2024 Consumer Confidence Report

Water System Name:	Chiriaco Summit Water District	Report Date:	06/27/2025

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2024 and may include earlier monitoring data.

ESTE INFORME CONTIENE INFORMACIÓN MUY IMPORTANTE SOBRE SU AGUA PARA BEBER. FAVOR DE COMUNICARSE AL DISTRITO DE AGUA DE CHIRIACO SUMMIT PARA ASISTIRLO EN ESPAÑOL SI TIENE ALGUNA DUDA.

Type of water source(s) in use:

Surface Water

Name & location of source(s):

Colorado River Aqueduct

Drinking Water Source Assessment information: As per MWD, and based on a Source Water Assessment (SWA) completed in December of 2002 at the Whitsett Intake Pumping Plant, this source (Colorado River supplies upstream of the plant) is considered to be most vulnerable to treated wastewater discharges, urbanization in the watershed, and recreation. Treated wastewater discharges and urbanization may contribute sources of nutrients, pathogens, metals, and other chemicals of concern. (For more information about the SWA, please call (213) 217-6850).

Time and place of regularly scheduled board meetings for public partic	4:00pm on the third Tuesday of every other		
month in Jan., March, May, July, Sept., and November, at the Joseph L. C	Chiriaco, Inc. Conferer	nce Room. Schedule av	ailable at www.cswaterdistrict.org
For more information, contact: Hector Sanchez, Chie	ef Plant Operator	Phone:	(760) 899-3118
TERMS USE	D IN THIS REPORT		
 Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA). Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA). Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. 	affect taste, odor, o SDWSs do not affect Treatment Techniqu of a contaminant in Regulatory Action L exceeded, triggers must follow. Variances and Exen Control Board (Sta treatment techniqu Level 1 Assessment identify potential p bacteria have been Level 2 Assessment water system to ide an <i>E. coli</i> MCL violat been found in our w ND : not detectable ppm : parts per milli ppb : parts per trillio ppt : parts per quad	r appearance of the d t the health at the MC ue (TT): A required pro drinking water. evel (AL): The concen treatment or other re nptions: Permissions te Board) to exceed e under certain condit : A Level 1 assessmen roblems and determin found in our water sys :: A Level 2 assessmen ntify potential probler ion has occurred and/ov vater system on multip	tration of a contaminant which, if equirements that a water system from the State Water Resources an MCL or not comply with a tions. t is a study of the water system to ne (if possible) why total coliform stem. ent is a very detailed study of the ms and determine (if possible) why or why total coliform bacteria have ble occasions. ter (mg/L) ter (mg/L) r liter (pg/L)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants,* such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants,* that can be naturally-occurring or be the result of oil and gas production and mining activities.

REGULATION OF DRINKING WATER AND BOTTLED WATER QUALITY

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

About your drinking Water Quality

Tables 1A, 1B, 2, 3, 4, 5, 6A, 6B, 7 and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1A – CHIRIACO SUMMIT WATER DISTRICT DISTRIBUTION SYSTEM SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA								
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of Months in Violation	MCL	M CL G	Typical Source of Bacteria			
Total Coliform Bacteria (state Total Coliform Rule)	0 (In a month)	0	1 positive monthly sample ^(a)	0	Naturally present in the environment			
Fecal Coliform or <i>E. coli</i> (state Total Coliform Rule)	0 (In the year)	0	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive	0	Human and animal fecal waste			
<i>E. coli</i> (Federal Revised Total Coliform Rule)	0 (In the year)	0	(b)	0	Human and animal fecal waste			

(b) Routine and repeat samples are total coliform-positive and either is E. coli-positive or system fails to take repeat samples following E. coli-positive routine sample or system fails to analyze total coliform-positive repeat sample for E. coli.

TABLE 1B - CHIRIACO SUMMIT WATER DISTRICT RAW WATER SUPPLY SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA

Microbiological Contaminants	Sample Date	Range	Typical Source of Bacteria
(complete if bacteria detected)	(Frequency)	Average	
Total Coliform Bacteria	1/24–12/24	ND-> 2400+	Naturally present in the environment
(CFU/100 mL)	(Monthly)	1201	
<i>E. coli</i>	1/24–12/24	ND-28	Human and animal fecal waste
(CFU/100 mL)	(Monthly)	14	

	TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER ⁽¹⁾									
Lead and Copper	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	Range of Results	AL	PHG	Typical Source of Contaminant		
Lead (ppb)	08/2023	5	2.3ug/L	0	ND – 2.4ug/L	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits		
Copper (ppb)	08/2023	5	55ug/L	0	7.4 – 60ug/L	1300	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives		

¹ Lead and copper monitoring is required every three years. Compliance for lead and copper is based on the 90th percentile of all samples collected in 2023 for the required triennial monitoring (2023 - 2025). The next samples will be collected in 2026.

Consumer Confidence Report

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Chiriaco Summit Water District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

TABLE 3 – SOURCE WATER MONITORING RESULTS FOR SODIUM AND HARDNESS ⁵								
Chemical or Constituent (and reporting units)	Sample Date	Range of Detections		MCL	PHG (MCLG)	Typical Source of Contaminant		
Sodium (nnm)	April 2024; October Range 96 – 104		None	Salt present in the water and is generally				
Sodium (ppm)	2024	Average	100	None	None	naturally occurring.		
Hardness (as CaCo ₃)	April 2024; October	Range	293 - 319	None	None	Generally, magnesium and calcium cations,		
(ppm)	2024	Average	306	None	None	and are usually naturally occurring.		

TABLE 4 – DETECTION OF CONTAMINANTS WITH A <u>PRIMARY</u> DRINKING WATER STANDARD ⁵								
Chemical or Constituent (and reporting units)	Sample Date	Range of Detections	Level Detected	MCL [MRDL]	PHG (MCLG)	Typical Source of Contaminant		
Arsenic (ppb)	Apr. 2024	Range Average	2	10	0.004	Erosions of natural deposits; runoff from orchards; glass and electronics production wastes		
Barium (ppb)	Apr. 2024	Range	143	1,000	2000	Oil and metal refineries discharge; natural deposits erosion		
Fluoride (ppm)	Apr. 2024; Oct. 2024	Range Average	0.3 - 0.4 0.3	2.0	1	Erosion of natural deposits; discharge from fertilizer and aluminum factories		
Nitrate (ppm) (as Nitrogen)	Apr. 2024	Range Average	0.6	10	10	Runoff and leaching from fertilizer use; leaching from septic tank and sewage; erosion of natural deposits		
Perchlorate (ppb)	April 2024	Range Average	1.6	6	1	Industrial waste discharge; erosion of natural deposits		
Gross Alpha Particle Activity (pCi/L) ²	2023 (Quarterly)	Range Average	ND – 6.2 ND	15	0	Erosion of natural deposits.		
Gross Beta Particle Activity (pCi/L) ^(3,4)	2024 (Quarterly)	Range Average	ND - 5.8 4.1	50	0	Decay of natural and man-made deposits		
Uranium (pCi/L) ⁽⁴⁾	2023 (Quarterly)	Range Average	2.6 - 3.0 2.9	20	0.43	Erosion of natural deposits.		

TABLE 5 – DISTRIBUTION SYSTEM MONITORING RESULTS FOR DISINFECTION BYPRODUCTS AND DISINFECTANT RESIDUALS ⁴
--

Chemical or Constituent (and reporting units)	Sample Date	Range Average	Levels of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Total Trihalomethanes (TTHM) (ppb)	02/2024 ~	Range	37 – 66	80	NONE	Byproduct of drinking water
Total Thilaiomethalles (TTHM) (ppb)	12/2024	Average	51.5	80	NONE	chlorination
Haloacetic Acids (Five) (HAA5) (ppb)	02/2024 ~	Range	13 – 24	60	NONE	Byproduct of drinking water
Haloacetic Acids (Five) (HAAS) (Ppb)	12/2024	Average	18.5	60	NONE	chlorination
Chlorine (free) Residual (ppm)	01/2024 ~	Range	1.74 – 2.80	4.0	4.0	Drinking water disinfectant
Chiorine (free) Residual (ppm)	12/2024	Average	2.27	4.0	4.0	added for treatment

² Data are from samples collected (triennially) during four consecutive quarters of monitoring in 2020 and reported for three years until the next samples are collected. ³ The gross beta particle activity MCL is 4 millirem/year annual dose equivalent to the total body or any internal organ. The screening level is 50 pCi/L.

⁴ Chiriaco Summit Water District sampling.

Consumer Confidence Report

TABLE 6A – DISTRIBUTION SYSTEM MONITORING RESULTS FOR CONSTITUENTS WITH A SECONDARY DRINKING WATER STANDARD ⁵								
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Levels of Detection	MCL	Typical Source			
Turbidity (NTU)	01/2024 ~	Range	0.014 - 0.039	E	Soil Runoff.			
	12/2024	Average	0.027	J				
Odor Threshold (TON)	October 2023	Range	ND	2	Naturally occurring organic materials			
	October 2025	Average	ND	5				

TABLE 6B - SOURCE WATER MONITORING RESULTS FOR CONSTITUENTS WITH A SECONDARY DRINKING WATER STANDARD ⁶

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Chloride (ppm)	Apr. 2024; Oct. 2024	Range Average	95 - 106 100.5	500	NA	Runoff/leaching from natural deposits
Color (units)	Apr. 2024; Oct. 2024	Range Average	3 – 5 4	15	NA	Naturally occurring organic minerals
Specific Conductance (µS/cm)	Apr. 2024; Oct. 2024	Range Average	1,000 - 1,060 1,030	1,600	NA	Substances that form ions in water; seawater influence
Sulfate (ppm)	Apr. 2024; Oct. 2024	Range Average	225 – 247 236	500	NA	Runoff/leaching from natural deposits; industrial waste
Total Dissolved Solids (ppm)	Apr. 2024; Oct. 2024	Range Average	658 – 689 674	1,000	NA	Runoff/leaching from natural deposits

TABLE 7 - MONITORING RESULTS FOR UNREGULATED CONTAMINANTS ⁵								
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Levels of Detection	Notification Level	Health Effects Language			
Boron (nnh)	Apr.	Range	- 140	1,000	The babies of some pregnant women who drink water containing boron in excess of the notification level may have an increased			
	2024	Average			risk of developmental effects, based on studies in laboratory animals.			
Chlorato (pph)	August	Range	249	800	High doses of chlorate can interfere with thyroid function and			
Chlorate (ppb)	2024	Average	249		can cause oxidative damage to red blood cells.			

TABLE 8 - SAMPLING RESULTS SHOWING TREATMENT OF SURFACE WATER SOURCES	
Treatment Technique ^(a) (Type of approved filtration technology used)	Evoqua (Siemens) Memcor Microfiltration System
Turbidity Performance Standards ^(b) (that must be met through the water treatment process)	Turbidity of the filtered water must: 1 – Be less than or equal to 0.1 NTU in 95% of measurements in a month. 2 – Not exceed 1.0 NTU for more than eight consecutive hours. 3 – Not exceed 1.0 NTU at any time.
Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1.	100%
Highest single turbidity measurement during the year	0.039NTU
Number of violations of any surface water treatment requirements	0

(a) A required process intended to reduce the level of a contaminant in drinking water.

(b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements.

⁵ Samples were taken from the Colorado River at Eagle Mountain Pumping Plant

 $^{^{\}rm 5}$ Samples were taken from the facility domestic tank effluent

⁵ Samples were taken from the Colorado River at Lake Havasu, Wittset Intake Pumping Plant

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Service Lines Inventory

In accordance with 40 CFR sections 141.84(a)(7) and 40 CFR 141.153(h)(8)(ii), the Chiriaco Summit Water District prepared an initial Lead Service Lines (LSL) inventory (a baseline inventory) and submitted it to the State of California. A copy of the inventory can be obtained at the district's field office, from Monday to Friday, from 10am to 2pm, or requested via email to eguevara@cswaterdistrict.org. **No lead service lines were present during the inventory**, or are present in the distribution system.

If you are concerned about lead in your water and wish to have your water tested, contact Chiriaco Summit Water District.