

**2024 ANNUAL
WATER QUALITY
REPORT**

www.JCSD.us

AT YOUR SERVICE

Delivering Healthy Water Straight To Your Home

At Jurupa Community Services District (JCSD), our top priority is delivering safe, reliable, and high-quality water to the communities we serve. I am proud to share that, once again, our team has met and exceeded the rigorous standards set by the U.S. Environmental Protection Agency and the State Water Resources Control Board (SWRCB). This year's Consumer Confidence Report reflects our ongoing commitment to transparency, accountability, and public health.

Behind this report is a team of dedicated professionals who work around the clock to test water quality, maintain infrastructure, and invest in advanced treatment technologies. This team works hard to ensure your water meets the highest standards of safety and reliability. Whether navigating drought conditions, addressing emerging contaminants like PFAS, or planning for long-term supply, we remain focused on protecting public health and securing our region's water future.

Thank you for placing your trust in JCSD. We are honored to serve you and the community every day.

Sincerely,

Chris Berch

General Manager

Jurupa Community Services District

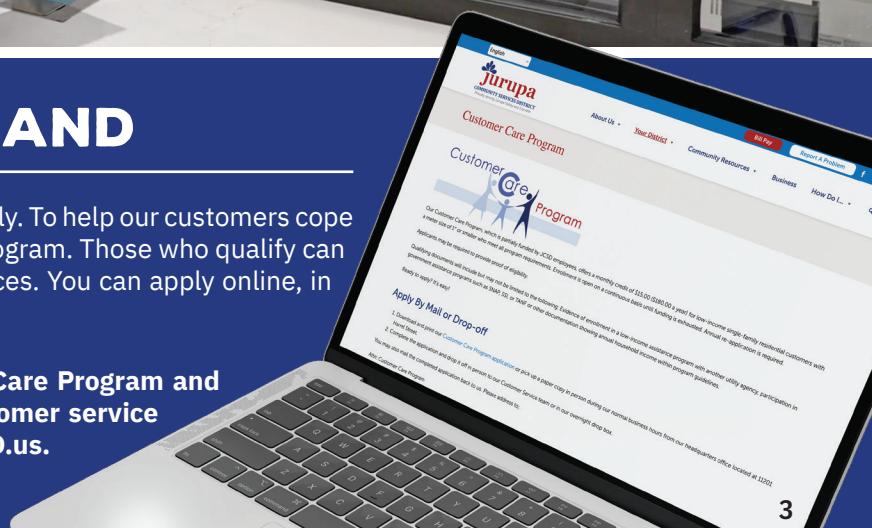
WISE INVESTMENTS KEEP THE WATER FLOWING

Delivering clean, healthy water and reliable service around the clock to nearly 140,000 customers requires a team of dedicated professionals. While we carefully track every drop of water that moves through our system, we're also mindful of every dime spent.

Money from your water bill goes directly toward maintaining the systems, equipment and staff needed to deliver safe water to your home or business. This includes planned upgrades and proactive repairs to ensure everything runs smoothly and prevents unexpected outages.

Your support also enables us to conduct more than 36,000 water quality tests annually, ensuring that everything meets strict state and federal standards. Plus, it allows us to invest in advanced treatment technology that keeps your drinking water clean and safe.

Behind the scenes, our dedicated team of operators, engineers, field technicians, and customer service staff depend on your rates to continue delivering the exceptional service you expect.



LENDING A HELPING HAND

Life can take unexpected turns, and bills can add up quickly. To help our customers cope with these challenges, we created the Customer Care Program. Those who qualify can receive a monthly credit toward their outstanding balances. You can apply online, in person, or by mail.



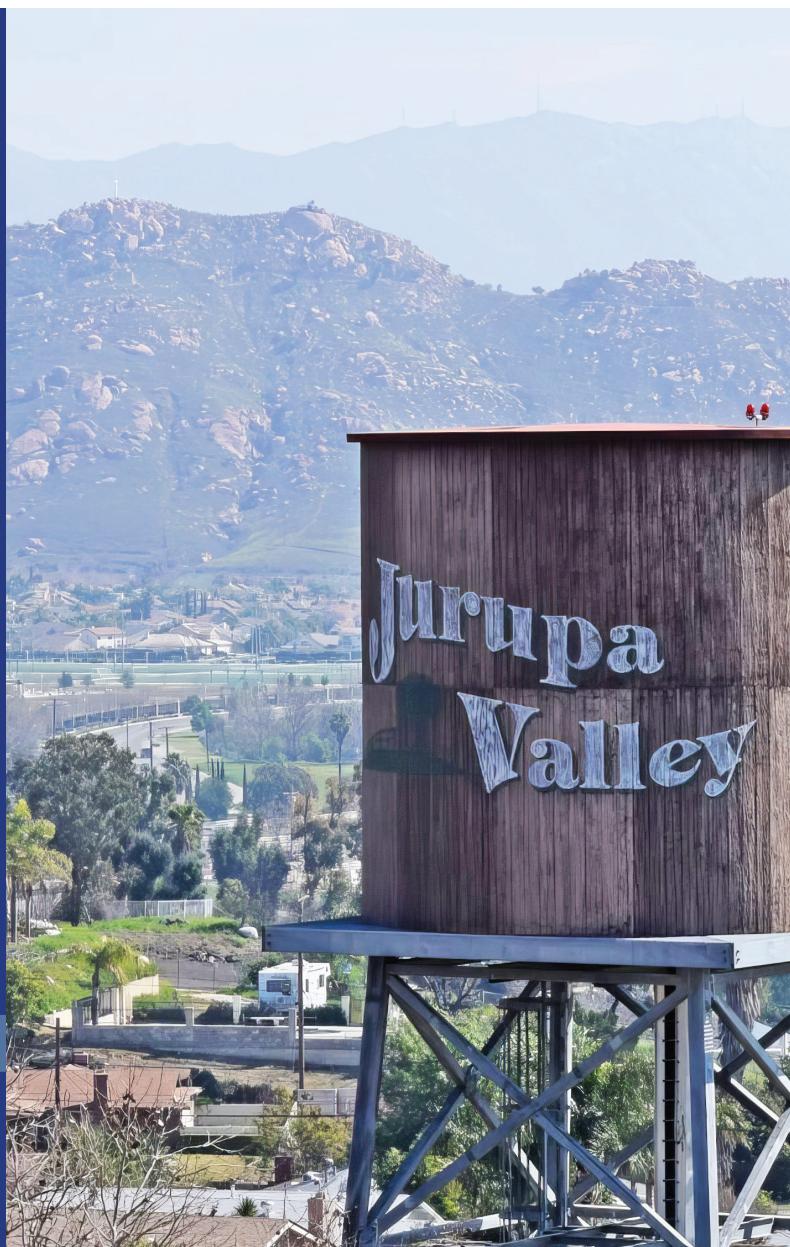
To learn more about the JCSD Customer Care Program and how you may qualify, please call our customer service team at (951) 685-7434 or visit www.JCSD.us.

KEEPING YOUR WATER SAFE FROM PFAS

PFAS, or per- and polyfluoroalkyl substances, have garnered significant attention in recent years, with new drinking water standards addressing the issue. Here at JCSD, we have already taken steps to treat our water for PFAS, ensuring it meets or exceeds all state and federal regulations.

PFAS are a group of manmade chemicals used in everyday products since the 1930s. These include nonstick cookware, stain-resistant fabrics, water-repellent clothing, even fast-food wrappers and food-to-go containers. They can enter our water supply through industrial discharge, runoff from landfills, or the use of firefighting foam.

Due to potential health issues and because PFAS breaks down very slowly, it can accumulate in the environment and our bodies over time. The U.S. Environmental Protection Agency (EPA) introduced new regulations in 2024, requiring water providers across the country to regularly test for PFAS and take action when levels exceed specific limits. JCSD has proactively constructed advanced treatment technology solutions to reduce PFAS in the drinking water.


STRAIGHT TO THE SOURCE

Where Your Drinking Water Comes From

Drinking water, whether from tap or bottled sources, comes from rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water moves over land or through the ground, it naturally dissolves minerals and, in some cases, native contaminants. It can also pick up substances from animals or human activities.

To ensure tap water is safe, the U.S. EPA and the SWRCB, Division of Drinking Water, set regulations that limit the levels of specific contaminants in public water systems. Similarly, the U.S. Food and Drug Administration (FDA) and California law regulate contaminants in bottled water to protect public health.

Pages 8-9 of this report lists all drinking water contaminants detected during our most recent sampling. The presence of these contaminants does not necessarily indicate a health risk. Some contaminants are monitored less than once per year, as their levels do not change frequently. Although our data is representative, some may be more than a year old.

FROM GROUND TO TAP:

How JCSD Treats Your Water

Before water reaches your tap, it undergoes thorough treatment to ensure it meets all state and federal quality standards. JCSD uses various methods to ensure safe and reliable water service to our customers:

Ion Exchange

During the ion exchange process, the water runs through tanks filled with special resin beads. As the water flows through these vessels, contaminants such as nitrates and PFAS stick to the resin, removing them from the water. Instead, they are replaced in the water with harmless ions that don't affect the taste or quality. In 2024, we expanded our facilities at the Roger D. Teagarden Ion Exchange Plant to expand treatment capacity.

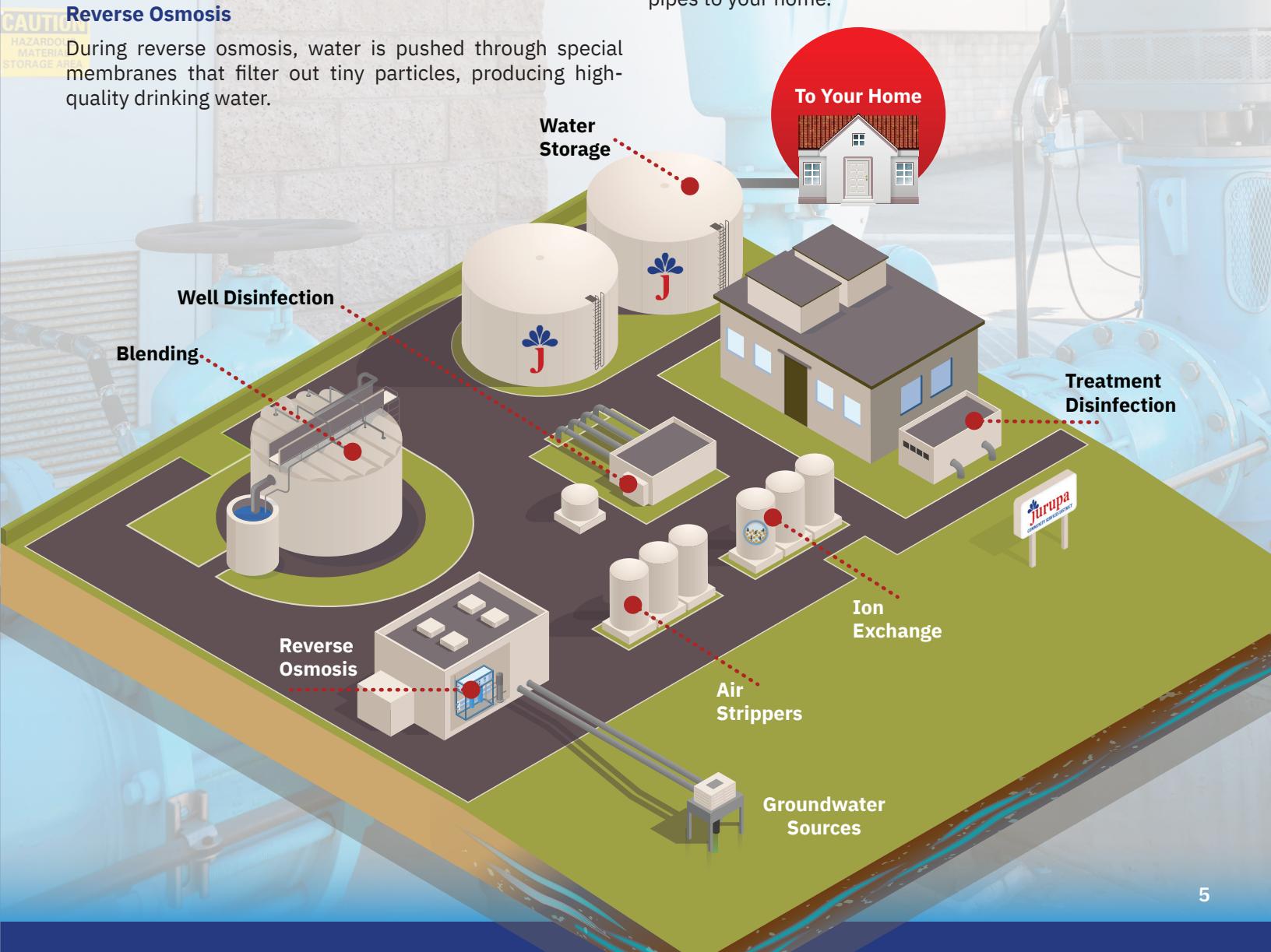
Well Disinfection

In areas with low levels of contaminants, JCSD disinfects groundwater at the well site by adding disinfectants to remove any organic pathogens that may be present. This process ensures the water meets state and federal drinking water standards before entering the system.

Reverse Osmosis

During reverse osmosis, water is pushed through special membranes that filter out tiny particles, producing high-quality drinking water.

Air Stripping


During air stripping, water is sprayed into a tower filled with synthetic packing material. As the water flows down, air is pumped up from the bottom, vaporizing volatile organic compounds to remove them from the water.

Blending

Groundwater treated at both the Teagarden and Chino II facilities is blended with pretreated imported water. This helps maintain consistency in the water delivered to customers.

Treatment Disinfection

After water has been treated at a treatment plant, JCSD adds disinfectants to eliminate any remaining organic pathogens. This step helps keep your water safe as it travels through pipes to your home.

Jurupa Community Services District (JCSD) tests drinking water quality through an independent laboratory for the constituents required by state and federal regulations. This report shows the results of our monitoring for the period from January 1, 2024, to December 31, 2024. Last year, as in years past, your metered tap water met all U.S. Environmental Protection Agency (U.S. EPA) and State Drinking Water Health Standards.

This report contains important information about your drinking water. Please contact Jurupa Community Services District at (951) 685-7434, extension 104, for assistance with translation.

For more information, visit www.JCSD.us

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse Jurupa Community Services District a (951) 685-7434, x104 para asistirlo en español.

由于此报告书包含着有关饮用水的重要信息,因此希望各位跟能够翻译或理解报告书内容的人对话。

Báo cáo này chứa đựng thông tin quan trọng về nước uống của bạn. Hãy đọc hoặc nhờ người dịch cho quý vị.

Chi tiết này thật quan trọng. Xin nhờ người dịch cho quý vị. Itong documento ay naglalaman nang mahalagang impormasyon tungkol sa tubig na maaring inumin. Maaring isalin sa taong nakakaintidi.

이 보고서는 당신의 식수와 관련된 중요한 정보를 포함하고 있으니 번역하시거나 보고서의 내용을 이해할 수 있는 분과 이야기하시기 바랍니다.

TERMS USED IN THIS REPORT

- Locational Running Annual Average (LRAA):** The average of sample analytical results for samples taken at a particular monitoring location during the previous four calendar quarters.
- Maximum Contaminant Level (MCL):** The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.
- Maximum Contaminant Level Goal (MCLG):** The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. EPA.
- Maximum Residual Disinfectant Level (MRDL):** The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- Maximum Residual Disinfectant Level Goal (MRDLG):** The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- Notification Level (NL):** The level is a non-regulatory, health-based advisory level established for contaminants in drinking water for which maximum contaminant level has not been established.
- Primary Drinking Water Standard (PDWS):** MCLs, MRDLs and treatment techniques (TTs) for contaminants that affect health, along with their monitoring and reporting requirements.
- Public Health Goal (PHG):** The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
- Regulatory Action Level (AL):** The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
- Secondary Drinking Water Standards (SDWS):** MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWS do not affect health at the MCL levels.
- Treatment Technique (TT):** A required process intended to reduce the level of a contaminant in a drinking water.

Revised Cross-Connection Control & Backflow Prevention Program: The SWRCB adopted a Cross-Connection Control Policy Handbook (CCCPH), which took effect on July 1, 2024, replacing the cross-connection control regulations outlined in California Code of Regulations (CCR) Title 17, Sections §7583 through §7605. The primary objective of the CCCPH is to protect public health by establishing standards designed to safeguard drinking water supplies from hazards associated with backflow and cross-connection contamination. In alignment with this policy, and in cooperation with the SWRCB Division of Drinking Water, Jurupa Community Services District (JCSD) aims to ensure the distribution of a safe and potable water supply to all domestic water users. To support this goal, JCSD developed a Cross-Connection Control Plan (CCCP) in accordance with the requirements of the CCCPH, which applies to all State of California Public Water Systems (PWSs).

For more information, visit www.JCSD.us/BackFlowPrevention

INFORMATION ABOUT YOUR DRINKING WATER

ADDITIONAL GENERAL INFORMATION ON DRINKING WATER

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA Safe Drinking Water Hotline (**1-800-426-4791**).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants, can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA and U.S. Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (**1-800-426-4791**).

Nitrate (as N) in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate (as N) levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant or you are pregnant, you should ask advice from your health care provider. Fluoride is a naturally occurring compound. JCSD does not add fluoride to its water supply. More information on fluoride in drinking water can be found on the State Water Board Division of Drinking Water Fluoridation website: waterboards.ca.gov/drinking_water/certlic/drinkingwater/Fluoridation or the U.S. EPA website: epa.gov/CCR/how-water-systems-comply-CCR-requirements.

Lead can cause serious health effects in people of all ages, especially pregnant people, infants (both formula-fed and breastfed), and young children. Lead in drinking water is primarily from materials and parts used in service lines and in home plumbing. Jurupa Community Services District (JCSD) is responsible for providing high quality drinking water and removing lead pipes but cannot control the variety of materials used in the plumbing in your home. Because lead levels may vary over time, lead exposure is possible even when your tap sampling results do not detect lead at one point in time. You can help protect yourself and your family by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Using a filter, certified by an American National Standards Institute accredited certifier to reduce lead, is effective in reducing lead exposures. Follow the instructions provided with the filter to ensure the filter is used properly. Use only cold water for drinking, cooking, and making baby formula. Boiling water does not remove lead from water. Before using tap water for drinking, cooking, or making baby formula, flush your pipes for several minutes. You can do this by running your tap, taking a shower, doing laundry or a load of dishes. If you have a lead service line or galvanized requiring replacement service line, you may need to flush your pipes for a longer period. If you are concerned about lead in your water and wish to have your water tested, contact the JCSD's water quality department at 951-685-7434 Ext. 167. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at www.epa.gov/safewater/lead.

Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. If you are concerned about elevated lead levels in your home's water, you may wish to have your water tested and/or flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the U.S. EPA Safe Drinking Water Hotline (**1-800-426-4791**).

JCSD has prepared service line inventory which can be accessed by visiting: www.JCSD.us/Lead-Free-JCSD.

CONTAMINANTS THAT MAY BE PRESENT IN SOURCE WATER INCLUDE

Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

Inorganic contaminants, such as salts and metals that can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.

Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses.

Organic chemical contaminants, including synthetic and volatile organic chemicals that are byproducts of industrial processes and petroleum production and can also come from gas stations, urban stormwater runoff, agricultural application and septic systems.

Radioactive contaminants, that can be naturally occurring or be the result of oil and gas production and mining activities.

DISTRIBUTION SYSTEM MONITORING

Microbiological	MCL	PHG (MCLG)	Highest Monthly Detections	No. of Months in Violation	Typical Source
Total Coliform Bacteria	5% of monthly samples are positive	0	1.59%	0	Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system.
E. coli (in the distribution system)	0	0	0	0	Human and animal fecal waste
E. coli (at the groundwater source)*1	0	0	1	0	
Lead and Copper *2	Action Level (AL)	PHG	90% Level Detected	Range	Typical Source
Lead (Pb) (µg/L)	15	0.2	ND	52 sites sampled; 3 sites over AL	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (Cu) (mg/L)	1.3	0.3	0.21	52 sites sampled; 0 sites over AL	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Disinfection Byproducts	MCL	PHG (MCLG)	Average	Range	Typical Source
Total Trihalomethanes (TTHMs) (µg/L)	80	NA	9.3	3.8-11.0	Byproduct of drinking water disinfection
Haloacetic Acids (HAA5) (µg/L)	60	NA	ND	ND	
Primary DWS	MCL [MRDL]	PHG [MRDLG]	Average	Range	Typical Source
Chlorine (mg/L)	[4.0 as Cl ₂]	[4.0 as Cl ₂]	1.3	0.74-1.95	Drinking water disinfectant added for treatment
Secondary DWS	MCL	PHG (MCLG)	Average	Range	Typical Source
Color (Color Units)	15	NA	ND	ND	Naturally-occurring organic materials
Turbidity (NTU)	5	NA	0.16	ND-0.38	Soil runoff
Specific Conductance (E.C.) (µmho/cm)	1600	NA	534	356-717	Substances that form ions when in water; seawater influence
Total Dissolved Solids (TDS) (mg/L)	1000	NA	342	228-459	Runoff/leaching from natural deposits
JCSD					
Primary DWS	MCL	PHG (MCLG)	Average	Range	Typical Source
Aluminum (mg/L)	1	0.6	0.025	ND-0.052	Erosion of natural deposits; residue from some surface water treatment processes
Arsenic (µg/L)	10	0.004	0.10	ND-3.5	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Barium (mg/L)	1	2	0.070	0.037-0.083	Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits
Hexavalent Chromium (µg/L)	10	0.02	1.2	ND-4.3	Erosion of natural deposits; transformation of naturally occurring trivalent chromium to hexavalent chromium by natural processes and human activities such as discharges from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production and textile manufacturing facilities.
Fluoride (F) (mg/L)	2	1	ND	ND-0.13	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories
Nitrate (mg/L)	10	10	5.2	ND-8.3	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Perchlorate (µg/L)	6	1	0.62	ND-2.4	Perchlorate is an inorganic chemical used in solid rocket propellant, fireworks, explosives, flares, matches, and a variety of industries. It usually gets into drinking water as a result of environmental contamination from historic aerospace or other industrial operations that used or use, store, or dispose of perchlorate and its salts.
Selenium (µg/L)	50	30	2.5	ND-11	Discharge from petroleum, glass, and metal refineries; erosion of natural deposits; discharge from mines and chemical manufacturers; runoff from livestock lots (feed additive)
Gross Alpha Particle Activity (pCi/L)*3	15	(0)	0.30	ND-3.86	Erosion of natural deposits
Uranium (U) (pCi/L)*4	20	0.43	0.07	ND-1.25	
1,2-Dibromo-3-chloropropane / DBCP (ng/L)	200	3	0.27	ND-17	Banned nematocide that may still be present in soils due to runoff/leaching from former use on soybeans, cotton, vineyards, tomatoes, and tree fruit

JCSD

Secondary DWS	MCL	PHG	Average	Range	Typical Source
Chloride (Cl) (mg/L)	500	NA	72	14-98	Runoff/leaching from natural deposits; seawater influence
Sulfate (SO ₄) (mg/L)	500	NA	10	4.0-26	Runoff/leaching from natural deposits; industrial wastes
Specific Conductance (E.C.) (umho/cm)	1600	NA	457	200-600	Substances that form ions when in water; seawater influence
Total Dissolved Solids (TDS) mg/L)	1000	NA	312	120-450	Runoff/leaching from natural deposits

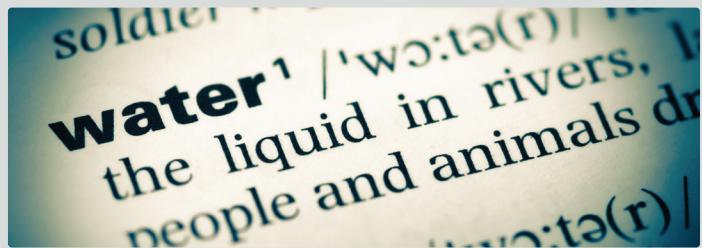
JCSD

Unregulated DWS	NL	PHG	Average	Range	Typical Source
Total Hardness (CaCO ₃) (mg/L)	NA	NA	163	100-230	Runoff/leaching from natural deposits; sum of polyvalent cations, generally magnesium and calcium present in the water
Calcium (Ca) (mg/L)	NA	NA	51	17-76	Runoff/leaching from natural deposits
Magnesium (Mg) (mg/L)	NA	NA	8.4	2.5-12	
Sodium (Na) (mg/L)	NA	NA	28	16-35	Salt present in the water; naturally-occurring
Potassium (K) (mg/L)	NA	NA	1.5	ND-2.4	
Total Alkalinity (as CaCO ₃) (mg/L)	NA	NA	100	40-150	Runoff/leaching of natural deposits; carbonate, bicarbonate, hydroxide, and occasionally borate, silicate, and phosphate
Vanadium (µg/L)	50	NA	1.5	ND-11	Naturally-occurring; industrial waste discharge
1,4 Dioxane (µg/L)	1	NA	0.09	ND-0.32	Byproduct in various industrial processes and consumer products like personal care and cleaning agents
PFPeA (ng/L)	NA	NA	0.46	ND-4.3	Industrial chemical factory discharges; runoff/leaching from landfills; used in fire-retarding foams and various industrial processes
PFOA (ng/L)	5.1	0.007	0.28	ND-4.4	

*1 - On September 25, 2024, a groundwater sample was collected from Well 19 prior to disinfection for testing of the fecal indicator Escherichia coli (E. coli). On September 26, 2024, we were notified that the sample tested positive for E. coli. Upon receiving this notification, we immediately ceased operation of Well 19 and collected five additional samples for further analysis. On September 27, 2024, we received confirmation that all follow-up samples were absent of both Total Coliform and E. coli. Following disinfection, Well 19 was returned to service.

Health Effects: E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, some of the elderly, and people with severely-compromised immune systems.

*2 - Samples collected in 2022


*3 - Samples collected in 2021, 2022, and 2024

*4 - Samples collected in 2019, 2022, and 2024

ABBREVIATIONS

- **mg/L** – milligrams per liter = parts per million (ppm) (1 ppm is equivalent to 1 second in 11.5 days)
- **NTU** – Nephelometric Turbidity Units
- **pCi/L** – pico Curies per liter (a measure of radiation)
- **NA** – Not Applicable
- **µg/L** – micrograms per liter = parts per billion (ppb)
- **ND** – Not Detectable at testing limit
- **ng/L** – nanograms per liter = parts per trillion (ppt)
- **S/cm** – microsiemens per centimeter, a unit of conductance (1 µS/cm = 1 µmho/cm)

For additional information regarding your water quality, please contact our Environmental Services Department at **(951) 685-7434 Ext. 104** or email **WQEnvironmentalServices@JCSD.us**.

JCSD FACILITY RECOGNIZED FOR EXCELLENCE IN WATER TREATMENT

The quality of water and service provided to our customers gains notice far beyond Jurupa Valley and Eastvale. In February, the Southwest Membrane Operator Association (SWMOA) named the Chino Basin II Desalter and Concentrate Reduction Facility (CRF) the 2024 Plant of the Year.

This award recognizes the facility's innovative technology and strong focus on sustainability. The Chino Basin Desalter Authority (CDA) plant, which is operated by JCSD, treats up to 29 million gallons of water per day using a combination of reverse osmosis, ion exchange, air stripping, and blending to remove contaminants and produce high-quality drinking water.

The CRF is responsible for handling the brine that is left over from the reverse osmosis process. It's the only facility in the country designed specifically to recover usable water from this concentrate using a mix of advanced techniques. These include pellet softening, lime softening with

clarifiers, media filtration, and secondary reverse osmosis. This process helps reclaim water that would otherwise go to waste and reduces the amount of brine released into the Inland Empire Brine Line. Overall, the plant recovers about 95 percent of the water it treats.

This award recognizes the facility's innovative technology and strong focus on sustainability.

The Plant of the Year award reflects the teamwork between JCSD and the CDA, underscoring a strong commitment to providing high-quality drinking water to the community.

PREPARING FOR THE FUTURE: JCSD's Service Line Upgrade Project

To continue providing reliable water, JCSD is replacing older service lines throughout the District. Through this multi-year project, these aging lines will be upgraded to more durable copper-plated piping, reducing the risk of leaks and ensuring dependable service for many years to come.

Once these upgrades are scheduled, homes and businesses will be notified about the three phases of each project.

Over the next decade, JCSD will be upgrading thousands of service lines in our District, and the project will be completed in three parts:

- 1** You'll receive advance notice when work is scheduled in your area. Crews will temporarily shut off your water for about an hour while the old service lines are replaced.
- 2** Once the work is done, the road will be patched with a temporary covering.
- 3** To reduce costs and minimize disruptions, final paving will be completed a short time later in coordination with the City of Eastvale's Grind and Overlay Project.

SAVE WATER, GET REWARDED

Looking to save water and money? JCSD and SoCal Water\$mart are teaming up to offer rebates for replacing turf with drought-tolerant landscaping. Not only does this help conserve water, but it could also lower your monthly bill.

Residential and commercial customers can receive up to \$5 per square foot of turf removed, terms apply. Plus, you may qualify for up to \$500 in additional rebates for planting eligible trees.

The SoCal Water\$mart program supports smart landscaping practices, including improved irrigation and rainwater retention. This can help you create a beautiful yard that's easier on your wallet and better for the environment.

Scan for
rebates!

jurupa
COMMUNITY SERVICES DISTRICT
Proudly serving Jurupa Valley and Eastvale

 **SoCal
Water\$mart**

For more information on all available rebates visit
www.JCSD.us/Rebates

COMMUNITY SERVICES DISTRICT

Proudly serving Jurupa Valley and Eastvale

11201 Harrel Street
Jurupa Valley, CA 91752

Presorted Standard
US Postage
PAID
Mira Loma, CA
Permit No. 34

INFORMATION ABOUT YOUR DRINKING WATER

For more information about this report, please contact the Environmental Services Department at **(951) 685-7434, Ext. 104**, or visit www.JCSD.us/WaterQuality.

JCSD holds regular Board of Directors meetings on the second and fourth Monday of each month at 6 p.m. Information about the Board of Directors, meeting locations, and agendas can be found at www.JCSD.us/Board.

Find Us On Social Media

@JCSDistrict | @JCSDParks
@JCSDVideos