2018 Consumer Confidence Report

LAKE HEMET MUNICIPAL WATER DISTRICT

26385 Fairview Ave. P.O. Box 5039 Hemet, CA 92544 Phone: 951-658-3241 Fax: 951-766-7031 E-mail: kfrankforter@lhmwd.org

Lake Hemet MWD- Valle Vista/San Jacinto Valley

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2018 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse LHMWD a 951-658-3241 para asistirlo en español.

There are ten wells located along the San Jacinto River from Valle Vista to San Jacinto that supply most of your drinking water.

In 2018, 0.32% of domestic production was purchased from Eastern Municipal Water District (EMWD). Complete drinking water source assessments, completed in 2008, for all ten wells and our 2017 Sanitary Survey are available upon request at our district

office located at 26385 Fairview Ave. Hemet CA 92544 (951-658-3241) or from the State Water Resources Control Board, Drinking Water Field Office, 1350 Front Street, Room 2050, San Diego, CA 92101 (619-525-4159). The 2008 Source Water Assessments determined sources are most vulnerable to sewer collection systems, septic systems, agricultural and/or irrigation wells, and high-density housing.

LHMWD invites public participation at our monthly board meeting held at 3:00 PM on the third Thursday of every month at the LHMWD district office, 26385 Fairview Avenue Hemet CA 92544.

For more information contact Kristen Frankforter, 951-658-3241 ext. 245 or email kfrankforter@lhmwd.org.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

In order to ensure that tap wa ter is safe to drink,

THE USEPA AND THE STATE

WATER RESOURCES CONTROL
BOARD (STATE BOARD) PRESCRIBE
REGULATIONS THAT LIMIT THE
AMOUNT OF CERTAIN
CONTAMINANTS IN WATER
PROVIDED BY PUBLIC WATER SYSTEMS.
THE U.S. FOOD AND DRUG
ADMINISTRATION REGULATIONSAND
CALIFORNIA LAW ALSO ESTABLISHLIMIT
FOR CONTAMINANTS IN BOTTLEDWATE
THAT PROVIDE THE SAMEPROTECTION
FOR PUBLIC HEALTH.ADDITIONAL
INFORMATION ON BOTTLEDWATE IS
AVAILABLE ON THE CALIFORNIA
DEPARTMENT OF PUBLIC HEALTH

https://www.cdph.ca.gov/ Programs/CEH/DFDCS/

Pages/FDBPrograms/

FoodSafetyProgram/Water .aspx

Contaminants that may be present in source water include:

Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban storm-water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and herbicides that may come from a variety of sources such as agriculture, urban storm-water runoff and residential uses.

Organic chemical contaminants, including synthetic and volatile organic chemicals that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm-water runoff, agricultural applications and septic systems.

Radioactive contaminants that can be naturally-occurring or be the result of oil and gas production and mining activities.

2018 Consumer Confidence Report

Terms used in this report

Maximum Contaminant Level (MCL): the highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHG (or MCLG) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the USEPA.

Maximum Residual Disinfectant Level (MRDL): the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

USEPA'S SAFE DRINKING WATER HOTLINE

1-800-426-4791

Maximum Residual Disinfection Level Goal

(MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, as well as water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor or appearance of drinking water. Contaminants with SDWSs do not affect health at the MCL levels. Regulatory Action Level (AL): the concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must

Public Health Goal (PHG): the level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)
ppb: parts per billion or micrograms per liter (μg/L)
ppt: parts per trillion or nanograms per liter (ng/L)
ppq: parts per quadrillion or pictograms per liter (pg/L)
pCi/L: picocuries per liter (a measure of radiation)
μS/cm: microsiemens per centimeter (a measure of conductivity)

General Information

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that your water poses a health risk. In order to ensure that tap water is safe to drink, USEPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune systems disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. Nitrate in drinking water at levels above $10 \, \text{mg/L}$ is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above $10 \, \text{mg/L}$ may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider.

Lake Hemet Municipal Water District Valle Vista/San Jacinto Valley

The following tables list all the drinking water contaminants that were detected during the most recent sampling. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, although representative of the water quality, are more than one year old.

Results for water purchased from Eastern Municipal Water District (EMWD) are listed in braces {} in the tables below.

Sampling Results for Coliform Bacteria

Microbiological Contaminants	Highest No. of Detections	No. of months in violation	MCL 1		Typical source of Bacteria
Total Coliform Bacteria (state Total Coliform Rule)	(in a month) Zero	Zero	5% of monthly samples are total coliform positive		Naturally present in the environment
Fecal Coliform or E. coli (state Total Coliform Rule)	(in the year) Zero	Zero	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or E. coli positive		Human and animal fecal waste
E. coli (federal Revised Total Coliform Rule)	(in the year) Zero	Zero	routine and repeat samples are total coliform- positive and either is <i>E.coli</i> -positive <i>or</i> system fails to take repeat samples following <i>E.coli</i> - positive routine sample <i>or</i> system fails to analyze total coliform-positive sample for <i>E. coli</i> .	0	Human and animal fecal waste

Sampling Results for Lead and Copper

Lead and Copper	Sample Date	No. samples collected	90th percentile level detected	No. sites exceeding AL	No. of schools requesting lead sampling	AL	PHG	Typical source of contaminant
Lead (ppb)	2016	33	ND	One	Zero*	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	2016	33	0.19	Zero	N/A	1.3	0.3	Internal corrosion of household water plumbing systems; erosion of natural deposits; leaching from wood preservatives

^{*}LHMWD and Hemet Unified School District tested drinking water fountains and food-prep sinks in all K-12 public schools in 2018 and there were no detectable levels of lead found.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Lake Hemet MWD is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline, 1-800-426-4791, or at www.epa.gov/lead.

2018 Consumer Confidence Report

Sampling Results for Sodium and Hardness

Chemical or Constituent	Sample Date	Level Detected {EMWD}	Range of Detections {EMWD}	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	2016- 2018	46 { 38 }	23-99 { 28-53 }	None	None	Salt present in the water and is generally naturally occurring
Hardness (ppm)	2016- 2018	161 { 140 }	50-206 { 86-210 }	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring

Detection of Unregulated Contaminants

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Typical Source of Contaminant
Vanadium (ppb)	2016-2017 { 2013 }	11.6 { 7.9 }	3.2-32 { 4.7-20 }	50	Erosion of natural deposits
Molybdenum (ppb)	{2013}	{6 }	{3-10}	None	Erosion of natural deposits
Strontium (ppb)	{2013}	{310}	{230-380}	None	Erosion of natural deposits
Chlorate (ppb)	{2013}	{180}	{ND-760}	None	Erosion of natural deposits
Boron (ppb)	2017-2018	37	ND-58	None	Erosion of natural deposits
Hexavalent Chromium (ppb)	2017	ND	ND-1.3	* (PHG = 0.02)	Wood preservation; erosion of natural deposits
Total Organic Carbon (TOC) (ppm)	2013-2018 { 2018 }	ND {0.3}	ND – 1.2 {ND – 0.5}		

^{*} There is currently no MCL for Hexavalent Chromium. The previous MCL of 10 ppb was withdrawn on Sept. 11, 2017.

Protection of drinking water is everyone's responsibility. You can help protect your community's drinking water source in several ways:

- Eliminate excessive use of lawn and garden fertilizer and pesticides—they contain hazardous chemicals that can reach your drinking water source.
- Dispose of chemicals properly; take used motor oil to a recycling center.
- Volunteer in your community. Find a watershed or wellhead protection organization in your community and volunteer to help. If there are no active groups, consider starting one. Use USEPA's Adopt Your Watershed to locate groups in your community, or visit the Watershed Information Network's How to Start a Watershed Team.

Detection of Contaminants with a **Primary** Drinking Water Standard

Chemical or	Sample	Level	Range of		PHG	
Constituent (and reporting units)	Date {EMWD}	Detected {EMWD}	Detections {EMWD}	MCL [MRDL]	(MCLG) [MRDLG]	Typical Source of Contaminant
Aluminum (ppm)	2016-17	ND	ND-0.28	1	0.6	Erosion of natural deposits
Arsenic (ppb)	2017 { 2018 }	ND {2.0}	No range { ND-4.7 }	10	0.004	Erosion of natural deposits; orchard run-off
Barium (ppm)	2016-17 { 2018 }	ND {0.11}	ND-0.18 { ND-0.13 }	1	2	Discharges from metal refineries; erosion of natural deposits
Fluoride (ppm)	2017-18 { 2018 }	0.2 { 0.3 }	ND-0.48 { 0.2-0.6 }	2	1	Erosion of natural deposits; discharge from fertilizer and aluminum factories
Gross alpha particle activity (pCi/L)	2012-17 { 2016-18 }	4.4 { 3.9 }	ND-8.4 { ND-6.3 }	15	(0)	Erosion of natural deposits
Nitrate as Nitrogen (ppm)	2018 { 2018 }	2.3 { 0.8 }	0.6-5.8 { ND-2.5 }	10	10	Runoff /leaching from fertilizer use, septic tanks and sewage; erosion of natural deposits
Nickel (ppb)	2016-17 { 2018 }	ND {ND}	No range {ND-25}	100	12	Erosion of natural deposits; discharge from metal factories
Uranium (pCi/L)	2016-17 { 2016-18 }	3.1 { 1.9 }	1-4.6 { ND-4.5 }	20	0.43	Erosion of natural deposits
Chlorine (ppm)	2018	1.3	0.43-2.15	[4.0 as Cl ₂]	[4.0 as Cl ₂]	Drinking water disinfectant added for treatment
Trihalomethanes (ppb)	2018	8.0	4.3-8.0	80		Byproduct of drinking water disinfection
Haloacetic acids (ppb)	2018	1.3	1.1-1.3	60		Byproduct of drinking water disinfection
1,2,3- Trichloropropane [TCP] (ppb)	2018	ND	ND-0.015 ❖	0.005	0.0007	Leaching from hazardous waste sites; ingredient in nematocide used in the area in the 1950's;

[♦] LHMWD detected TCP in one well at levels exceeding the MCL. That well has been taken out of service.

Valle Vista/ San Jacinto Valley 2018 Consumer Confidence Report

Detection of Contaminants with a Secondary Drinking Water Standard

Chemical or Constituent (reporting units)	Sample Date	Level Detected {EMWD}	Range of Detections {EMWD}	MCL	Typical Source of Contaminant
Aluminum (ppb)	2016-17	ND	ND-280	200	Erosion of natural deposits
Chloride (ppm)	2016-18 { 2018 }	29 { 21 }	18-48 {11-32}	500	Runoff/leaching from natural deposits; seawater influence
Iron (ppb)	2017-18	ND	ND-255	300	Leaching from natural deposits; Industrial wastes
Odor-Threshold distribution system (unit)	2018 { 2018 }	1 {1}	ND-2 {no range}	3	Natural-occurring organic materials
Specific Conductance (µS/cm)	2016-18	529 { 440 }	369-850 { 390-520 }	1600	Substances that form ions when in water; seawater influence
Sulfate (ppm)	2017-18 { 2018 }	66 {47}	23-230 {18-71}	500	Runoff /leaching from natural deposits
Total Dissolved Solids (ppm)	2016-18	322 { 280 }	226-510 { 220-350 }	1000	Runoff /leaching from natural deposits
Turbidity-distribution (NTU)	2018	0.1 { 0.3 }	ND-1.1 {0.1-0.5}	5	Soil runoff

Did you know that the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? Luckily, there are many low-cost and no-cost ways to conserve water. Small changes can make a big difference- try one today and soon it will become second nature.

- Take short showers- A5 minute shower uses 4-5 gallons of water compared to up to 50 gallons of water for a bath.
- Shut off water while brushing your teeth, washing your hair, and shaving and save up to 500 gallons a month.
- Use a water-efficient showerhead. They are inexpensive, easy to install, and can save you up to 750 gallons a month.
- Water plants only when necessary.
- Fix leaking toilets and faucets. Faucet washers are inexpensive and take only a few minutes to replace. To check your toilet for a leak, place a few drops of food coloring in the tank and wait. If it seeps into the toilet bowl without flushing, you have a leak. Fixing it, or replacing it with a new, more efficient model can save up to a 1,000 gallons amonth.
- Adjust sprinklers so only your lawn is watered. Apply water only as fast as the soil can absorb it and during the cooler parts of the day to reduce evaporation.
- Visit https://www.epa.gov/watersense for more information.