APPENDIX B: eCCR Certification Form (Suggested Format) ## **Consumer Confidence Report Certification Form** (To be submitted with a copy of the CCR) | Water System Name: | City of Garden Grove | |----------------------|----------------------| | Water System Number: | 3010062 | The water system named above hereby certifies that its Consumer Confidence Report was distributed on 06/23/21 to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the State Water Resources Control Board, Division of Drinking Water (DDW). #### Certified by: | Name: Duc Nguyen | Title: Water Quality Technician | |------------------------------|---------------------------------| | Signature: /www. | Date: 07/21/21 | | Phone number: (714) 741-5539 | blank | To summarize report delivery used and good-faith efforts taken, please complete this page by checking all items that apply and fill-in where appropriate: CCR was distributed by mail or other direct delivery methods (attach description of other direct delivery methods used). CCR was distributed using electronic delivery methods described in the Guidance for Electronic Delivery of the Consumer Confidence Report (water systems utilizing electronic delivery methods must complete the second page). "Good faith" efforts were used to reach non-bill paying consumers. Those efforts \boxtimes included the following methods: Posting the CCR at the following URL: www.ggcity.org/ccr Mailing the CCR to postal patrons within the service area (attach zip codes Advertising the availability of the CCR in news media (attach copy of press release) Publication of the CCR in a local newspaper of general circulation (attach a copy of the published notice, including name of newspaper and date published) Posted the CCR in public places (attach a list of locations) Delivery of multiple copies of CCR to single-billed addresses serving several persons, such as apartments, businesses, and schools | | □ Delivery to community organizations (attach a list of organizations) □ Publication of the CCR in the electronic city newsletter or electronic community newsletter or listserv (attach a copy of the article or notice) □ Electronic announcement of CCR availability via social media outlets (attach list of social media outlets utilized) □ Other (attach a list of other methods used) For systems serving at least 100,000 persons: Posted CCR on a publicly-accessible internet site at the following URL: www.ggcity.org/ccr | |----|---| | | Consumer Confidence Report Electronic Delivery Certification | | | er systems utilizing electronic distribution methods for CCR delivery must complete page by checking all items that apply and fill-in where appropriate. | | | Water system mailed a notification that the CCR is available and provides a direct URL to the CCR on a publicly available website where it can be viewed (attach a copy of the mailed CCR notification). URL: www.ggcity.org/ccr Water system emailed a notification that the CCR is available and provides a direct URL to the CCR on a publicly available site on the Internet where it can be viewed (attach a copy of the emailed CCR notification). URL: | | | Water system emailed the CCR as an electronic file email attachment. Water system emailed the CCR text and tables inserted or embedded into the body of an email, not as an attachment (attach a copy of the emailed CCR). Requires prior DDW review and approval. Water system utilized other electronic delivery method that meets the direct delivery requirement. | | | vide a brief description of the water system's electronic delivery procedures and ude how the water system ensures delivery to customers unable to receive electronic very. | | | STOMERS CAN REQUEST A HARD COPY OF THE CCR BY CALLING OR | | EM | AILING A REQUEST. THE CCR IS ALSO AVAILABLE AT OUR CITY FACILITIES. | | , | | | | | |----------|------|---|------|------| | ! | | | | | | | | | | | | ! | | | | | | | | | | | | I. | | | | | | | | | | | | | | |
 |
 | | | | | | | | l . | | | | | |) | | | | | | l . | | | | | | I . | | | | | | 1 | | | | | | | | | | | | |
 | | | | | | | | | | | 1 | | | | | | 1 | | | | | | 1 | | | | | | 1 | | | | | | 1 | | | | | | 1 | | | | | | |
 | |
 |
 | | ł . | | | | | | 1 | | | | | | 1 | | | | | | 1 | | | | | | 1 | | | | | | 1 | | | | | | 1 | | | | | | |
 | _ |
 | | | 1 | | | | | | 1 | | | | | | 1 | | | | | | 1 | | | | | | 1 | | | | | | 1 | | | | | | 1 | | | | | | | | | | | | 1 | | | | | | 1 | | | | | | 1 | | | | | | I | | | | | | I | | | | | | I | | | | | | | | | | | | | | | |
 | | I | | | | | | I | | | | | | I | | | | | | I | | | | | | I | | | | | | l . | | | | | | |
 | | | | | | | | | | | l . | | | | | | l . | | | | | | l . | | | | | | l . | | | | | | l . | | | | | | I | | | | | | | | | | | | | | | | | This form is provided as a convenience and may be used to meet the certification requirement of section 64483(c) of the California Code of Regulations. # **ZIP CODES USED TO MAIL CCR** # List of locations where the CCR is posted 13802 Newhope St, Garden Grove, CA 92843 (Garden Grove Public Works Department) - a. Administration Office - b. Bottom of the stairs at the main entrance - c. Water Analyst's office 11222 Acacia Pkwy, Garden Grove, CA 92840 (Garden Grove City Hall) - a. 1st floor - b. 2nd floor (Front desk and water billing) - c. 3rd floor 11300 Stanford Ave, Garden Grove, CA 92840 - a. Community Meeting Center - b. H. Louis Lake Senior Center # **CCR Availability via Social Media** - -Facebook - -Instagram - -Twitter - -Nextdoor #### Facebook # 2021 Water Quality Report City of CARDEN GROVE Garden Grove Water Services Division # **Dear Resident:** Your 2021 City of Garden Grove Water Consumer Confidence Report will be available July 1, 2021. This year's report contains information about the source and quality of your drinking water. To view the report, visit ggcity.org/ccr. Please note, Adobe Acrobat Reader must be installed onto your computer to view the report. If you would like the report mailed to you, call (714) 741-5395 or email wqdata@ggcity.org. Sincerely, City of Garden Grove Water Services Division # Estimado Residente: El 2021 Informe Sobre la Confianza del Consumidor de Agua de la Ciudad de Garden Grove estará disponible el 1 de julio del 2021. Este informe contiene noticias sobre las fuentes y calidad de su agua potable. Favor de mirar el 2021 informe en el sitio de web: www.ggcity.org/ccr. Se necesita tener Adobe Acrobat Reader instalado en su computadora para ver el informe. Si prefiere una copia impresa del informe, favor de llamar al (714) 741-5395 o mandar un correo electrónico a: wqdata@ggcity.org y le mandaremos una copia por correo. Muchas gracias, La División de Servicios de Agua de Garden Grove **Kính gửi cư dân:** Bản Báo Cáo Cẩn Mật cho Người Tiêu Thụ Nước của Thành Phố Garden Grove 2021 sẽ có sẵn vào ngày 1 tháng 7, 2021. Báo cáo năm nay bao gồm các thông tin về nguồn và chất lượng nước uống của quý vị. Hãy truy cập vào www.ggcity.org/ccr để xem Bản Báo Cáo Cẩn Mật cho Người Tiêu Thu. Quý vi cần có Adobe Acrobat Reader cài đặt trên máy vi tính của quý vị để xem bản báo cáo. Nếu quý vị muốn có bản in của báo cáo gửi đến quý vị, xin vui lòng gọi (714) 741-5395 hoặc email wqdata@ggcity.org. Thành thất cám ơn, Dịch Vụ Nước của Thành Phố Garden Grove # 주민 여러분: 2021년 가든 그로브시 수도 소비자 신뢰 보고서가 2021 년 7월 1일 준비됩니다.이 보고서에는 귀하의 식수에 대한 물의 원천과 품질에 관련된 정보가 들어있습니다. www.ggcity.org/ccr 로 들어가서 2021년 소비자 신뢰 보고서를 보십시오. 귀하의 컴퓨터에 Adobe Acrobat Reader 를 설치되어야 본 보고서를 보실 수 있습니다. 프린트된 보고서를 우편으로 받아보시기를 원하시면, (714) 741-5395 로 전화하시거나, 또는 wqdata@ggcity.org 로 이메일로 연락주십시오. 감사합니다. 가든 그로브시 수도 서비스 **GARDEN GROVE** # 2021 Water Quality Report This report reflects water quality testing conducted during 2020. # Your 2021 Water Quality Report Since 1990, California public water utilities have been providing an annual Water Quality Report to their customers. This year's report covers calendar year 2020 drinking water quality testing and reporting. The City of Garden Grove Water Services Division (City) vigilantly safeguards its water supply and, as in years past, the water delivered to your home meets the quality standards required by federal and state regulatory agencies. The U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board, Division of Drinking Water (DDW) are the agencies responsible for establishing and enforcing drinking water quality standards. In some cases, the City goes beyond what is required by testing for unregulated chemicals that may have known health risks but do not have drinking water standards. For example, the Orange County Water District (OCWD), which manages the groundwater basin, and the Metropolitan Water District of Southern California (MWDSC), which supplies imported treated surface water to # Quality Water is Our Priority Turn the tap and the water flows, as if by magic. Or so it seems. The reality is considerably different, however. Delivering high-quality drinking water to our customers is a scientific and engineering feat that requires considerable effort and talent to ensure the water is always there, always safe to drink. Colorado Because tap water is highly regulated by state and federal laws, water treatment and distribution operators must be licensed and are required to complete on-the-job training and technical education before becoming a state certified operator. Our licensed water professionals have an understanding of a wide range of subjects, including mathematics, biology, chemistry, physics, and engineering. Some of the tasks they complete on a regular basis include: - Monitoring and inspecting machinery, meters, gauges, and operating conditions; - Conducting tests and inspections on water and evaluating the results; - Documenting and reporting test results and system operations to regulatory agencies; and - Serving our community through customer support, education, and outreach. So, the next time you turn on your faucet, think of the skilled professionals who stand behind every drop. the City test for unregulated chemicals in our water supply. Unregulated chemical monitoring helps USEPA and DDW determine where certain chemicals occur and whether new standards need to be established for those chemicals to protect public health. Through drinking water quality testing programs carried out by OCWD for groundwater, MWDSC for treated surface water and the City for the water distribution system, your drinking water is constantly monitored from source to tap for regulated and unregulated constituents. The state allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. This report contains important information about your drinking water. Translate it, or speak with someone who understands it. Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien. Báo cáo này chứa thông tin quan trọng về nước uống của quý vị. Hãy dịch báo cáo, hoặc nói chuyện với một người hiểu báo cáo này. > 본 보고는 귀하의 식수에 관한 중요한 정보를 가지고 있습니다. 번역, 또는 이 보고를 이해하는 사람에게 물어보십시오. # The Quality of Your Water is Our Primary Concern # Sources of Supply Your drinking water is a blend of mostly groundwater from 12 wells in the Orange County groundwater basin and also surface water imported by MWDSC. MWDSC's imported water sources are a blend of State Water Project water from Northern California and water from the Colorado River Aqueduct. Your groundwater comes from a natural underground reservoir managed by the Orange County Water District (OCWD) that stretches from the Prado Dam and fans across the northwestern portion of Orange County, excluding the communities of Brea and La Habra, and stretching as far south as the El Toro 'Y.' Last year, as in years past, your tap water met all USEPA and state drinking water health standards. The City vigilantly safeguards its water supplies and once again, we are proud to report that our system has never violated a maximum contaminant level (MCL) or any other water quality standard. This brochure is a snapshot of last year's water quality. Included are details about where your water comes from, what it contains, and how it compares to federal and state standards. # Basic Information About Drinking Water Contaminants The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of land or through the layers of the ground it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animal and human activity. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife. - Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses. - Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining and farming. - Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production or mining activities. - Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gasoline stations, urban stormwater runoff, agricultural application and septic systems. In order to ensure that tap water is safe to drink, USEPA and the DDW prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791. We Invite You to Learn More About Your Water's Quality For information about this report, or your water quality in general, please contact the Water Quality Staff at (714) 741-5395. Public City Council meetings are **GARDEN GROVE** held on the second and fourth Tuesdays of each month at 6:45 p.m. in the Council Chambers at the Community Meeting Center, 11300 Stanford Avenue, Garden Grove, California 92840. You may also contact our City Clerk's Office, Garden Grove City Hall, 11222 Acacia Parkway, Garden Grove, California 92840 or call (714) 741-5040 for information about Garden Grove City Council meetings. Please feel free to participate in these meetings. For more information about the health effects of the contaminants listed in the following tables, you may call the USEPA hotline at (800) 426-4791. # To Safeguard Against Issues that May Affect Your Health - # We Comply with All State & Federal Water Quality Regulations # About Lead in Tap Water If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline, (800) 426-4791, or at: www.epa.gov/safewater/lead # **Drinking Water Fluoridation** Fluoride has been added to U.S. drinking water supplies since 1945. Of the 50 largest cities in the U.S., 43 fluoridate their drinking water. In December 2007, MWDSC joined a majority of the nation's public water suppliers in adding fluoride to drinking water in order to prevent tooth decay. MWDSC was in compliance with all provisions of the State's fluoridation system requirements. Our local water is not supplemented with fluoride. Fluoride levels in drinking water are limited under California state regulations at a maximum dosage of 2 parts per million. # Immunocompromised People Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised people, such as those with cancer who are undergoing chemotherapy, persons who have had organ transplants, people with HIV/AIDS or other immune system disorders, some elderly persons, and infants can be particularly at risk to infection. These people should seek advice about drinking water from their health care providers. # Cryptosporidium Cryptosporidium is a microscopic organism that, when ingested, can cause diarrhea, fever, and other gastrointestinal symptoms. The organism comes from animal and/or human wastes and may be in surface water. MWDSC tested its source water and treated surface water for Cryptosporidium in 2020, but did not detect it. If it ever is detected, Cryptosporidium is eliminated by an effective treatment combination including sedimentation, filtration, and disinfection. The USEPA and the federal Centers for Disease Control guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from USEPA's Safe Drinking Water Hotline at (800) 426-4791, or visit them on the web at: www.epa.gov/safewater. ### **PFAS** PFAS (PFOA and PFOS) are a group of man-made chemicals that may pose a hazard to health. They have been widely used in a variety of products and are resistant to heat, water, oils and stains. The City monitors very closely on PFOA and PFOS levels in our supply wells per the latest State guidelines. Six of the City's wells have been taken offline as a precaution, and the City is working on design/construction of treatment systems before reactivating the affected wells. Additional information regarding PFOA and PFOS is available on the California Water Board's Division of Drinking Water website at www.waterboards.ca.gov/pfas/. #### PFAS can be found in: | Constituent | MCL | PHG
(MCLG) | Average
Amount | Range of
Detections | MCL
Violation? | Typical Source of Constituent | |--|---------------------|---------------|--|------------------------|--|---| | Radiologicals – Tested in 2020 | | | | | (************************************* | | | Alpha Radiation (pCi/L) | 15 | (0) | ND | ND - 3 | No | Erosion of Natural Deposits | | Beta Radiation (pCi/L) | 50 | (0) | ND | ND - 7 | No | Decay of Natural and Man-made Deposits | | Uranium (pCi/L) | 20 | 0.43 | 2 | 1-3 | No | Erosion of Natural Deposits | | Inorganic Constituents - Teste | ed in 2020 | | | | | | | Aluminum (ppm) | 1 | 0.6 | 0.137 | ND - 0.26 | No | Treatment Process Residue, Natural Deposits | | Barium (ppm) | 1 | 2 | 0.107 | 0.107 | No | Refinery Discharge, Erosion of Natural Deposits | | Bromate (ppb) | 10 | 0.1 | 1.9 | ND - 1.3 | No | Byproduct of Drinking Water Ozonation | | Fluoride (ppm) | 2 | 1 | 0.7 | 0.5 - 0.9 | No | Water Additive for Dental Health | | Secondary Standards* – Teste | d in 2020 | | | | | | | Aluminum (ppb) | 200* | 600 | 137 | ND - 260 | No | Treatment Process Residue, Natural Deposits | | Chloride (ppm) | 500* | n/a | 94 | 93 – 94 | No | Runoff or Leaching from Natural Deposits | | Color (color units) | 15* | n/a | 1 | 1 | No | Naturally-occurring Organic Materials | | Odor (threshold odor number) | 3* | n/a | 2 | 2 | No | Naturally-occurring Organic Materials | | Specific Conductance (µmho/cm) | 1,600* | n/a | 970 | 964 - 975 | No | Substances that form lons in Water | | Sulfate (ppm) | 500* | n/a | 216 | 215 – 217 | No | Runoff or Leaching from Natural Deposits | | Total Dissolved Solids (ppm) | 1,000* | n/a | 592 | 582 - 603 | No | Runoff or Leaching from Natural Deposits | | Unregulated Constituents – Te | ested in 2018 and 2 | 2020 | ······································ | | | | | Alkalinity, total as CaCO ₃ (ppm) | Not Regulated | n/a | 118 | 117 – 120 | n/a | Runoff or Leaching from Natural Deposits | | Boron (ppm) | NL = 1 | n/a | 0.13 | 0.13 | n/a | Runoff or Leaching from Natural Deposits | | Calcium (ppm) | Not Regulated | n/a | 66 | 65 – 67 | n/a | Runoff or Leaching from Natural Deposits | | Germanium (ppb) | Not Regulated | n/a | 0.1 | ND - 0.4 | n/a | Erosion of Natural Deposits; Industrial Discharge | | Hardness, total as CaCO ₃ (ppm) | Not Regulated | n/a | 265 | 261 – 269 | n/a | Runoff or Leaching from Natural Deposits | | Hardness, total (grains/gallon) | Not Regulated | n/a | 15 | 15 – 16 | n/a | Runoff or Leaching from Natural Deposits | | Magnesium (ppm) | Not Regulated | n/a | 26 | 25 – 26 | n/a | Runoff or Leaching from Natural Deposits | | Manganese (ppb)** | 50* | n/a | 2.23 | 0.8 - 3.3 | No | Erosion of Natural Deposits | | N-nitrosodimethylamine (ppt) | NL = 10 | n/a | 3_1 | 3,1 | n/a | Byproduct of Drinking Water Chloramination,
Industrial Processes | | pH (pH units) | Not Regulated | n/a | 8.1 | 8.1 | n/a | Hydrogen Ion Concentration | | Potassium (ppm) | Not Regulated | n/a | 4.6 | 4.5 – 4.7 | n/a | Runoff or Leaching from Natural Deposits | | Sodium (ppm) | Not Regulated | n/a | 96 | 93 – 98 | n/a | Runoff or Leaching from Natural Deposits | | Total Organic Carbon (ppm) | TT | n/a | 2.4 | 2.2 - 2.7 | n/a | Various Natural and Man-made Sources | ppb = parts per billion, ppm = parts per million, ppt = parts per trillion, pCi/L = p.coCuries per liter, µmho/cm = micromhos per centimeter; ND = not detected. MCL = Maximum Contaminant Level, (MCLG) = federal MCL Goal, PHG = California Public Health Goal, NL = Notification Level, n/a = not applicable; TT = treatment technique ^{**}Manganese is regulated with a secondary standard but was not detected, based on the detection limit for purposes of reporting of 20 ppb. Manganese was included as part of the unregulated chemicals requiring monitoring | Turbidity – combined filter effluent
Metropolitan Water District Diemer Filtration Plant | Treatment
Technique | Turbidity
Measurements | TT
Violation? | Typical Source
of Constituent | |---|------------------------|---------------------------|------------------|----------------------------------| | Highest single turbidity measurement | 0,3 NTU | 0.04 | No | Soil Runoff | | 2) Percentage of samples less than 0.3 NTU | 95% | 100% | No | Soil Runoff | Turbidity is a measure of the cloudiness of the water, an indication of particulate matter, some of which might include harmful microorganisms Low turbidity in Metropolitan's treated water is a good indicator of effective filtration. Filtration is called a "treatment technique" (TT). NTU = nephelometric turbidity units A treatment technique is a required process intended to reduce the level of chemicals in drinking water that are difficult and sometimes impossible to measure directly # **Chart Legend** #### What are Water Quality Standards? Drinking water standards established by USEPA and DDW set limits for substances that may affect consumer health or aesthetic qualities of drinking water. The charts in this report show the following types of water quality standards: - Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. - Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. - Secondary MCLs: Set to protect the odor, taste, and appearance of drinking water. - Primary Drinking Water Standard: MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements. - Regulatory Action Level (AL): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements that a water system must follow. #### What is a Water Quality Goal? In addition to mandatory water quality standards, USEPA and DDW have set voluntary water quality goals for some contaminants. Water quality goals are often set at such low levels that they are not achievable in practice and are not directly measurable. Nevertheless, these goals provide useful guideposts and direction for water management practices. The charts in this report include three types of water quality goals: - Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by USEPA. - Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants - Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. #### **How are Contaminants Measured?** Water is sampled and tested throughout the year. Contaminants are measured in: - parts per million (ppm) or milligrams per liter (mg/L) - parts per billion (ppb) or micrograms per liter (μg/L) - parts per trillion (ppt) or nanograms per liter (ng/L) ^{*}Chemical is regulated by a secondary standard | Constituent | MCL | PHG | Average
Amount | Range of
Detections | MCL
Violation? | Most Recent
Sampling Date | Typical Source of Constituent | |--|---------------|-------|-------------------|--|---|------------------------------|--| | Radiologicals | He our maine | | | | | | | | Uranium (pCi/L) | 20 | 0.43 | 8.39 | 5.15 – 10.2 | No | 2020 | Erosion of Natural Deposits | | Inorganic Constituents | | | | | | | | | Arsenic (ppb) | 10 | 0.004 | <2 | ND - 2.4 | No | 2020 | Erosion of Natural Deposits | | Barium (ppm) | 1 | 2 | <0.1 | ND - 0.128 | No | 2020 | Erosion of Natural Deposits | | Fluoride (ppm) | 2 | 1 | 0.45 | 0.41 - 0.49 | No | 2020 | Erosion of Natural Deposits | | Nitrate (ppm as N) | 10 | 10 | 3.5 | 1.57 – 4.4 | No | 2020 | Fertilizers, Septic Tanks | | Nitrate+Nitrite (ppm as N) | 10 | 10 | 3,5 | 1.57 - 4.4 | No | 2020 | Fertilizers, Septic Tanks | | Perchlorate (ppb) | 6 | 1 | <4 | ND - 4 | No | 2020 | Industrial Discharge | | Secondary Standards* | | | | | | ···· | | | Chloride (ppm) | 500* | n/a | 79.9 | 40.5 – 117 | No | 2020 | Erosion of Natural Deposits | | Specific Conductance (µmho/cm) | 1,600* | n/a | 871 | 625 – 1,060 | No | 2020 | Erosion of Natural Deposits | | Sulfate (ppm) | 500* | n/a | 125 | 84.4 – 145 | No | 2020 | Erosion of Natural Deposits | | Total Dissolved Solids (ppm) | 1,000* | n/a | 547 | 388 – 690 | No | 2020 | Erosion of Natural Deposits | | Turbidity (NTU) | 5* | n/a | <0.1 | ND - 0.2 | No | 2020 | Erosion of Natural Deposits | | Unregulated Constituents | | | 1770 | | | | Crosson of Hotolar Deposits | | Alkalinity, total as CaCO ₃ (ppm) | Not Regulated | n/a | 185 | 167 – 216 | n/a | 2020 | Erosion of Natural Deposits | | Boron (ppm) | NL = 1 | n/a | 0,11 | ND - 0.26 | n/a | 2020 | Erosion of Natural Deposits | | Bromide (ppm) | Not Regulated | n/a | 0.22 | 0.104 - 0.62 | n/a | 2019 | Industrial Discharge | | Calcium (ppm) | Not Regulated | n/a | 102 | 77.8 – 113 | n/a | 2020 | Erosion of Natural Deposits | | Chromium, Hexavalent (ppb) | Not Regulated | 0.02 | 1.4 | ND - 2.3 | n/a | 2020 | | | стотит, пехачант (ррв) | Not negulated | 0.02 | 1.4 | ND - 2.3 | II/d | 2020 | Erosion of Natural Deposits;
Industrial Discharge | | Germanium (ppb) | Not Regulated | n/a | 0.02 | ND - 0,3 | n/a | 2019 | Erosion of Natural Deposits;
Industrial Discharge | | Hardness, total as CaCO ₃ (ppm) | Not Regulated | n/a | 330 | 248 – 372 | n/a | 2020 | Erosion of Natural Deposits | | Hardness, total (grains/gal) | Not Regulated | n/a | 19 | 14 – 22 | n/a | 2020 | Erosion of Natural Deposits | | Magnesium (ppm) | Not Regulated | n/a | 18 | 13 – 22 | n/a | 2020 | Erosion of Natural Deposits | | Manganese (ppb)** | 50* | n/a | 0.14 | ND - 1.8 | No | 2019 | Erosion of Natural Deposits | | PFAS Compounds | | | | and the state of t | ndig (Pila de di Ana danidi dinance cadimanana sama s | | Prit-Modhath Aldain Basse-dord Essabhataid durchardid-airdin Navad In sansassan sampa - a gapanna - angg _{ar} aggan s | | Perfluoro butane sulfonic acid (PFBS) (ppt) | NL = 500 | n/a | 5.46 | ND - 14.1 | n/a | 2020 | Industrial Discharge | | Perfluoro heptanoic acid (PFHpA) (ppt) | Not Regulated | n/a | <4 | ND - 4,9 | n/a | 2020 | Industrial Discharge | | Perfluoro hexane sulfonic acid (PFHxS) (ppt) | Not Regulated | n/a | 16.8 | 4.5 – 27.1 | n/a | 2020 | Industrial Discharge | | Perfluorohexanoic acid (PFHxA) (ppt) | Not Regulated | n/a | 5.3 | ND - 9.4 | n/a | 2020 | Industrial Discharge | | Perfluoro octane sulfonic acid (PFOS) (ppt) | NL = 6.5 | n/a | 28.7 | 7.1 – 48.6 | n/a | 2020 | Industrial Discharge | | Perfluoro octanoic acid (PFOA) (ppt) | NL = 5.1 | n/a | 12.4 | ND - 21.2 | n/a | 2020 | Industrial Discharge | | pH (pH units) | Not Regulated | n/a | 7.8 | 7.7 – 7.9 | n/a | 2020 | Acidity, hydrogen ions | | Potassium (ppm) | Not Regulated | n/a | 4 | 3,2 - 5,2 | n/a | 2020 | Erosion of Natural Deposits | | Total Organic Carbon (Unfiltered)(ppm) | Not Regulated | n/a | 0.28 | 0.17 - 0.48 | n/a | 2019 | Various Natural and Man-made Source | | Sodium (ppm) | Not Regulated | n/a | 57 | 36.5 - 90.5 | n/a | 2020 | Erosion of Natural Deposits | | Vanadium, Total (ppb) | NL = 50 | n/a | <3 | ND - 3.8 | n/a | 2020 | Erosion of Natural Deposits;
Industrial Discharge | ppb = parts per billion; ppm = parts per million; ppt = parts per trillion, pct/L = picoCuries per liter, NTU = nephelometric turbidity units, ND = not detected, NL = Notification Level, n/a = not applicable, < = average is less than the detection limit for reporting purposes; MCL = Maximum Contaminant Level, PHG = California Public Health Goal, µmho/cm = micromho per centimeter ^{*}Chemical is regulated by a secondary standard to maintain aesthetic qualities (taste, odor, color). ^{**}Manganese is regulated with a secondary standard but was not detected, based on the detection limit for purposes of reporting of 20 ppb. Manganese was included as part of the unregulated chemicals requiring monitoring. #### 2020 City of Garden Grove Distribution System Water Quality | Disinfection
Byproducts | MCL
(MRDL/MRDLG) | Average
Amount | Range of Detections | MCL
Violation? | Typical Source of Constituent | |-----------------------------|---------------------|-------------------|---------------------|-------------------|-------------------------------------| | Total Trihalomethanes (ppb) | 80 | 27 | 1 – 35 | No | Byproducts of Chlorine Disinfection | | Haloacetic Acids (ppb) | 60 | 9 | ND - 10 | No | Byproducts of Chlorine Disinfection | | Chlorine Residual (ppm) | (4 / 4) | 1.35 | 0.17 - 2.64 | No | Disinfectant Added for Treatment | | Aesthetic Quality | | | | | | | Turbidity (NTU) | 5* | <0.1 | ND – 2 | No | Erosion of Natural Deposits | Eight locations in the distribution system are tested quarterly for total trihalomethanes and haloacetic acids; thirty-three locations are tested each month for color, odor and turbidity. Color and odor were not detected in 2020 MRDL = Maximum Residual Disinfectant Level; MRDLG = Maximum Residual Disinfectant Level Goal *Chemical is regulated by a secondary standard to maintain aesthetic qualities (taste, odor, color). #### **Lead and Copper Action Levels at Residential Taps** | | Action Level
(AL) | Public
Health Goal | 90 th Percentile
Value | Sites Exceeding AL /
Number of Sites | AL
Violation? | Typical Source of Constituent | |--------------|----------------------|-----------------------|--------------------------------------|---|------------------|---------------------------------| | Lead (ppb) | 15 | 0,2 | ND<5 | 0 / 50 | No | Corrosion of Household Plumbing | | Copper (ppm) | 1.3 | 0.3 | 0.19 | 0 / 50 | No | Corrosion of Household Plumbing | Every three years, at least 50 residences are tested for lead and copper at the tap The most recent set of samples was collected in 2019. Lead was not detected. Copper was detected above the reporting level in 38 samples, but none of the samples exceeded the copper Action Level. A regulatory Action Level is the concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. In 2020, no school submitted a request to be sampled for lead #### **Unregulated Chemicals Requiring Monitoring in the Distribution System** | Constituent | Notification
Level | PHG | Average
Amount | Range of
Detections | Most Recent
Sampling Date | |--------------------------|-----------------------|-----|-------------------|------------------------|------------------------------| | Dibromoacetic Acid (ppb) | n/a | n/a | 0.64 | 0.4 – 1.2 | 2019 | #### Source Water Assessments # Imported (MWDSC) Water Assessment Every five years, MWDSC is required by DDW to examine possible sources of drinking water contamination in its State Water Project and Colorado River source waters. The most recent watershed sanitary surveys of its source water supplies from the Colorado River was updated in 2015 and the State Water Project was updated in 2016. Water from the Colorado River is considered to be most vulnerable to contamination from recreation, urban/stormwater runoff, increasing urbanization in the watershed, and wastewater. Water supplies from Northern California's State Water Project are most vulnerable to contamination from urban/stormwater runoff, wildlife, agriculture, recreation, and wastewater. USEPA also requires MWDSC to complete one Source Water Assessment (SWA) that utilizes information collected in the watershed sanitary surveys. MWDSC completed its SWA in December 2002. The SWA is used to evaluate the vulnerability of water sources to contamination and helps determine whether more protective measures are needed. A copy of the most recent summary of either Watershed Sanitary Survey or the SWA can be obtained by calling MWDSC at (800) CALL-MWD (225-5693). #### Groundwater Assessment An assessment of the drinking water sources for the City was completed in December 2002. The groundwater sources are considered most vulnerable to the following activities associated with contami- nants detected in the water supply: known contaminant plumes, historic agricultural activities and application of fertilizers, and parks. The groundwater sources are considered most vulnerable to the following activities not associated with detected contaminants: confirmed leaking underground storage tanks, dry cleaners, gas stations, and photo processing/printing. A copy of the complete assessment is available at State Water Resources Control Board, Division of Drinking Water, 2 MacArthur Place, Suite 150, Santa Ana, California 92707. You may request a summary of the assessment by contacting the City at (714) 741-5395.