

2019 Consumer Confidence Report

AKE HEMET MUNICIPAL WATER DISTRICT-GARNER VALLEY SYSTEM

Lake Hemet MWD- Garner Valley System

Lake Hemet MWD- Garner Valley

Field Office, San Diego (619-525-4159).
Assessments determined sources are most vulnerable to animal operations, low-density septic systems and historic waste/dump landfills.
LHMWD invites public participation at our

Resources Control Board Drinking Water

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2019 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse LHMWD a 951-658-3241 para asistirlo en español.

There are six wells located throughout Garner Valley that supply your drinking water. Drinking water source assessment (2012) and sanitary survey (2017) information is available on request from LHMWD (951-658-3241) or State Water

monthly board meeting held at 3:00 PM on the third Thursday of every month at the LHMWD district office, 26385 Fairview Avenue Hemet, CA 92544.

For more information contact Kristen Frankforter, 951-658-3241 ext. 245 or email kfrankforter@lhmwd.org.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Protection of drinking water is everyone's responsibility. You can help protect your community's drinking water sources in several ways:

- Eliminate excessive use of lawn and garden fertilizers and pesticides—they contain hazardous chemicals that can reach your drinking water source.
- Pick up after your pets.
- If you have your own septic system, properly maintain your system to reduce leaching to water sources.
- Dispose of chemicals properly; take used motor oil to a recycling center.
- Volunteer in your community. Find a watershed or wellhead protection organization and volunteer to help. If there are no active
 groups, consider starting one. Use USEPA's Watershed Information Network to locate groups in your community or see How to
 Start a Watershed Team.

Contaminants that may be present in source water include:

Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic chemical contaminants, including synthetic and volatile organic chemicals that are by-

products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural applications, and septic systems.

Radioactive contaminants that can be naturally-occurring or be the result of oil and gas production and mining activities.

26385 Fairview Ave. P.O. Box 5039 Hemet CA 92544 Phone: 951-658-3241 Fax: 951766-7031 E-mail: kfrankforter@lhmwd.org

In order to ensure that tap water is safe to drink,

THE USEPA AND THE STATE WATER
RESOURCES CONTROL BOARD (STATE
BOARD) PRESCRIBE REGULATIONS
THAT
LIMIT THE AMOUNT OF CERTAIN
CONTAMINANTS IN WATER PROVIDED
BY PUBLIC WATER SYSTEMS. THE U.S.
FOOD AND DRUG ADMINISTRATION
REGULATIONS AND CALIFORNIA LAW
ALSO ESTABLISH LIMITS FOR
CONTAMINANTS IN BOTTLED WATER
THAT PROVIDE THE SAME PROTECTION
FOR PUBLIC HEALTH. ADDITIONAL
INFORMATION ON BOTTLED WATER IS
AVAILABLE ON THE CALIFORNIA
DEPARTMENT OF PUBLIC HEALTH
WERSITE-

https://www.cdph.ca.gov/Progra ms/CEH/DFDCS/Pages/FDBProgr ams/FoodSafetyProgram/Water. aspx

The following tables list all the drinking water contaminants that were detected

during the most recent sampling.
The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year

because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

2019 Consumer Confidence Report

Terms used in this report

Maximum Contaminant Level (MCL): the highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHG (or MCLG) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the USEPA.

Public Health Goal (PHG): the level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfection Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health.

MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring, reporting, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Regulatory Action Level (AL): the concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

ND: not detectable at testing limit **ppm**: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (μ g/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or pictograms per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

μS/cm: microsiemens per centimeter (a measure of conductivity)

NTU: Nephelometric Turbidity Unit: a measure of turbidity

USEPA'S
SAFE DRINKING WATER
HOTLINE
1-800-426-4791

Additional **General** Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline: 1-800-426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Nitrate in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity.

While your drinking water meets the federal and state standard for arsenic, it does contain levels of arsenic (see water quality tables). The arsenic standard balances the current understanding of arsenic's possible health effects against the cost of removing arsenic from drinking water. The US EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Sampling Results for Coliform Bacteria

Microbiological Contaminants	Sample Date	Highest No. of Detections	No. of months in violation	MCL	MCLG	Typical source of Bacteria
Total Coliform Bacteria (state Total Coliform Rule)		(in a month) Zero	Zero	1 positive monthly sample	0	Naturally present in the environment
Fecal Coliform or E. coli (state Total Coliform Rule)	2019	(in the year) Zero	Zero	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive		Human and animal fecal waste
E. coli (federal Revised Total Coliform Rule)		(in the year) Zero	Zero	(a)	0	Human and animal fecal waste

⁽a) Routine and repeat samples are total coliform-positive and either is *E.coli*-positive or system fails to take repeat samples following *E.coli*-positive routine sample or system fails to analyze total coliform-positive sample for *E. coli*.

Sampling Results for Lead and Copper

Lead and Copper	Sample Date	No. of samples collected	90th percentile level detected	No. sites exceeding AL	AL	PHG	Typical source of contaminant
Lead (ppb)	2017	5	ND	Zero	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	2017	5	0.75	Zero	1.3	0.3	Internal corrosion of household water plumbing systems; erosion of natural deposits; leaching from wood preservatives

Sampling Results for Sodium and Hardness

Chemical or Constituent	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	2017-19	78	29-100	None	None	Salt present in the water and is generally naturally occurring
Hardness (ppm)	2017-19	70	8-170	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring

Detection of Unregulated Contaminants

Chemical or Constituent (reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects
Vanadium (ppb)	2017-2019	1.2	ND-3.6	50	Exposures resulted in developmental and reproductive effects in rats.
Boron (ppm)	2017-2019	0.1	ND-0.18	1	Exposures resulted in decreased fetal weight (developmental effects) in newborn rats.

2019 Consumer Confidence Report

.AKE HEMET MUNICIPAL WATER DISTRICT- GARNER VALLEY

Detection of Contaminants with a Primary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG [MRDLG]	Typical Source of Contaminant
Arsenic (ppb)	2017-19	ND	ND-11*	10	0.004	Erosion of natural deposits; runoff from orchards;
Barium (ppm)	2017-19	ND	ND-0.13	1	2	Erosion of natural deposits
Copper (ppm)	2017-19	ND	ND-0.09	AL = 1.3	0.3	Runoff/leaching from natural deposits; leaching from wood preservatives
Fluoride (ppm)	2017-19	0.52	0.2-0.97	2	1	Erosion of natural deposits; discharge from fertilizer factories
Gross alpha particle activity (pCi/L)	2014-19	ND	ND-7.4	15	(0)	Erosion of natural deposits
Nitrate as Nitrogen (ppm)	2019	1.3	ND-6.6	10	10	Runoff /leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Uranium (pCi/L)	2011-16	2.0	ND-3.8	20	0.43	Erosion of natural deposits
Chlorine Residual (ppm)	2019	1.4	0.63-2.2	[4.0 as Cl ₂]	[4.0 as Cl ₂]	Drinking water disinfectant added for treatment
Total Trihalomethanes (TTHM) (ppb)	2019	21	21	80	_	Byproduct of drinking water disinfection
Haloacetic acids (HAA) (ppb)	2019	4.7	4.7	60	_	Byproduct of drinking water disinfection

^{*}During 2019, there were two samples at Well-1 that contained arsenic above the MCL. However, the running annual average at this well never exceeded the MCL. Therefore, the water served to our customers met all Federal and State drinking water standards.

Detection of Contaminants with a Secondary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	Typical Source of Contaminant
Chloride (ppm)	2017-19	25	22-30	500	Runoff/leaching from natural deposits; seawater influence
Color (distribution) (color units)	2019	0.4	ND-5	15	Naturally-occurring organic materials
Iron (ppb)	2017-19	ND	ND-700	300	Leaching from natural deposits; Industrial wastes
Odor—Threshold (distribution) (units)	2019	1.2	1-2	3	Naturally-occurring organic materials
Odor—Threshold (source) (units)	2017-19	1.5	1-5	3	Naturally-occurring organic materials
Specific Conductance (µS/cm)	2017-19	482	400-600	1600	Substances that form ions when in water
Sulfate (ppm)	2017-19	52	22-82	500	Runoff /leaching from natural deposits
Total Dissolved Solids (ppm)	2017-19	294	230-380	1000	Runoff /leaching from natural deposits
Turbidity (distribution) (NTU)	2019	0.16	ND-0.7	5	Soil runoff
Turbidity (source) (NTU)	2017-19	0.3	ND-8.7	5	Soil runoff

• If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Lake Hemet MWD is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at www.epa.gov/lead.