

Water Quality Report

Safe and Reliable Drinking Water, Delivered Every Day

BOARD OF DIRECTORS

Duane D. Cave PRESIDENT

Brian S. Probolsky VICE PRESIDENT

Diane Rifkin VICE PRESIDENT

DICK FIOR DIRECTOR

Don Froelich
DIRECTOR

William "Bill" Moorhead DIRECTOR

Sherry Wanninger DIRECTOR

Dear Moulton Niguel Customer,

Our highest priority is providing you and your family with safe and reliable water service.

Every year, Moulton Niguel conducts approximately 12,000 water quality tests that are independently analyzed at state-of-the-art laboratories. Our water is tested at each stage of the treatment and delivery process to ensure it's safe when it reaches your home or business.

On behalf of the Moulton Niguel Water District Board of Directors, I am pleased to report:

Moulton Niguel's water is safe and continues to meet all state and federal water quality standards.

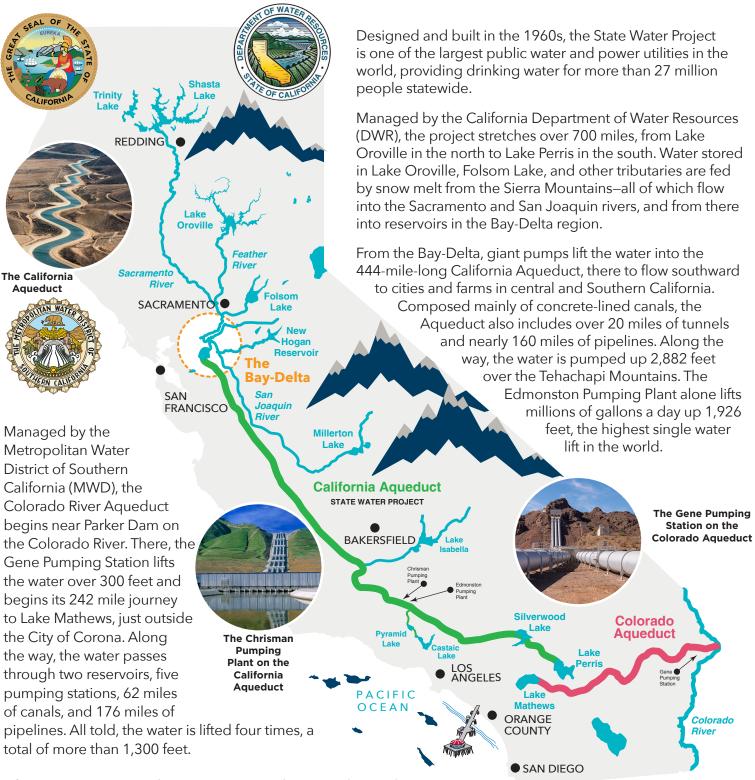
We encourage you to review the results for yourself.

This 2024 Consumer Confidence Report provides you with everything you need to know about our water, water quality test results, and water quality safety standards for the year. Our staff works diligently to ensure that our drinking water complies with the water quality standards set by the Environmental Protection Agency and the State Water Resources Control Board.

Moulton Niguel takes great pride in providing you with safe and reliable drinking water.

We are here to serve you. Please call us anytime you need help at (949) 831-2500 or email customerservice@mnwd.com.

Sincerely,


JOONE KIM-LOPEZ

General Manager & CEO

Moulton Niguel Water District

Joone Kim-Lopez

Where Our Water Comes From

After its journey across the Mojave Desert, the water descends into the Coachella Valley and through the

San Gorgonio Pass. Near Cabazon, the aqueduct flows underground, passing beneath the San Jacinto Mountains and continuing until it reaches its terminus at Lake Mathews. From there, 156 miles of distribution lines and eight more tunnels, are used to deliver the water throughout Southern California.

Here in the Moulton Niguel Water District, our water is imported from both Northern California and the Colorado River.

Water Quality

Sources of Our Water Supply

Moulton Niguel relies on imported water from MWD, which sources its water supply from the Colorado River and the State Water Project. MWD delivers an average of 1.5 billion gallons of water per day to a 5,200-square-mile service area of nearly 19 million people in parts of Los Angeles, Orange, Riverside, San Bernardino, San Diego, and Ventura counties.

Importing water from hundreds of miles away is only the start of providing you with clean, fresh water. Once the water is in the Southland, MWD pumps the water to individual cities throughout Orange County.

Your water is treated at the Diemer Water Treatment Plant in Yorba Linda and the Baker Water Treatment Plant in Lake Forest, which is then delivered to Moulton Niguel Water District. Your water is a blend of water from both treatment plants.

This water meets all state and federal regulations and it is kept safe from the treatment plant to your tap by regular testing throughout the distribution network. Moulton Niguel's pipelines, pump stations, and reservoirs are used to deliver this water to you when and where it is needed.

Moulton Niguel Water District monitors the water quality at all sources, reservoirs, and various points in the distribution system. All told, between the many agencies responsible for providing your water, it is tested and sampled more frequently than is required by state and federal laws and regulations. This vigilant monitoring ensures your drinking water stays within the requirements mandated by the federal Safe Drinking Water Act.

Contaminants Not Detected (2024)

The water delivered to your home is safe, clean and continues to meet every state and federal water quality standard. The contaminants listed here were **NOT DETECTED** in Moulton Niguel's water.

Atrazine	Cryptosporidium	Perchlorate	Strontium - 90	Toluene
Benzene	Cyanide	Perfluorooctane Sulfonic	Barium	Tritium
Beryllium	Fecal Coliform & E. coli	Acid (PFOS)	Asbestos	Vinyl Chloride
Cadmium	Giardia	Perfluorooctanoic Acid (PFOA)	Styrene	Xylenes
Carbon Tetrachloride	Mercury	Cobalt	Selenium	

Chromium Methyl-t-butyl ether (MTBE) Radon Thallium
Chromium-6 Nickel Simazine Thiobencarb

Basic Information About Your Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. Environmental Protection Agency's (USEPA) **Safe Drinking Water Hotline (1-800-426-4791)**.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

Chloramines

All of Moulton Niguel's drinking water is imported from MWD and is disinfected at the Diemer Water Treatment Plant and the Baker Water Treatment Plant with chloramines, which is a combination of chlorine and ammonia. In addition, Moulton Niguel maintains disinfection levels in stored water through the addition of chloramines, as needed.

Chloramines are effective killers of bacteria and other micro organisms that may cause disease. Compared to chlorine alone, chloramines last longer in the distribution system, minimize byproduct formation, and have minimal odor. Individuals who use kidney dialysis machines may want to take special precautions and consult their health care providers for the appropriate type of supplementary water treatment, if required. Customers who maintain fish ponds, tanks, or aquariums should also make necessary adjustments in water quality treatment, as these disinfectants may be harmful to fish.

For more information about your water quality, please call Moulton Niguel Customer Service at (949) 831-2500.

Water Quality Report Page 6

Water Quality Tests

Lead

Lead can cause serious health effects in people of all ages, especially pregnant people, infants (both formula-fed and breastfed), and young children. Lead in drinking water is primarily from materials and parts used in service lines and in home plumbing. Moulton Niguel is responsible for providing high quality drinking water but cannot control the variety of materials used in the plumbing in your home.

Moulton Niguel Water District completed an inventory of all District-owned and Customer-owned service lines and did not identify any lead components. A Notice of Lead Service Line Inventory Completion, which includes a description of inventory methods, may be found at mnwd.com/service-line-inventory.

Moulton Niguel participates in the State Water Resources Control Board's Lead Testing in Schools Program. To date, all samples collected at schools in the District have met drinking water standards set by the State and Federal regulatory agencies.

Because lead levels may vary over time, lead exposure is possible even when your tap sampling results do not detect lead at one point in time. You can help protect yourself and your family by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Using a filter, certified by an American National Standards Institute accredited certifier to reduce lead, is effective in reducing lead exposures. Follow the instructions provided with the filter to ensure the filter is used properly. Use only cold water for drinking, cooking, and making baby formula. Boiling water does not remove lead from water. Before using tap water for drinking, cooking, or making baby formula, flush your pipes for several minutes. You can do this by running your tap, taking a shower, doing laundry or a load of dishes.

If you are concerned about lead in your water and wish to have your water tested, contact **Moulton Niguel Customer Service at (949) 831-2500.**

Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline, (800) 426-4791, or at www.epa.gov/lead.

Cryptosporidium

Cryptosporidium is a microbial pathogen that originates from animal or human waste and is found in surface waters through out the United States. When ingested, it can cause diarrhea, fever, and other gastrointestinal symptoms.

MWD tested but did not detect Cryptosporidium in the source and treated surface waters during 2024. If detected, Cryptosporidium is eliminated by an effective treatment combination including sedimentation, filtration, and disinfection.

The USEPA and Federal Centers for Disease Control guide lines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminates are available from the USEPA Safe Drinking Water Hotline at (800) 426-4791 or visit www.epa.gov/safewater.

Reliable access to safe water is Moulton Niguel's highest priority.

Water Hardness

Levels of calcium and magnesium, which occur naturally in water, are the primary substances that determine whether water is hard or soft.

Water from the Colorado River, one of Moulton Niguel's sources of water, contains fairly high levels of these minerals and is considered "hard." Water hardness does not negatively affect your health; however, hard water does require more soap than soft water and will leave mineral deposits on plumbing fixtures over time.

Water hardness is measured in grains per gallon. In 2024, the hardness found in your water had an average of 16.45 grains per gallon.

Immunocompromised People

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections.

These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Additional Information

Drinking Water Fluoridation

Fluoride has been added to drinking water supplies in the United States since 1945. Of the 50 largest cities in the United States, 43 fluoridate their drinking water.

In December 2007, MWD joined a majority of the nation's public water suppliers in adding fluoride to drinking water in order to prevent tooth decay. MWD is in compliance with all provisions of the State's fluoridation system requirements. Fluoride levels in drinking water are limited under California State regulations to a maximum dosage of two (2) parts per million.

For additional information:

U.S. Centers for Disease Control and Prevention (800) 232-4636 • www.cdc.gov/fluoridation

State Water Resources Control Board, Division of Drinking Water

www.waterboards.ca.gov/drinking_water/ certlic/drinkingwater/Fluoridation.html

American Water Works Association www.awwa.org

Metropolitan Water District of Southern California Fluoridation Program • Edgar G. Dymally (213) 217-5709 • edymally@mwdh2o.com

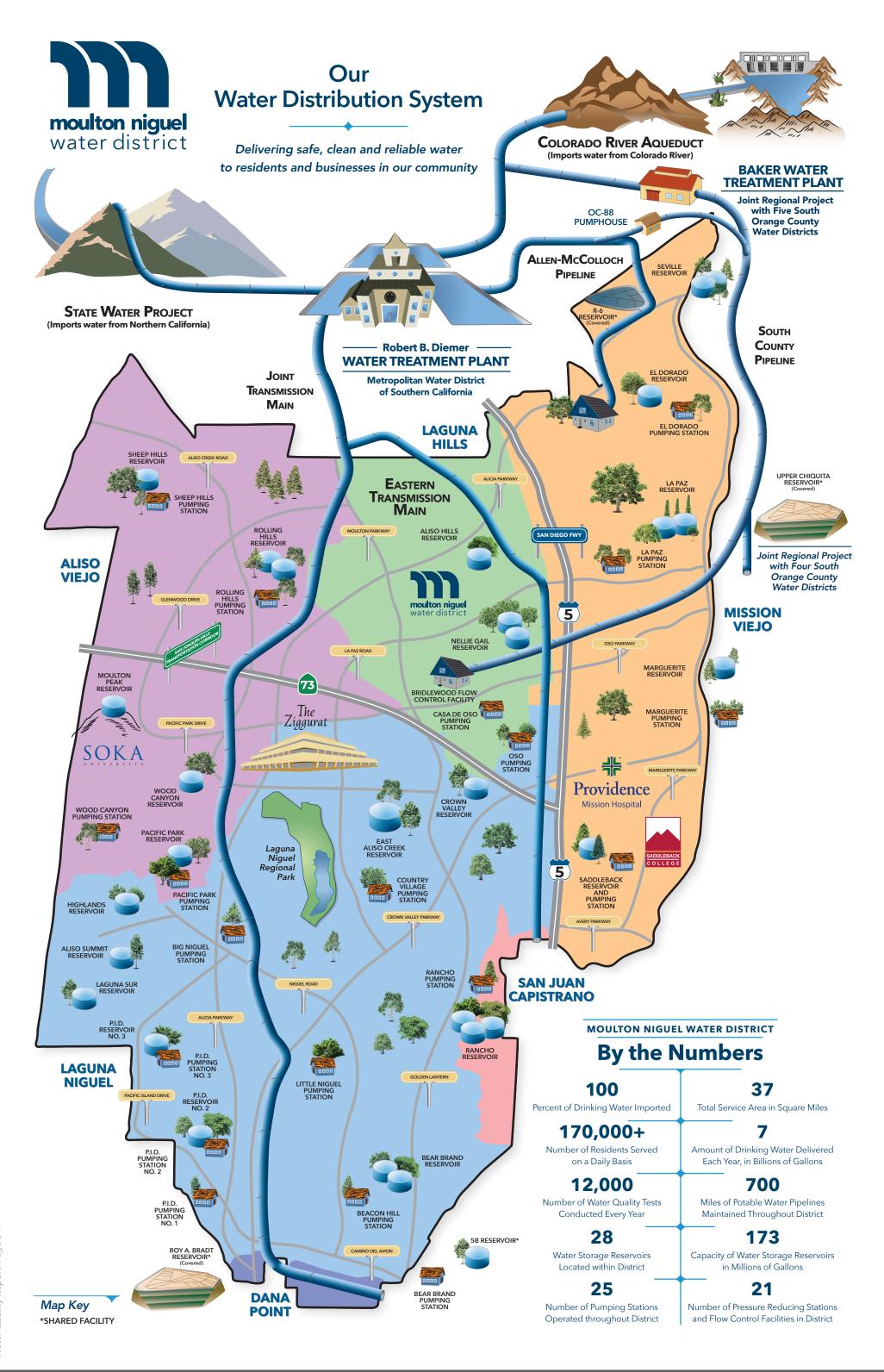
Want to Learn More?

There's a wealth of information online about Drinking Water Quality and water issues in general. Some good sites to begin your own research are:

Metropolitan Water District of So. California: www.mwdh2o.com

California Department of Water Resources: www.water.ca.gov

To learn more about:
Water Conservation & Rebates
www.mnwd.com/rebates


Or to learn why:

You Can Depend on Your Water System: www.youtube.com/ watch?v=lshe58YVGRE&t=1s

And to see the Aqueducts in action, checkout these two videos:

Wings Over the State Water Project: youtu.be/8A1v1Rr2neU

Wings Over the Colorado Aqueduct: youtu.be/KipMQh5t0f4

Water Quality Report Page 10

Source Water Assessments

Metropolitan Water District

Every five years, MWD is required by the State Division of Drinking Water (DDW) to examine possible sources of drinking water contamination in its State Water Project and Colorado River source waters.

The most recent surveys for MWD's source waters are the Colorado River Watershed Sanitary Survey - 2020 Update, and the State Water Project Watershed Sanitary Survey - 2021 Update. Both source waters are exposed to stormwater runoff, recreational activities, wastewater discharges, wildlife, fires, and other watershed-related factors that could affect water quality.

Water from the Colorado River is considered to be most vulnerable to contamination from recreation, urban and stormwater runoff, increasing urbanization in the watershed, and wastewater. Water supplies from Northern California's State Water Project are most vulnerable to contamination from urban and stormwater runoff, wildlife, agriculture, recreation, and wastewater.

USEPA also requires MWD to complete one Source Water Assessment (SWA) that utilizes information collected in the watershed sanitary surveys. MWD completed its SWA in December 2002. The SWA is used to evaluate the vulnerability of water sources to contamination and helps determine whether more protective measures are needed.

A copy of the most recent summary of either Watershed Sanitary Survey or the SWA can be obtained by calling MWD at (800) CALL-MWD (225-5693).

Baker Water Treatment Plant

The Baker Water Treatment Plant receives untreated surface water from MWD (see MWD water assessment left) and untreated surface water from Irvine Lake (Santiago Reservoir). The surface water assessment of Santiago Reservoir is provided by Serrano Water District, which also uses source water from Santiago Reservoir.

The most recent watershed sanitary survey for Santiago Reservoir was updated in 2019. Water supplies from Santiago Reservoir are most vulnerable to septic tank, landfill and dump activities. The Source Water Assessment (SWA) for Santiago Reservoir was completed in April 2001. The assessment was conducted for the Serrano Water District by Boyle Engineering Corporation with assistance from the Irvine Ranch Water District's staff and management.

A copy of the complete assessment may be viewed at the IRWD Water Quality Department, 3512 Michelson Drive, Irvine. You may request a summary of the assessment by writing to District Secretary, Irvine Ranch Water District, 15600 Sand Canyon Avenue, Irvine, California 92618.

Water Quality Charts Legend

What are Water Quality Standards?

Drinking water standards established by USEPA and DDW set limits for substances that may affect consumer health or aesthetic qualities of drinking water. The tables in the report show the following types of water quality standards:

- Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set close to the PHGs (or MCGLs) as are economically and technologically feasible.
- Secondary MCLs: Set to protect the odor, taste, and appearance of drinking water.
- Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- Parts per Billion (ppb): Micrograms per liter (µg/L).
- Parts per Million (ppm): Milligrams per liter (mg/L).
- Parts per Trillion (ppt): Nanograms per liter (ng/L).
- Primary Drinking Water Standard: MCLs, MRDLs, and treatment techniques for contaminants that affect health, along with their monitoring and reporting requirements.
- Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
- Running Annual Average (RAA): The highest of all Running Annual Averages calculated as average of all the samples collected within a 12-month period.

How are Contaminants Measured?

Water is sampled and tested throughout the year. Contaminants are measured in parts per million, billion, and trillion.

Parts per Million is Equivalent to One Blade of Grass in a Football Stadium

Parts per **Billion** is Equivalent to **One Drop of Water in an Olympic-Sized Swimming Pool**

Parts per **Trillion** is Equivalent to **One Penny in a Stack of Pennies Stretching to the Moon and Back**

What is a Water Quality Goal?

In addition to mandatory water quality standards, the USEPA and the DDW have set prescribed water quality goals for some contaminants. Water quality goals are often set at such low levels that they are not achievable in practice and are not directly measurable. Nevertheless, these goals provide useful guidelines and direction for water management practices. The tables in this report include three types of water quality goals:

- Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the USEPA.
- Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below
 which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of
 disinfectants to control microbial contaminants.
- Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency (CalEPA).

Every year, Moulton Niguel conducts approximately 12,000 water quality tests that are independently analyzed at state-of-the-art laboratories.

Metropolitan Water District of Southern California

Treated Surface Water Quality Results for 2024

Chemical	MCL	PHG (MCLG)	Average Amount	Range of Detections	MCL Violation?	Typical Source of Chemical
Radiologicals						
Gross Alpha Particle Activity (pCi/L)	15	(0)	ND	ND - 5	No	Runoff leaching of natural deposits
Gross Beta Particle Activity (pCi/L)	50	(0)	4	ND - 5	No	Decay of natural and man-made deposits
Uranium (pCi/L)	20	0.43	1	ND - 3	No	Erosion of natural deposits
Inorganic Chemicals						
Aluminum (ppm)	1	0.6	ND	ND - 0.11	No	Treatment Process Residue, Natural Deposits
Barium (ppm)	1	2	0.12	0.12	No	Runoff and leaching from fertilizer use, septic tanks and sewage; natural deposits erosion
Fluoride (ppm) treatment-related	2	1	0.7	0.6 - 0.8	No	Water Additive for Dental Health. Runoff or Leaching from Natural Deposits
Disinfection Byproducts						
Bromate (ppb)	10	0.1	ND	ND - 1.6	No	Byproduct of drinking water ozonation
Secondary Standards*						
Aluminum (ppb)	200*	600	ND	ND - 110	No	Treatment Process Residue, Natural Deposits
Chloride (ppm)	500*	N/A	104	93 - 116	No	Runoff or Leaching from Natural Deposits; seawater influence
Color (color units)	15*	N/A	2	1 - 2	No	Naturally-occurring Organic Materials
Odor (threshold odor number)	3*	N/A	1	1	No	Naturally-occurring Organic Materials
Specific Conductance (µmho/cm)	1,600*	N/A	979	888 - 1,070	No	Substances that form ions in Water; seawater influence
Sulfate (ppm)	500*	N/A	224	196 - 253	No	Runoff or Leaching from Natural Deposits; industrial wastes
Total Dissolved Solids (ppm)	1,000*	N/A	621	556 - 686	No	Runoff or Leaching from Natural Deposits
Unregulated Chemicals						
Chlorate (ppb)	NL = 800	N/A	77	77	N/A	Byproduct of drinking water chlorination; industrial process
Boron (ppm)	NL = 1	N/A	0.14	0.14	N/A	Runoff or Leaching from Natural Deposits; industrial wastes
Hardness, total as CaCO3 (ppm)	Not Regulated	N/A	270	235 - 305	N/A	Runoff or Leaching from Natural Deposits
Hardness, total (grains/gallon)	Not Regulated	N/A	15.7	13.7 - 17.8	N/A	Runoff or Leaching from Natural Deposits
Magnesium (ppm)	Not Regulated	N/A	26	22 - 29	N/A	Runoff or Leaching from Natural Deposits
pH (pH units)	Not Regulated	N/A	8.2	8.2	N/A	Hydrogen Ion Concentration
Potassium (ppm)	Not Regulated	N/A	4.9	4.4 - 5.4	N/A	Runoff or Leaching from Natural Deposits
N-Nitrosodi-n-butylamine (ppt)	Not Regulated	N/A	2.5	2.5	N/A	Byproduct of drinking water chloramination; industrial processes
Sodium (ppm)	Not Regulated	N/A	103	90 - 116	N/A	Salt present in water; naturally-occurring
Alkalinity, total as CaCO3 (ppm)	Not Regulated	N/A	114	105 - 123	N/A	Runoff or Leaching from Natural Deposits
Calcium (ppm)	Not Regulated	N/A	68	58 - 78	N/A	Runoff or Leaching from Natural Deposits
Total Organic Carbon (ppm)	П	N/A	2.4	2.0 - 2.5	No	Various Natural and Man-made Sources. TOC is a precursor for the formation of disinfection byproducts

ppb = parts-per-billion; ppm = parts-per-million; pCi/L = picoCuries per liter; µmho/cm = micromhos per centimeter; ND = not detected; TT = treatment technique; RAA = Running Annual Average; MCL = Maximum Contaminant Level; (MCLG) = federal MCL Goal; PHG = California Public Health Goal; NL = Notification Level; n/a = not applicable *Chemical is regulated by a secondary standard.

Turbidity - Combined Filter Effluent Metropolitan Water District Diemer Water Treatment Plant	Treatment Technique	Turbidity Measurements	TT Violation?	Typical Source of Chemical
1) Highest single turbidity measurement	0.3 NTU	0.06	No	Soil Runoff
2) Percentage of samples less than or equal to 0.3 NTU	95%	100%	No	Soil Runoff

Turbidity is a measure of the cloudiness of the water, an indication of particulate matter, some of which might include harmful microorganisms. **NTU** = nephelometric turbidity units Low turbidity in Metropolitan's treated water is a good indicator of effective filtration. Filtration is called a "treatment technique" (TT).

A treatment technique is a required process intended to reduce the level of chemicals in drinking water that are difficult and sometimes impossible to measure directly.

2024 Moulton Niguel Water District Distribution System					
Disinfection Byproducts	Units	MCL	Annual Average	Range of Detections	
Total Trihalomethanes (RAA)	ppb	80	52***	23.5 - 49.6	
Haloacetic Acids	ppb	60	24	6.4 - 32.7	
Disinfectant Residual (chloramines)	mg/L	4	2.17	0.8 - 3.0	
Lead (90th %)**	ppb	15	ND	N/A	
Copper (90th %)**	mg/L	1.3	0.103	N/A	

^{**}The Lead and Copper data is from testing of 52 residences in 2024. Zero tests exceeded the Action Level. ***Required testing is based on an RAA.

Baker Water Treatment Plant

Treated Surface Water Quality Results for 2024

Chemical	MCL	PHG (MCLG)	Average Amount	Range of Detections	MCL Violation?	Typical Source of Chemical
Radiologicals						
Gross Alpha Particle Activity (pCi/L)	15	(0)	3.8	3.8	No	Erosion of natural deposits
Gross Beta Particle Activity (pCi/L)	50	(0)	4.6	4.6	No	Decay of natural and man-made deposits
Uranium (pCi/L)	20	0.43	2.2	2.2	No	Erosion of natural deposits
Inorganic Chemicals						
Arsenic (ppb)	10	0.004	1.9	1.54 - 2.27	No	Treatment Process Residue, Natural Deposits
Barium (ppm)	1	2	0.129	0.11 - 0.14	No	Oil and metal refineries discharge; Natural deposits erosion
Fluoride (ppm)	2	1	0.35	0.31 - 0.38	No	Erosion of natural deposits; water additive that promotes strong teeth
Disinfection Byproducts						
Chlorite (ppm)	1	0.05	ND	ND - 0.09	No	Byproduct of drinking water chlorination
Chlorine Dioxide (ppb)	MRDL = 800	MRDLG = 800	98.5	ND - 680	No	Drinking water disinfectant added for treatment
Secondary Standards*						
Chloride (ppm)	500*	N/A	112	98.4 - 119	No	Runoff or Leaching from Natural Deposits; sea water influence
Color (color units)	15*	N/A	<3	<3 - 8	No	Naturally-occurring Organic Materials
Manganese (ppb)	50	NL = 500	1.44	ND - 47	No	Leaching from natural deposits
Odor (threshold odor number)	3*	N/A	1.8	<1 - 4	No	Naturally-occurring Organic Materials
Specific Conductance (µmho/cm)	1,600*	N/A	1,065	1008 - 1126	No	Substances that form ions in Water; sea water influence
Sulfate (ppm)	500*	N/A	237	228 - 243	No	Runoff or Leaching from Natural Deposits; industrial wastes
Total Dissolved Solids (ppm)	1,000*	N/A	642	588 - 712	No	Runoff or Leaching from Natural Deposits; sea water influence
Unregulated Chemicals						
Alkalinity, total as CaCO3 (ppm)	Not Regulated	N/A	124	115 - 144	N/A	Runoff or Leaching from Natural Deposits
Bicarbonate (ppb)	Not Regulated	N/A	124	115 - 144	N/A	Runoff or Leaching from Natural Deposits
Boron (ppm)	NL=1	N/A	0.13	0.12 - 0.15	N/A	Runoff or Leaching from Natural Deposits
Carbonate (ppm)	Not Regulated	N/A	<0.6	<0.6 - 0.87	N/A	Runoff or Leaching from Natural Deposits
Calcium (ppm)	Not Regulated	N/A	72.7	67.2 - 79.5	N/A	Runoff or Leaching from Natural Deposits
Hardness, total as CaCO3 (ppm)	Not Regulated	N/A	295	281 - 313	N/A	Runoff or Leaching from Natural Deposits
Hardness as Grains per Gallon	Not Regulated	N/A	17.21	16.39 - 18.26	N/A	Runoff or Leaching from Natural Deposits
Magnesium (ppm)	Not Regulated	N/A	27.9	26.2 - 29.8	N/A	Runoff or Leaching from Natural Deposits
Molybdenum (ppb)	Not Regulated	N/A	5.4	4.83 - 5.74	N/A	Runoff or Leaching from Natural Deposits
pH (pH units)	Not Regulated	N/A	7.9	7.4 - 8.6	N/A	Hydrogen Ion Concentration
Potassium (ppm)	Not Regulated	N/A	5.96	4.83 - 21.2	N/A	Runoff or Leaching from Natural Deposits
Sodium (ppm)	Not Regulated	N/A	105	90.3 - 114	N/A	Runoff or Leaching from Natural Deposits
Vanadium (ppb)	NL = 50	N/A	2.4	2.08 - 2.73	N/A	Naturally occurring; industrial waste discharge
Total Organic Carbon (ppm)	П	N/A	1.9	1.9	N/A	Various natural and man-made sources

ppb = parts-per-billion; ppm = parts-per-million; pCi/L = picoCuries per liter; µmho/cm = micromhos per centimeter; ND = not detected; NL = Notification Level; n/a = not applicable; TT = treatment technique MCL = Maximum Contaminant Level; (MCLG) = Federal MCL Goal; PHG = California Public Health Goal; MRDL = Maximum Residual Disinfectant Level Goal *Chemical is regulated by a secondary standard.

Turbidity - Combined Filter Effluent Baker Water Treatment Plant	Treatment Technique	Turbidity Measurements	TT Violation?	Typical Source of Chemical
1) Highest single turbidity measurement	0.1 NTU	0.04	No	Soil Runoff
2) Percentage of samples less than or equal to 0.3 NTU	95%	100%	No	Soil Runoff

Turbidity is a measure of the cloudiness of the water, an indication of particulate matter, some of which might include harmful microorganisms. Low turbidity in Baker's treated water is a good indicator of effective filtration. Filtration is called a "treatment technique" (TT). A treatment technique is a required process intended to reduce the level of chemicals in drinking water that are difficult and sometimes impossible to measure directly. **NTU** = nephelometric turbidity units

Unregulated Chemicals Requiring Monitoring in 2023						
Chemical Average Amount Range of Detections						
Lithium (ppb)	33.8	9.4 - 43.0				

In 2023, MNWD participated in the U.S. EPA's Unregulated Contaminant Monitoring Rule (UCMR5) program by performing additional testing for lithium and for 29 different per- and polyfluoroalkyl substances (PFAS) chemicals. This program helps determine if new regulatory standards are needed for unregulated contaminants. MNWD had zero detections for all 29 PFAS chemicals that were tested for, and we ensure all drinking water meets current standards. For more information, visit the EPA's website or contact the Safe Drinking Water Hotline at (800) 426-4791

ater Quality Report Page 14

Your RatepayerFunds at Work

Investments in Reservoir Management Infrastructure

Moulton Niguel continues to reinvest your ratepayer funds into improving and upgrading our local water infrastructure. Our water infrastructure system includes a network of local reservoirs that ensure our customers have ready-access to safe drinking water.

Right now, the District is working on a \$9.2 million improvement to our Reservoir Management Systems. As part of the project, Moulton Niguel is completely replacing the on-site disinfection generation systems and related equipment at four reservoir sites. These reservoirs are vital for storing our water locally and ensuring it's ready when we need it.

In addition to new buildings, the modernized facilities will have new storage tanks, metering pumps, and a centralized system for monitoring and controlling the reservoir management system.

This project represents the 4th phase of a 5-phase comprehensive program to address all of Moulton Niguel's Reservoir Management Systems. By investing in our water infrastructure, Moulton Niguel is strengthening our water reliability now and for years to come.

To learn more about the District's ongoing improvements to our infrastructure, visit **mnwd.com/construction-projects.**

Moulton Niguel Water District delivers high-quality drinking water, recycled water and wastewater services to more than 170,000 customers in Laguna Niguel, Aliso Viejo, Mission Viejo, Laguna Hills, Dana Point, and San Juan Capistrano.

Federal and State Water Quality Regulations

The United States Environmental Protection Agency (USEPA) and the State Water Resources Control Board, Division of Drinking Water (DDW) are the agencies responsible for establishing drinking water quality standards. The Metropolitan Water District of Southern California (MWD), which supplies imported water to Moulton Niguel, tests for unregulated chemicals in our water supply. Whenever possible, MWD goes beyond what is required by testing for unregulated chemicals that do not have drinking water standards. Unregulated chemical monitoring helps USEPA and DDW determine where certain chemicals may be present and whether new standards need to be established to protect public health.

Through drinking water quality testing programs carried out by MWD for imported water, and Moulton Niguel for our local distribution system, your drinking water is monitored from source to tap for regulated and unregulated constituents.

The State allows monitoring for some contaminants less than once per year because concentrations of these contaminants do not change frequently. Some data, though representative, is more than one year old.

Total Coliform Rule

This Consumer Confidence Report (CCR) reflects changes in drinking water regulatory requirements during 2021. These revisions add the requirements of the federal Revised Total Coliform Rule, effective since April 1, 2016, to the existing state Total Coliform Rule.

The revised rule maintains the purpose to protect public health by ensuring the integrity of the drinking water distribution system and monitoring for the presence of microbials (i.e., total coliform and E. coli bacteria). The USEPA anticipates greater public health protection as the rule requires water systems that are vulnerable to microbial contamination to identify and fix problems. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment to determine if any sanitary defects exist. If found, these must be corrected by the water system. The state Revised Total Coliform Rule became effective July 1, 2021.

Moulton Niquel: No PFOA or PFOS Chemicals Detected in Our Water

The State of California has established regulations for two specific PFAS chemicals: perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS). Moulton Niguel's water has been tested for these chemicals and does not have any known or reportable levels of PFOA or PFOS. Additional PFAS information is available at: www.waterboards.ca.gov/pfas.

Connect With Moulton Niguel

Community Participation

The Moulton Niguel Board of Directors typically meets at the District's Headquarters, 26161 Gordon Road, Laguna Hills, California 92653 on the second Thursday of the month at 6 pm. More information about regular meetings and events is available at **www.mnwd.com/events**.

Questions?

Contact Us for Answers.

If you have questions about this report, please call Dan West, Moulton Niguel Water Superintendent of Operations, at (949) 425-3566. To reach Moulton Niguel Customer Service and for other information, please call (949) 831-2500, or email customerservice@mnwd.com.

A copy of this report is also available on our website: www.mnwd.com/CCR.

For more information about the health effects of the listed contaminants in this report, call the **USEPA Safe Drinking Water Hotline at (800) 426-4791.**

This report contains important information about your drinking water. If you need help understanding this report, contact the District for further assistance, or review with someone who can help interpret it for you.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alquien que lo entienda bien.

该报告包含有关您的饮用水的重要信息。翻译它,或者与理解它的人交谈

.يحتوي هذا التقرير على معلومات بالغة الأهمية حول مياه الشرب لديك. يُرجى ترجمته أو التحدث مع شخص يفهمه جيدًا

