

0

0

Ó

0 🌘

0

٩

City of San Juan Capistrano Utilities Division

This report reflects water quality testing conducted during 2019.

Your 2020 Water Quality Report

Since 1990, California public water utilities have been providing an annual Water Quality Report to their customers. **This year's report covers calendar year 2019 drinking water quality testing and reporting.** Your City of San Juan Capistrano Utilities

Department (City) vigilantly safeguards its water supply and, as in years past, the water delivered to your home meets the quality standards required by federal and state regulatory agencies. The U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board, Division of

Drinking Water (DDW) are the agencies responsible for establishing and enforcing drinking water quality standards.

In some cases, the City goes beyond what is required

by testing for unregulated chemicals that may have known health risks but do not have drinking water standards. For example, the City, which produces and treats local groundwater, and the Metropolitan Water District of Southern California (MWDSC), which supplies treated imported surface water to the City, test for unregulated chemicals in our water supply. Unregulated chemical monitoring helps USEPA and DDW determine where certain chemicals occur and whether new standards need to be established for those chemicals to protect public health.

Through drinking water quality testing programs carried out by the City for local groundwater, treated groundwater and in

its drinking water distribution system, and MWDSC for treated surface water, your drinking water is constantly monitored from source to tap for regulated and unregulated constituents.

The State allows us to monitor for some contaminants less than once per year because the concentrations of

these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

The Quality of Your Water Is Our Primary Concern

Sources of Supply

The City receives its water from three sources. Water is purchased from MWDSC. MWDSC 's imported water sources are a blend of State Water Project water from northern California, and water from the Colorado River Aqueduct. Furthermore, the City is supplied with treated water from the Ground Water Recovery Plant and one potable production well located in the Northern portion of the City.

Basic Information About Drinking Water Contaminants

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of land or through the layers of the ground it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animal and human activity.

Contaminants that may be present in source water include:

 Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

 Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm runoff, industrial or domestic wastewater discharges, oil and gas production, mining and farming.

- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production or mining activities.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gasoline stations, urban stormwater runoff, agricultural application and septic systems.

• Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses.

In order to ensure that tap water is safe to drink, USEPA and the DDW prescribe regulations that limit the amount of certain contaminants in water provided by public water systems.

The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Cryptosporidium

Cryptosporidium is a microscopic organism that, when ingested, can cause diarrhea, fever, and other gastrointestinal symptoms. The organism comes from animal and/or human wastes and may be in surface water. MWDSC tested their source water and treated surface water for *Cryptosporidium* in 2019 but did not detect it. If it ever is detected, *Cryptosporidium* is eliminated by an effective treatment combination including sedimentation, filtration and disinfection.

The USEPA and the federal Centers for Disease Control guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from USEPA's Safe Drinking Water Hotline at (800) 426-4791, or on the web at www.epa.gov/safewater.

Drinking Water Fluoridation

Fluoride has been added to U.S. drinking water supplies since 1945. Of the 50 largest cities in the U.S., 43 fluoridate their drinking water.

In December 2007, the MWDSC joined a majority of the nation's public water suppliers in adding fluoride to drinking water in order to

prevent tooth decay. MWDSC was in compliance with all provisions of the State's fluoridation system requirements.

Our local water is not supplemented with fluoride.

Fluoride levels in drinking water are limited under California state regulations at a maximum dosage of 2 parts per million.

There are many places to go for additional information about the fluoridation of drinking water.

U.S. Centers for Disease Control and Prevention: www.cdc.gov/fluoridation/

State Water Resources Control Board, Division of Drinking Water www.waterboards.ca.gov/drinking_water/certlic/ drinkingwater/Fluoridation.html

For more information about MWDSC's fluoridation program, please contact Edgar G. Dymally at (213) 217-5709 or at edymally@mwdh2o.com.

Immuno-Compromised People

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised people, such as those with cancer who are undergoing chemotherapy, persons who have had organ transplants, people with HIV/AIDS or other immune system disorders, some elderly persons and infants can be particularly at risk to infection. These people should seek advice about drinking water from their health care providers.

Questions about your water? Contact us for answers.

For information about this report, or your water quality information in general, please contact the City of San Juan Capistrano, Utilities Department at (949) 234-4400.

The City of San Juan Capistrano Utilities Commission meets the third Tuesday of every month at 8:00 am and is open to the public. The City Council meets the first and third Tuesday of every month at 5:00 pm and is open to the public. Meetings are held in the City of San Juan Capistrano Council Chambers located at 32400 Paseo Adelanto, San Juan Capistrano. Please feel free to participate in these meetings.

For more information about health effects of the listed contaminants in the following tables, call the USEPA hotline at (800) 426-4791.

Important Information the EPA Would Like You to Know

Disinfectants and Disinfection Byproducts

Disinfection of drinking water was one of the major public health advances in the 20th century. Disinfection was a major factor in reducing waterborne disease epidemics caused by pathogenic bacteria and viruses, and it remains an essential part of drinking water treatment today.

Chlorine disinfection has almost completely eliminated from our lives the risks of microbial waterborne diseases. Chlorine is added to your drinking water at the source of supply (groundwater well or surface water treatment plant). Enough chlorine is added so that it does not completely dissipate through the distribution system pipes. This "residual" chlorine helps to prevent the growth of bacteria in the pipes that carry drinking water from the source into your home.

However, chlorine can react with naturally-occurring materials in the water to form unintended chemical byproducts, called disinfection byproducts (DBPs), which may pose health risks. A major challenge is how to balance the risks from microbial pathogens and DBPs. It is important to provide protection from these microbial pathogens while simultaneously ensuring decreasing health risks from disinfection byproducts. The Safe Drinking Water Act requires the USEPA to develop rules to achieve these goals.

Trihalomethanes (THMs) and Haloacetic Acids (HAAs) are the most common and most studied DBPs found in drinking water treated with chlorine. In 1979, the USEPA set the maximum amount of total THMs allowed in drinking water at 100 parts per billion as an annual running aver-

age. Effective in January 2002, the Stage 1 Disinfectants / Disinfection Byproducts Rule lowered the total THM maximum annual average level to 80 parts per billion and added HAAs to the list of regulated chemicals in

drinking water. Your drinking water complies with the Stage 1 Disinfectants / Disinfection Byproducts Rule.

Stage 2 of the regulation was finalized by USEPA in 2006, which further controls allowable levels of DBPs in drinking water without compromising disinfection itself. A required distribution system evaluation was completed in 2008 and a Stage 2 monitoring plan has been approved by DDW. Full Stage 2 compliance began in 2012.

Total Coliform Rule

This Consumer Confidence Report (CCR) reflects changes in drinking water regulatory requirements instituted during 2016. All water systems are required to comply with the state Total Coliform Rule. Effective April 1, 2016, all water systems are also required to

comply with the federal Revised Total Coliform Rule. The new federal rule protects public health by ensuring the integrity of the drinking water distribution system by monitoring for the presence of microbials (i.e., total coliform and *E. coli*

The USEPA anticipates

bacteria).

greater public health protection as the new rule requires water systems that are vulnerable to microbial contamination to identify and resolve potential issues.

Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment to determine if any sanitary defects exist. If found, these must be corrected by the water system.

What are Water Quality Standards?

Drinking water standards established by USEPA and DDW set limits for substances that may affect consumer health or aesthetic qualities of drinking water. The chart in this report shows the following types of water quality standards:

- Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible.
- Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- Secondary MCLs: Set to protect the odor, taste, and appearance of drinking water.
- Primary Drinking Water Standard: MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.
- Regulatory Action Level (AL): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements that a water system must follow.

How are Contaminants Measured?

Water is sampled and tested throughout the year. Contaminants are measured in:

- parts per million (ppm) or milligrams per liter (mg/L)
- parts per billion (ppb) or micrograms per liter (μg/L)
 parts per trillion (ppt) or nanograms per liter (ng/L)

What is a Water Quality Goal?

In addition to mandatory water quality standards, USEPA and DDW have set voluntary water quality goals for some contaminants. Water quality goals are often set at such low levels that they are not achievable in practice and are not directly measurable. Nevertheless, these goals provide useful guideposts and direction for water management practices. The chart in this report includes three types of water quality goals:

- Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by USEPA.
- Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

2019 Metropolitan Water District of Southern California Treated Surface Water

Chemical	MCL	PHG	Average Amount	Range of Detections	MCL Violation?	Typical Source of Chemical			
Inorganic Chemicals – Teste	ed in 2019								
Aluminum (ppm)	1	0.6	0.124	ND - 0.065	No	Treatment Process Residue, Natural Deposits			
Bromate (ppb)	10	0.1	2	ND - 5.9	No	Byproduct of Drinking Water Ozonation			
Fluoride (ppm)	2	1	0.7	0.1-0.9	No	Water Additive for Dental Health			
Nitrate as N (ppm)	10	10	0.5	0.5	No	Fertilizers, Septic Tanks, Natural Deposits			
Secondary Standards* – Tested in 2019									
Aluminum (ppb)	200*	600	124	ND – 65	No	Treatment Process Residue, Natural Deposits			
Chloride (ppm)	500*	n/a	56	53 - 58	No	Runoff or Leaching from Natural Deposits			
Color (color units)	15*	n/a	ND	ND - 1	No	Naturally-occurring Organic Materials			
Odor (threshold odor number)	3*	n/a	ND	ND – 1	No	Naturally-occurring Organic Materials			
Specific Conductance (µmho/cm)	1,600*	n/a	514	508 - 521	No	Substances that Form Ions in Water			
Sulfate (ppm)	500*	n/a	91	89 - 93	No	Runoff or Leaching from Natural Deposits			
Total Dissolved Solids (ppm)	1,000*	n/a	304	296 - 312	No	Runoff or Leaching from Natural Deposits			
Unregulated Chemicals – T	ested in 2019								
Alkalinity, total as CaCO ₃ (ppm)	Not Regulated	n/a	72	69 - 74	n/a	Runoff or Leaching from Natural Deposits			
Boron (ppm)	NL=1	n/a	0.12	0.12	n/a	Runoff or Leaching from Natural Deposits			
Calcium (ppm)	Not Regulated	n/a	30	29 - 30	n/a	Runoff or Leaching from Natural Deposits			
Hardness, total as CaCO ₃ (ppm)	Not Regulated	n/a	127	124 - 130	n/a	Runoff or Leaching from Natural Deposits			
Hardness, total (grains/gallon)	Not Regulated	n/a	7.4	7.3 – 7.6	n/a	Runoff or Leaching from Natural Deposits			
Magnesium (ppm)	Not Regulated	n/a	14	13 – 14	n/a	Runoff or Leaching from Natural Deposits			
Perfluorohexanoic Acid (ppt)	Not Regulated	n/a	2.3	2.2 – 2.3	n/a	Industrial Discharge			
pH (pH units)	Not Regulated	n/a	8.4	8.4 - 8.5	n/a	Hydrogen Ion Concentration			
Potassium (ppm)	Not Regulated	n/a	2.8	2.6 - 2.9	n/a	Runoff or Leaching from Natural Deposits			
Sodium (ppm)	Not Regulated	n/a	56	54 – 57	n/a	Runoff or Leaching from Natural Deposits			
Total Organic Carbon (ppm)	TT	n/a	2.4	1.8 - 2.6	n/a	Various Natural and Man-made Sources			
pats per billion; ppm = parts per	er million: ppt = parts	per trillion:	umho/cm = micro	omhos per centimeter:	ND = not detected:				

ppb = parts per billion; ppm = parts per million; ppt = parts per trillion; µmho/cm = micromhos per centimeter; ND = not detected; MCL = Maximum Contaminant Level; PHG = California Public Health Goal; NL = Notification Level; n/a = not applicable; TT = treatment technique

*Chemical is regulated by a secondary standard

Turbidity – combined filter effluent Metropolitan Water District Diemer Filtration Plant	Treatment Technique	Turbidity Measurements	TT Violation?	Typical Source of Chemical
1) Highest single turbidity measurement	0.3 NTU	0.05	No	Soil Runoff
2) Percentage of samples less than 0.3 NTU	95%	100%	No	Soil Runoff

Turbidity is a measure of the cloudiness of the water, an indication of particulate matter, some of which might include harmful microorganisms. NTU = nephelometric turbidity units Low turbidity in Metropolitan's treated water is a good indicator of effective filtration. Filtration is called a "treatment technique" (TT). A treatment technique is a required process intended to reduce the level of chemicals in drinking water that are difficult and sometimes impossible to measure directly.

Unregulated Chemicals Requiring Monitoring									
Chemical	Notification Level	PHG	Average Amount	Range of Detections	Most Recent Sampling Date				
Manganese (ppb)**	SMCL = 50	n/a	1.7	0.43 - 4.1	2019				

SMCL = Secondary MCL

**Manganese is regulated with a secondary standard of 50 ppb but was not detected, based on the detection limit for purposes of reporting of 20 ppb. Manganese was included as part of the unregulated chemicals requiring monitoring.

	2019 City of San Juan Capistrano Groundwater Quality								
Chemical	MCL	PHG (MCLG)	Average Amount SJC Wells	Average Amount SJBA Treated Wells	Range of Detections	ا MCL Violation?	Most Recent Sampling Date	Typical Source of Contaminant	
Radiologicals									
Alpha Radiation (pCi/L)	15	(0)	4.4	3.7	ND – 7.5	No	2013	Erosion of Natural Deposits	
Combined Radium (pCi/L)	5	(0)	ND	<1	ND – 1.5	No	2013	Erosion of Natural Deposits	
Uranium (pCi/L)	20	0.43	4.2	2	0.97 – 6.6	No	2017	Erosion of Natural Deposits	
Organic Chemicals									
Methyl-Tert-Butyl Ether (ppb)	13	13	ND	ND	ND	No	2019	Leaking Underground Storage Tanks; Industrial Discharge	
Inorganic Chemicals									
Fluoride (ppm)	2	1	0.25	ND	ND - 0.29	No	2019	Erosion of Natural Deposits	
Nitrate (ppm as N)	10	10	1.77	ND	ND – 2.13	No	2019	Fertilizers, Septic Tanks	
Nitrate + Nitrite (ppm as N)	10	10	1.86	ND	ND – 2.21	No	2019	Fertilizers, Septic Tanks	
Secondary Standards*									
Chloride (ppm)	500*	n/a	189	51.8	28.4 – 195	No	2019	Erosion of Natural Deposits	
Specific Conductance (µmho/cm)	1,600*	n/a	1,778	483	222 - 1,930	No	2019	Substances Form Ions in Wate	
Sulfate (ppm)	500*	n/a	320	75	33 - 341	No	2019	Erosion of Natural Deposits	
Total Dissolved Solids (ppm)	1,000*	n/a	1,125	265	110 - 1,230	No	2019	Erosion of Natural Deposits	
Turbidity (NTU)	5*	n/a	0.64	0.24	ND – 2	No	2019	Erosion of Natural Deposits	
Unregulated Chemicals									
Alkalinity, total (ppm as CaCO ₃)	Not Regulated	n/a	305	80	55 – 330	n/a	2019	Erosion of Natural Deposits	
Calcium (ppm)	Not Regulated	n/a	202	25	5 – 221	n/a	2019	Erosion of Natural Deposits	
Hardness, total (ppm as CaCO ₃)	Not Regulated	n/a	762	92	20 - 858	n/a	2019	Erosion of Natural Deposits	
Hardness, total (grains per gallon)	Not Regulated	n/a	45	5.4	1.2 - 50	n/a	2019	Erosion of Natural Deposits	
Magnesium (ppm)	Not Regulated		46.2	7	1.6 - 50.8	n/a	2019	Erosion of Natural Deposits	
pH (pH units)	Not Regulated	n/a	7.02	7.08	6.25 – 7.94	n/a	2019	Hydrogen Ion Concentration	
Potassium (ppm)	Not Regulated	n/a	3.17	0.96	ND – 3.45	n/a	2019	Erosion of Natural Deposits	
Sodium (ppm)	Not Regulated	n/a	115	68.4	43.6 - 133	n/a	2019	Erosion of Natural Deposits	

SJC = San Juan Capistrano; SJBA = San Juan Basin Authority; ppb = parts-per-billion; ppm = parts-per-million; pCi/L = picoCuries per liter; NTU = nephelometric turbidity units; ND = not detected; n/a = not applicable; < = average is less than the detection limit for reporting purposes; µmho/cm = micromho per centimeter; MCL = Maximum Contaminant Level; (MCLG) = federal MCL Goal; PHG = California Public Health Goal

Chemical is regulated by a secondary standard to maintain aesthetic gualities (taste, odor, color)

Unregulated Chemicals Requiring Monitoring

Chemical	Notification Level	PHG	Avg. Amount SJC Wells	Avg. Amount SJBA Treated Wells	Range of Detections	Most Recent Sampling Date
Chlorate (ppb)	800	n/a	33	515	22 - 880	2015
Chromium, Hexavalent (ppb)	n/a	0.02	0.065	<0.03	ND - 0.067	2015
Chromium, Total (ppb) **	MCL = 50	MCLG = 100	0.23	0.11	ND - 0.24	2015
Molybdenum, Total (ppb)	n/a	n/a	4.9	1.9	1.1 – 5.1	2015
Perfluorooctanoic Acid (ppb)	n/a	n/a	< 0.02	ND	ND - 0.021	2015
Strontium, Total (ppb)	n/a	n/a	1,100	310	240 - 1,100	2015
Vanadium, Total (ppb)	50	n/a	1	ND	ND - 1.1	2015

**Total chromium is regulated with an MCL of 50 ppb but was not detected, based on the detection limit for purposes of reporting of 10 ppb Total chromium was included as part of the unregulated chemicals reguiring monitoring.

2019 City of San Juan Capistrano Distribution System Water Quality

2015 city of bail such capistiano Distribution system water Quarty									
Disinfection Byproducts	MCL (MRDL/MRDLG)	Average Amount	Range of Detections	MCL Violation?	Typical Source of Contaminant				
Total Trihalomethanes (ppb)	80	28	ND – 38	No	Byproducts of Chlorine Disinfection				
Haloacetic Acids (ppb)	60	12	ND – 21	No	Byproducts of Chlorine Disinfection				
Chlorine Residual (ppm)	(4 / 4)	1.4	0.86 - 1.48	No	Disinfectant Added for Treatment				
Aesthetic Quality									
Turbidity (NTU)	5*	0.17	ND-0.64	No	Erosion of Natural Deposits				

Nine locations in the distribution system are tested quarterly for total trihalomethanes and haloacetic acids;

three locations are tested monthly for color, odor and turbidity. Color and odor were not detected in 2019. MRDL = Maximum Residual Disinfectant Level; MRDLG = Maximum Residual Disinfectant Level Goal

Chemical is regulated by a secondary standard to maintain aesthetic qualities (taste, odor, color)

Bacterial Quality	MCL	MCLG	Highest Monthly Positive Samples	MCL Violation?	Typical Source of Contaminant		
Total Coliform Bacteria	5.0%	0	3.0%	No	Naturally present in the environment		
No more then 5 00/ of the mentally complex may be period to table arithme besterie							

No more than 5.0% of the monthly samples may be positive for total coliform bacteria. The occurrence of 2 consecutive total coliform positive samples, one of which contains fecal coliform/*E.coli*, constitutes an acute MCL violation.

Lead and Copper Action Levels at Residential Taps									
	Action Level Public 90th Sites Exceeding AL / AL Typical Source (AL) Health Goal Percentile Value Number of Sites Violation? of Contaminant								
Lead (ppb)	15	0.2	1	1 / 30	No	Corrosion of Household Plumbing			
Copper (ppm)	1.3	0.3	0.27	0 / 30	No	Corrosion of Household Plumbing			

Lead was detected in 12 homes and copper was detected in 30 homes, none of which exceeded the lead or copper regulatory Action Level (AL). A regulatory Action Level is the concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. In 2019, one school submitted a request to be sampled for lead.

Unregulated Chemicals Requiring Monitoring in the Distribution System

Chemical	Notification Level	PHG	Average Amount	Range of Detections	Most Recent Sampling Date
Chlorate (ppb)	800	n/a	91	49 – 150	2015
Chromium, Hexavalent (ppb)	n/a	0.02	0.053	0.038 - 0.068	2015
Chromium, Total (ppb)**	MCL = 50	MCLG = 100	0.2	ND - 0.27	2015
Haloacetic Acids (HAA5) (ppb)	n/a	n/a	4.4	1.64 - 6.8	2019
Haloacetic Acids (HAA6Br) (ppl	b) n/a	n/a	5.3	1.99 – 7.3	2019
Haloacetic Acids (HAA9) (ppb)	n/a	n/a	8.1	3.06 - 12.3	2019
Molybdenum, Total (ppb)	n/a	n/a	4.8	3.6 - 5.4	2015
Strontium, Total (ppb)	n/a	n/a	1,100	690 - 1,200	2015
Vanadium, Total (ppb)	50	n/a	2.4	0.85 - 2.8	2015

Total chromium is regulated with an MCL of 50 ppb but was not detected, based on the detection limit for purposes of reporting of 10 ppb

Total chromium was included as part of the unregulated chemicals requiring monitoring.

About Lead in Tap Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant

women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing.

The City is responsible for providing high quality drinking water,

but cannot control the variety of materials used in plumbing components within home fixtures.

When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at: www.epa.gov/safewater/lead.

Source Water Assessments Imported (MWDSC) Water Assessment

Every five years, MWDSC is required by DDW to examine possible sources of drinking water contamination in its State Water Project and Colorado River source waters.

The most recent watershed sanitary surveys of its source water supplies from the Colorado River was updated in 2015 and the State Water Project was updated in 2016.

Water from the Colorado River is considered to be most vulnerable to contamination from recreation. urban/stormwater runoff, increasing urbanization in the watershed, and wastewater. Water supplies from Northern California's State Water Project are most vulnerable to contamination from urban/stormwater runoff, wildlife, agriculture, recreation, and wastewater.

USEPA also requires MWDSC to complete one Source Water Assessment (SWA) that utilizes information collected in the watershed sanitary surveys. MWDSC completed its SWA in December 2002. The SWA is used to evaluate the vulnerability of water sources to contamination and helps determine whether more protective measures are needed.

A copy of the most recent summary of either Watershed Sanitary Survey or the SWA can be obtained by calling MWDSC at (800) CALL-MWD (225-5693).

Groundwater Assessment

A copy of the assessment of the drinking water sources for the City completed in March 2001 is available at State Water Resources Control Board, Division of Drinking Water, 2 MacArthur Place, Suite 150, Santa Ana, CA 92707 or the City of San Juan Capistrano - Water Division office, 32400 Paseo Adelanto, San Juan Capistrano, CA 92675.

Your Water: Always Available, Always Assured

The DIEMER WATER TREATMENT PLANT, located in the hills above Yorba Linda, processes up to 520 million gallons of clean water per day — enough to fill the Rose Bowl every 4 hours. The water is a blend from both the Colorado River Aqueduct and the State Water Project. At 212-acres, it's one of the largest water treatment plants in the U.S. It provides nearly half of Orange County's total water supply.

City of San Juan Capistrano Utilities Department

32450 Paseo Adelanto

San Juan Capistrano, California 92675

Water flowing from Diemer meets — or exceeds — all state and federal regulations. And it is kept safe from the treatment plant to your tap by constant testing throughout the distribution network. The City of San Juan Capistrano Utilities Department monitors the water quality at all sources, reservoirs, and various points on the distribution system. This constant surveillance ensures your drinking water stays within the requirements mandated by the federal Safe Drinking Water Act.

This report contains important information about your drinking water. Translate it, or speak with someone who understands it.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.

