supplied by Metropolitan Water District from 2018 Water Quality Report.

Microbiological Contaminants			MCL	MCLG	Typical Source of Bacteria
Total Coli form Bacteria	(In a mo.) I	0	1 positive monthly sample	0	Naturally present in the environment
Fecal Coli form or E. coli (In the year) 0 0 A routine		0	A routine sample and a repeat sample detect total coliform and either sample also detects fecal coliform or <i>E. coli</i>	0	Human and animal fecal waste

PRIMARY STANDARDS - Mandatory Health-Related Standa CLARITY	Units lards	Federal MCL [MRDL]	(MCLG) [MRDLG]	Range	Average	Major Sources in Drinking Water						
CLARITY	lards	[MRDL]	[MRDLG]									
CLARITY	lards											
		PRIMARY STANDARDS - Mandatory Health-Related Standards										
Turbidity (a)												
	NTU	5	NA	ND	ND	Soil runoff						
MICROBIOLOGICAL												
Heterotrophic Plate Count (HPC) (b)	CFU/mL	TT	NA	ND-I	ND	Naturally present in the environment						
INORGANIC CHEMICALS												
Aluminum	PPB	1000	600	ND-120	58	Residue from water treatment process; natural deposits; erosion						
Nitrate (as N)	PPM	10	10	0.6	0.6	Runoff and leaching from fertilizer use: sewage: natural erosion						
Fluoride (c)	PPM	2.0	I	0.6-0.9	0.8	Water additive for dental health						
Arsenic	PPB	10	0.004	ND	ND	Natural deposits erosion, glass and electronics production wastes						
RADIOLOGICALS												
Uranium	pCi/L	20	0.43	ND	ND	Erosion of natural deposits						
DISINFECTION BY-PRODUCTS, DISINFECTANT RESIDU	JALS AN	D DISINFECTI	ION BY-PRO	DDUCTS PRE	CURSORS							
Total Trihalomenthanes Distribution System(TTHM)(d)	PPB	80	NA	12-32.0	Highest LRAA 27.3 ppd.	By-product of drinking water chlorination						
Haloacetic Acids (five) Distribution	PPB	60	NA	ND-5.2	Highest LRAA	By-product of drinking water chlorination						
Total Chlorine Residual Distribution System	PPM	[4.0 as CL2]	[4 as CL2]	0.1-2.2	Highest LRAA 0.84	Drinking water disinfectant added for treatment						
Bromate	PPB	10	0.1	ND-10	3.7	By-product of drinking water ozonation						
Total Organic Carbon (TOC)	PPM	TT	NA	1.6-3.2	Highest RAA 2.3	Various natural and man-made sources; TOC is a precursor for the formation of disinfection byproducts						
SECONDARY STANDARDS - Aesthetic Standards												
Aluminum	PPB	1000	200	ND-120	58	Residue from water treatment process; natural deposits erosion						
Chloride	PPM	500	NA	79-91	85	Runoff/leaching from natural deposits; seawater influence						
Color	Units	15	NA	I	I	Naturally occurring organic material						
Odor Threshold (e)	TON	3	NA	2	2	Naturally-occurring organic materials						
Specific Conductance	μS/cm	1600	NA	514-518	516	Substances that form ions in water; seawater influence						
Sulfate	PPM	500	NA	34-46	40	Runoff/leaching from natural deposits; industrial wastes						
Total Dissolved Solids (TDS)	PPM	1000	NA	272-283	278	Runoff/leaching from natural deposits; seawater influence						
UNREGULATED CHEMICALS REQUIRING MONITORING	IG											
Boron	PPB	NL=1000	NA	160	160	Runoff/leaching from natural deposits; industrial wastes						
N-Nitrosodiemethylamine (NDMA)	PPT	NA	3	ND	ND	By-product of drinking water chlorination; industrial processes						
Vanadium	PPB	NL=50	NA	ND	ND	Naturally occurring; industrial waste discharge						
OTHER PARAMETERS												
Alkalinity	PPM	NA	NA	66-74	70	Runoff/leaching of natural deposits; carbonate, bicarbonate, hydroxide, and occasionally borate, silicate, and phosphate						
Calcium	PPM	NA	NA	16-20	18	Runoff/leaching from natural deposits						
Chlorate	PPB	NL=800	NA	ND	ND	By-product of drinking water chlorination; Industrial process						
Corrosivity (f)	SI	NA	NA	0.15-0.31	0.23	Elemental balance in water; affected by temperature, other factors						
Hardness	PPM	NA	NA	86-98	92	Runoff/leaching from natural deposits; sum of polyvalent cations, generally magnesium, and calcium present in the water						
Magnesium	PPM	NA	NA	11-12	12	Runoff/leaching from natural deposits						
pH pl	H units	NA	NA	8.4-8.5	8.5	NA .						
Potassium	PPM	NA	NA	2.8-2.9	2.8	Salt present in the water; naturally occurring						
Sodium	PPM	NA	NA	62-63	62	Salt present in the water; naturally occurring						

Footnotes

- (a) Metropolitan monitors turbidity at the CFE locations using continuous and grab samples. Turbidity, a measure of the cloudiness of the water, is an indicator of treatment performance. Turbidity was in compliance with the TT primary drinking water standard and the secondary drinking water standard of less than 5 NTU.
- (b) All distribution system samples had detectable total chlorine residuals and no HPC was required. However, plant effluents' HPC were analyzed to ensure chlorine disinfection.
- (c) Metropolitan was in compliance with all provisions of the State's Fluoridation System Requirements.
- (d) No MCL exceedance occurred in the Distribution System. Compliance with State and Federal TTHM MCL is based on LRAA.
- (e) No Odor Threshold MCL exceedance occurred in Mills Treatment Plant Effluents because no values were higher than the MCL of 3. The MCL was not violated.
- (f) Positive SI index = non-corrosive; tendency to precipitate and/or deposit scale on pipes.

Temescal Valley Water District

22646 Temescal Canyon Road Temescal Valley, CA 92883 Phone: 951-277-1414 Fax: 951-277-1419

BOARD MEMBERS

C.W. Colladay President

Paul Rodriguez Vice President

Fred Myers Director

David Harich Director

John Butler Director

Board meets at 8:30 a.m. the fourth Tuesday of each month at 22646 Temescal Canyon Road, Temescal Valley, CA 92883.

Special Health Information

Please share this information with all the other people who drink this water, especially those who may not have received this public notice directly (for example; people in apartments, nursing homes, schools and businesses) you can do this by posting this public notice in a public place or distributing copies by hand or mail. We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not your drinking water meets health standards. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Temescal Valley Water District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Additional Information

This Consumer Confidence Report (CCR) reflects changes in drinking water regulatory requirements during 2018. All water systems are required to comply with the state Total Coliform Rule. Beginning April 1, 2016, all water systems are also required to comply with the federal Revised Total Coliform Rule. The federal rule maintains the purpose to protect public health by ensuring the integrity of the drinking water distribution system and monitoring for the presence of microbials (i.e., total coliform and E. coli bacteria). The U.S. EPA anticipates greater public health protection as the new rule requires water systems that are vulnerable to microbial contamination to identify and fix problems. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment to determine if any sanitary defects exist. If found, these must be corrected by the water system.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers, EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the **Safe Drinking Water Hotline (1-800-426-4791)**.

