2019 Consumer Confidence Report

Water System Name: Folsom Lake Mutual Water Company Report Date: June 15, 2020

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2019 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse *Folsom Lake Mutual Water Company* a *916 572-3569* para asistirlo en español.

Type of water source(s) in use: Surface water from the Yub American River water.	a and Bear River watersheds and Lake Spaulding with supplemented
Name & general location of source(s): Placer County Wa	ater Agency (PCWA) Foothill/Sunset Water System.
	adways and railroads near rivers and canals, septic tanks, utility ve mining operations, utility operations and timber harvest.
Time and place of regularly scheduled board meetings for p Usually the second Tuesday of odd months. For specific times a requesting information.	
For more information,Alan Johnston, Presidentcontact:	Phone: (916) 572-3569
TERMS USED	D IN THIS REPORT
 Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA). Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGS do not reflect the benefits of the use of disinfectants to control microbial contaminants. Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their 	 Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water. Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions. Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. ND: not detectable at testing limit ppm: parts per million or miligrams per liter (mg/L) ppt: parts per trillion or nanograms per liter (mg/L)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides*, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants*, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1	– SAMPLI	NG RES	SULTS SHOV	WING THE DE	TEC	FION C	OF COLIFORM	I BACTERIA
Microbiological Contaminants (complete if bacteria detected)	Highest N Detectio		No. of Months in Violation	ľ	MCL		MCLG	Typical Source of Bacteria
Total Coliform Bacteria (state Total Coliform Rule)	(In a mor 0	nth)	0	1 positive monthly sample ^(a)			0	Naturally present in the environment
Fecal Coliform or <i>E. coli</i> (state Total Coliform Rule)	(In the you of the second seco	ear)	0	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive			ve,	Human and animal fecal waste
<i>E. coli</i> (federal Revised Total Coliform Rule)	(In the year)	ear)	0	(b)			0	Human and animal fecal waste
or system fails to analyze total	are total colif coliform-posit	orm-positiv	ve and either is <i>E</i> . sample for <i>E</i> . <i>coli</i>				epeat samples follov	ving <i>E. coli</i> -positive routine sample
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. o Sampl Collect	of les 90 th Percenti	le No. Sites Exceeding	AL	PHG	No. of Schools Requesting Lead Sampling	Typical Source of Contaminant
Lead (ppb)	2017	5	4.1	0	15	0.2	0	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	2017	5	0.0247	0	1.3	0.3	Not applicable	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

ТА	BLE 3 – S	SAMPLIN	G RESULTS	S FOR SODIU	UM AND H	ARDNESS
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	2019	5.44	5.37-5.5	None	None	Salt present in the water and is generally naturally occurring
Hardness (ppm)	2019	10	9.59-10.3	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring
TABLE 4 – DETECT	ION OF (CONTAM	INANTS WI	ITH A <u>PRIM</u>	ARY DRIN	KING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Total Trihalomethane (ppb)	2019	43.1	43.1	80	None	Byproduct of drinking water disinfection
Total Haloacetic Acids (ppb)	2019	23.6	23.6	60	None	Byproduct of drinking water disinfection
Chlorine (ppm)	2019	1.05	0.91-1.2	[4]	[4]	Drinking water disinfectant added for treatment
Total Organic Carbon (ppm)	2019	1.2	0.7-1.5	TT=RAA<2	N	Various natural and manmade sources
Fluoride (ppm)	2017	ND	ND	2	1	Water additive that promotes strong teeth
Nitrate (ppm)	2016	ND	ND	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Arsenic (ppb)	2013	0.6	0-3	10	0.004	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Hexavalent Chromium (ppb)	2013	ND	ND		0.02	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits
TABLE 5 – DETECTIO	ON OF CO	ONTAMIN	ANTS WIT	TH A <u>SECON</u>	DARY DRI	NKING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant
Total Dissolved Solids (ppm)	2019	17.5	0-35	1000	None	Runoff / leaching from natural deposits
Specific Conductance (uS/cm)	2019	49.3	49.6-51.7	1600	None	Substances that form ions when in water
Chloride (ppm)	2019	2.84	2.65-3.03	500	None	Runoff / leaching from natural deposits
Sulfate (ppm)	2019	4.73	4.51-4.95	500	None	Runoff / leaching from natural deposits
Color (Units)	2019	1.5	0-3	15	None	Naturally-occurring organic materials
Odor (Units)	2019	1	1-1	3	None	Naturally-occurring organic materials
Manganese (ppb)	2018	0.94	0-2.3	50	None	Erosion of natural deposits
TA	ABLE 6 –	DETECTI	ON OF UN	REGULATE	D CONTAN	IINANTS
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level		Health Effects Language
Chlorate (ppb)	2014	237	120-480	800		Animal studies demonstrated that chlorate exposure in rats caused adverse effects to the pituitary and thyroid glands.
Strontium (ppb)	2014	38.1	32-49			NA

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Folsom Lake Mutual Water Company is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

TABLE 8 - SAMPLING RESULTS SHOWING TREATMENT OF SURFACE WATER SOURCES				
Treatment Technique ^(a)	Coagulation, flocculation, sedimentation, filtration and disinfection			
	Turbidity of the filtered water must:			
Turbidity Performance Standards ^(b)	1 – Be less than or equal to 0.3 NTU in 95% of measurements in a month.			
	2 – Not exceed 1 NTU at any time.			
Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1.	100%			
Highest single turbidity measurement during the year	0.25 NTU			
Number of violations of any surface water treatment requirements	0			

For Systems Providing Surface Water as a Source of Drinking Water

(a) A required process intended to reduce the level of a contaminant in drinking water.

(b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements.