# ANNUAL WATER OUALITY REPORT

**Reporting Year 2022** 



Presented By Nevada Irrigation District

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.



# **Our Mission Continues**

We are once again pleased to present our annual water quality report covering all testing performed between January 1 and December 31, 2022. Over the years, we have dedicated ourselves to producing drinking water that meets all state and federal standards. We continually strive to adopt new methods for delivering the best-quality drinking water to you. As new challenges to drinking water safety emerge, we remain vigilant in meeting the goals of source water protection, water conservation, and community education while continuing to serve the needs of all our water users.

# Sierra Snowpack Is the Source of Your Water

NID treated and distributed more than three billion gallons of surface water last year. This water originates in the Sierra Nevada snowpack on five mountain watersheds. These include the Middle and South Yuba Rivers, Bear River, north fork of the North Fork American River, and Deer Creek. Most of this water is routed through Lake Spaulding and transported to NID's water treatment plants via canal systems operated by NID and the Pacific Gas and Electric Company.



# Water Quality Testing

Effective operation and maintenance of the drinking water distribution system ensures that quality drinking water travels through the system to your meter. The residual chlorine in the water after treatment prevents regrowth of organisms during storage and transmission in the distribution system. Annual flushing of water mains and rotation of stored supplies also keep water fresh and limit growth of organisms. The district conducts weekly water quality testing in the distribution system to ensure that drinking water continues to meet state and federal requirements.

# **Important Health Information**

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/ AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *cryptosporidium* and other micro-



bial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http://water.epa.gov/drink/ hotline.

# Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing highquality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. (If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.) If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or www.epa.gov/safewater/lead.

### Nevada Irrigation District Pledges Water Quality, Seeks Public Participation

The board of directors encourages public participation on issues concerning our water systems. Nevada Irrigation District (NID) policy is set by the elected board of directors. Board meetings are held at 9:00 a.m. on the second and fourth Wednesday of each month at the NID Business Center in Grass Valley. Check NID's website, www.nidwater.com, or call the main office at (530) 273-6185 to confirm meeting times.

**QUESTIONS?** For additional water quality information, customers may contact Treated Water Superintendent Shad Chittock at (530) 273-6185.

# Substances That Could Be in Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material and can pick up substances resulting from the presence of animals or from human activity.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (U.S. EPA) and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

Contaminants that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife;

Inorganic Contaminants, such as salts and metals, that can be naturally occurring or can result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and which can also come from gas stations, urban stormwater runoff, agricultural applications, and septic systems;

Radioactive Contaminants, that can be naturally occurring or can be the result of oil and gas production and mining activities.

More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

0

### **Source Water Assessment**

In 2021 NID teamed with the Placer County Water Agency and Starr Consulting to update its source water susceptibility assessment. This



assessment describes the susceptibility and types of constituents that may come into contact with your drinking water source. The report confirmed that NID watersheds have very low levels of contaminants usually associated with wildlife and human recreational activity. Leading sources of potential contamination include highways, roadways, and railroads near rivers and raw water canals, septic tanks, unidentified utility pipelines crossing canals, recreation at upstream reservoirs, historic and active mining operations, and utility operations. This new assessment (Watershed Sanitary Survey 2021 Update) can be found on the NID website at https://www.nidwater. com/watershed-sanitary-survey-2021.



# **Test Results**

Our water is monitored for many different kinds of substances on a very strict sampling schedule, and the water we deliver must meet specific health standards. Here, we only show those substances that were detected in our water (a complete list of all our analytical results is available upon request). Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The state recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

| EGULATED SUBSTANCES                                   |                 |                   |                          |                        |                   |                    |                                |                    |                   |                    |                   |                    |                   |           |                                                                                        |
|-------------------------------------------------------|-----------------|-------------------|--------------------------|------------------------|-------------------|--------------------|--------------------------------|--------------------|-------------------|--------------------|-------------------|--------------------|-------------------|-----------|----------------------------------------------------------------------------------------|
|                                                       |                 |                   |                          | Loma Rica North Auburn |                   |                    | Elizabeth George Lake Wildwood |                    |                   | Lake of th         | ne Pines          |                    |                   |           |                                                                                        |
| SUBSTANCE<br>(UNIT OF MEASURE)                        | YEAR<br>SAMPLED | MCL<br>[MRDL]     | PHG<br>(MCLG)<br>[MRDLG] | AMOUNT<br>DETECTED     | RANGE<br>LOW-HIGH | AMOUNT<br>DETECTED | RANGE<br>LOW-HIGH              | AMOUNT<br>DETECTED | RANGE<br>LOW-HIGH | AMOUNT<br>DETECTED | RANGE<br>LOW-HIGH | AMOUNT<br>DETECTED | RANGE<br>LOW-HIGH | VIOLATION | TYPICAL SOURCE                                                                         |
| Aluminum (ppm)                                        | 2022            | 1                 | 0.6                      | ND                     | NA                | ND                 | NA                             | 0.05               | NA                | ND                 | NA                | ND                 | NA                | No        | Erosion of natural deposits;<br>residue from some surface<br>water treatment processes |
| Chlorine (ppm)                                        | 2022            | [4.0 (as<br>Cl2)] | [4 (as<br>Cl2)]          | 0.62                   | 0.75–<br>1.42     | 0.65               | 0.48–<br>1.82                  | 0.66               | 0.48–<br>1.27     | 0.63               | 0.55–<br>1.34     | 0.60               | 0.42–<br>2.40     | No        | Drinking water disinfectant added for treatment                                        |
| Control of DBP<br>Precursors [TOC]<br>(ppm)           | 2022            | ΤT                | NA                       | 1.3                    | 1.2–1.5           | 1.33               | 1.2–1.6                        | 1.23               | 1.1–1.4           | 1.26               | 0.75–<br>1.9      | 1.35               | 1.2–1.5           | No        | Various natural and human-<br>made sources                                             |
| HAA5 [sum of 5<br>haloacetic acids]–<br>Stage 2 (ppb) | 2022            | 60                | NA                       | 16.2                   | 10.3–<br>24.1     | 15.5               | 10.2–<br>28.3                  | 23.95              | 7.1–<br>46.2      | 18.9               | 10.8–<br>27.5     | 14.3               | 9.3–<br>19.3      | No        | By-product of drinking water disinfection                                              |
| TTHMs [total<br>trihalomethanes]–<br>Stage 2 (ppb)    | 2022            | 80 <sup>1</sup>   | NA                       | 38.4                   | 13-75.3           | 34.8               | 18–76.5                        | 41.25              | 20–63             | 32.8               | 18–48             | 25                 | 16–31             | No        | By-product of drinking water disinfection                                              |

Tap water samples were collected for lead and copper analyses from sample sites throughout the community

|                                |                 |     |               | Loma                                 | Rica                                | North /                              | Auburn                              | Elizabeth                            | George                              | Lake Wi                              | ildwood                             | Lake of the Pines                    |                                     | Lake of the Pines |                                                                                                                                     | Lake of the Pines |  | Lake of the Pines |  |  |  |
|--------------------------------|-----------------|-----|---------------|--------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|-------------------|--|--|--|
| SUBSTANCE<br>(UNIT OF MEASURE) | YEAR<br>SAMPLED | AL  | PHG<br>(MCLG) | AMOUNT<br>DETECTED<br>(90TH<br>%ILE) | SITES<br>ABOVE<br>AL/TOTAL<br>SITES | VIOLATION         | TYPICAL SOURCE                                                                                                                      |                   |  |                   |  |  |  |
| Copper (ppm)                   | 2021            | 1.3 | 0.3           | ND                                   | 0/30                                | ND                                   | 0/20                                | ND                                   | 0/30                                | ND                                   | 0/20                                | ND                                   | 0/20                                | No                | Internal corrosion of household plumbing<br>systems; erosion of natural deposits; leaching<br>from wood preservatives               |                   |  |                   |  |  |  |
| Lead (ppb)                     | 2021            | 15  | 0.2           | ND                                   | 0/30                                | ND                                   | 0/20                                | ND                                   | 0/30                                | ND                                   | 0/20                                | ND                                   | 0/20                                | No                | Internal corrosion of household water<br>plumbing systems; discharges from industrial<br>manufacturers; erosion of natural deposits |                   |  |                   |  |  |  |

#### SECONDARY SUBSTANCES

|                                   |                 |       |               | Loma Rica          |                   | North Auburn       |                   | Elizabeth George   |                   | Lake Wildwood      |                   | Lake of the Pines  |                   |           |                                                             |
|-----------------------------------|-----------------|-------|---------------|--------------------|-------------------|--------------------|-------------------|--------------------|-------------------|--------------------|-------------------|--------------------|-------------------|-----------|-------------------------------------------------------------|
| SUBSTANCE<br>(UNIT OF MEASURE)    | YEAR<br>SAMPLED | SMCL  | PHG<br>(MCLG) | AMOUNT<br>DETECTED | RANGE<br>LOW-HIGH | VIOLATION | TYPICAL SOURCE                                              |
| Chloride (ppm)                    | 2022            | 500   | NS            | 1.8                | NA                | 3.5                | NA                | 2.2                | NA                | 3.8                | NA                | 4.0                | NA                | No        | Runoff/leaching from natural deposits; seawater influence   |
| Manganese (ppb)                   | 2022            | 50    | NS            | ND                 | NA                | 42                 | NA                | ND                 | NA                | ND                 | NA                | ND                 | NA                | No        | Leaching from natural deposits                              |
| Specific Conductance<br>(µmho/cm) | 2022            | 1,600 | NS            | 64                 | NA                | 94                 | NA                | 75                 | NA                | 220                | NA                | 81                 | NA                | No        | Substances that form ions when in water; seawater influence |

| SECONDARY SUBSTANCES                   |                 |       |               |                    |                   |                    |                   |                    |                   |                    |                   |                    |                   |           |                                                          |
|----------------------------------------|-----------------|-------|---------------|--------------------|-------------------|--------------------|-------------------|--------------------|-------------------|--------------------|-------------------|--------------------|-------------------|-----------|----------------------------------------------------------|
|                                        |                 |       |               | Loma               | Loma Rica North A |                    | North Auburn Eliz |                    | Elizabeth George  |                    | Lake Wildwood     |                    | e Pines           |           |                                                          |
| SUBSTANCE<br>(UNIT OF MEASURE)         | YEAR<br>SAMPLED | SMCL  | PHG<br>(MCLG) | AMOUNT<br>DETECTED | RANGE<br>LOW-HIGH | VIOLATION | TYPICAL SOURCE                                           |
| Sulfate (ppm)                          | 2022            | 500   | NS            | 9.6                | NA                | 16                 | NA                | 11                 | NA                | 13                 | NA                | 13                 | NA                | No        | Runoff/leaching from natural deposits; industrial wastes |
| <b>Total Dissolved Solids</b><br>(ppm) | 2022            | 1,000 | NS            | 55                 | NA                | 63                 | NA                | 47                 | NA                | 50                 | NA                | 50                 | NA                | No        | Runoff/leaching from natural deposits                    |
| Turbidity (NTU)                        | 2022            | 5     | NS            | 0.038              | 0.01–<br>0.2      | 0.026              | 0.02–<br>0.15     | 0.03               | 0.01–<br>0.11     | 0.025              | 0.02–<br>0.16     | 0.03               | 0.02–<br>0.25     | No        | Soil runoff                                              |
| UNREGULATED SUBSTANCES <sup>2</sup>    |                 |       |               |                    |                   |                    |                   |                    |                   |                    |                   |                    |                   |           |                                                          |

|                                  |                 | Loma               | Rica              | North A            | uburn             | Elizabeth          | George            | Lake Wil           | dwood             | Lake of th         | e Pines           |                |
|----------------------------------|-----------------|--------------------|-------------------|--------------------|-------------------|--------------------|-------------------|--------------------|-------------------|--------------------|-------------------|----------------|
| SUBSTANCE<br>(UNIT OF MEASURE)   | YEAR<br>SAMPLED | AMOUNT<br>DETECTED | RANGE<br>LOW-HIGH | TYPICAL SOURCE |
| Alkalinity (ppm)                 | 2022            | 13.7               | 12–16             | 17.8               | 15–25             | 14                 | 12–17             | 23                 | 20–25             | 16                 | 11–18             | NA             |
| Calcium (ppm)                    | 2022            | 7.5                | NA                | 4.3                | NA                | 4.7                | NA                | 4                  | NA                | 4.1                | NA                | NA             |
| Hardness, Total [as CaCO3] (ppm) | 2022            | 33                 | NA                | 15                 | NA                | 14                 | NA                | 14                 | NA                | 15                 | NA                | NA             |
| pH (units)                       | 2022            | 7.6                | 7.1–8.1           | 7.6                | 6.5–8.2           | 7.8                | 7.2–8.24          | 7.8                | 7.2–8.2           | 7.8                | 7.4–8.8           | NA             |
| Sodium (ppm)                     | 2022            | 32                 | NA                | 12                 | NA                | 9.3                | NA                | 8.7                | NA                | 9.8                | NA                | NA             |

<sup>1</sup>Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous system and may have an increased risk of getting cancer. <sup>2</sup>Unregulated contaminant monitoring helps U.S. EPA and the State Board determine where certain contaminants occur and whether the contaminants need to be regulated.

### Definitions

**90th %ile:** The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

**AL** (**Regulatory Action Level**): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs (SMCLs) are set to protect the odor, taste, and appearance of drinking water.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. EPA.

**MRDL** (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

**MRDLG (Maximum Residual Disinfectant Level Goal):** The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

**NA:** Not applicable.

**ND (Not detected):** Indicates that the substance was not found by laboratory analysis.

NS: No standard.

**NTU (Nephelometric Turbidity Units):** Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

PDWS (Primary Drinking Water Standard): MCLs and

MRDLs for contaminants that affect health, along with their monitoring and reporting requirements and water treatment requirements.

**PHG (Public Health Goal):** The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

**ppb (parts per billion):** One part substance per billion parts water (or micrograms per liter).

**ppm (parts per million):** One part substance per million parts water (or milligrams per liter).

**TT (Treatment Technique):** A required process intended to reduce the level of a contaminant in drinking water.

**µmho/cm (micromhos per centimeter):** A unit expressing the amount of electrical conductivity of a solution.



## Consumer Confidence Report 2022 Certification Form

(To be submitted with a copy of the CCR)

| Water System Name:  | Nevada I.D. North Auburn |
|---------------------|--------------------------|
| Water System Number | CA3110026                |

The water system named above hereby certifies that its Consumer Confidence Report was distributed <u>on 05/30/2023</u> (*date*) to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the State Water Resources Control Board, Division of Drinking Water (DDW).

| Certified by: | Name:         | Shad Chittock                |       |            |  |  |  |  |  |  |  |
|---------------|---------------|------------------------------|-------|------------|--|--|--|--|--|--|--|
|               | Signature:    | Blend Coulle                 |       |            |  |  |  |  |  |  |  |
|               | Title:        | Treated Water Superintendent |       |            |  |  |  |  |  |  |  |
|               | Phone Number: | ( 530 ) 273-6185             | Date: | 06/09/2023 |  |  |  |  |  |  |  |

To summarize report delivery used and good-faith efforts taken, please complete this page by checking all items that apply and fill-in where appropriate:

- CCR was distributed by mail or other direct delivery methods (attach description of other direct delivery methods used).
- CCR was distributed using electronic delivery methods described in the Guidance for Electronic Delivery of the Consumer Confidence Report (water systems utilizing electronic delivery methods must complete the second page).
- Good faith" efforts were used to reach non-bill paying consumers. Those efforts included the following methods:
  - Posting the CCR at the following URL: www.\_\_\_\_\_
  - Mailing the CCR to postal patrons within the service area (attach zip codes used)
  - Advertising the availability of the CCR in news media (attach copy of press release)
  - Publication of the CCR in a local newspaper of general circulation (attach a copy of the published notice, including name of newspaper and date published)
  - Posted the CCR in public places (attach a list of locations)
  - Delivery of multiple copies of CCR to single-billed addresses serving several persons, such as apartments, businesses, and schools
  - Delivery to community organizations (attach a list of organizations)
  - Publication of the CCR in the electronic city newsletter or electronic community newsletter or listserv (attach a copy of the article or notice)
  - Electronic announcement of CCR availability via social media outlets (attach list of social media outlets utilized)
  - Other (attach a list of other methods used)
- *For systems serving at least 100,000 persons*: Posted CCR on a publicly-accessible internet site at the following URL: www.\_\_\_\_\_
- *For privately-owned utilities*: Delivered the CCR to the California Public Utilities Commission

### **Consumer Confidence Report Electronic Delivery Certification**

Water systems utilizing electronic distribution methods for CCR delivery must complete this page by checking all items that apply and fill-in where appropriate.

- Water system mailed a notification that the CCR is available and provides a direct URL to the CCR on a publicly available website where it can be viewed (attach a copy of the mailed CCR notification). URL: <u>https://www.nidwater.com/nid-wgr-2021</u>
- Water system emailed a notification that the CCR is available and provides a direct URL to the CCR on a publicly available site on the Internet where it can be viewed (attach a copy of the emailed CCR notification). URL: www.\_\_\_\_\_
- Water system emailed the CCR as an electronic file email attachment.
- Water system emailed the CCR text and tables inserted or embedded into the body of an email, not as an attachment (attach a copy of the emailed CCR).
- *Requires prior DDW review and approval.* Water system utilized other electronic delivery method that meets the direct delivery requirement.

Provide a brief description of the water system's electronic delivery procedures and include how the water system ensures delivery to customers unable to receive electronic delivery.

The customers were made aware of the Electronic version of the Water Quality Report on their bills. A printed copy is also available to customers by mail if requested or available to be picked up in our lobby.

This form is provided as a convenience and may be used to meet the certification requirement of section 64483(c), California Code of Regulations.