ANNUAL WATER OUALLTY REPORT

Reporting Year 2024

This report contains important information about your drinking water. Translate it, or speak with someone who understands it.

Este informe contiene información importante sobre su agua potable. Traducirlo, o hablar con alguien que lo entienda.

Your 2025 Water Quality Report

Since 1990, California public water utilities have been providing an annual Water Quality Report to their customers. This year's report covers drinking water quality testing and reporting for 2024.

Your City of La Habra Water Division vigilantly safeguards its water supply, and as in years past, the water delivered to your home meets the quality standards required by federal and state regulatory agencies. The U.S. Environmental Protection Agency (U.S. EPA) and the State Water Resources Control Board (SWRCB), Division of Drinking Water (DDW) are the agencies responsible for establishing and enforcing drinking water quality standards. In some cases, the City goes beyond what is required by testing for unregulated chemicals that may have known health risks but do not have drinking water standards.

For example, the California Domestic Water Company (Cal Domestic), which supplies the City with treated groundwater, and the Metropolitan Water District of Southern California (MWDSC), which supplies treated, imported surface water to the City, routinely test for unregulated chemicals in our water supply. Unregulated chemical monitoring helps U.S. EPA and DDW determine where certain chemicals occur and whether new standards need to be established for those chemicals to protect public health.

Through the drinking water quality testing programs carried out by the City and Cal Domestic for our groundwater, MWDSC for imported surface water, and the City for our water distribution system, your drinking water is constantly monitored from source to tap for regulated and unregulated constituents.

The state allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, is more than a year old.

The City of La Habra Water Division is pleased to distribute this report to its water customers. It provides important information about where your water comes from and the work we perform each day to ensure the water delivered to your tap meets all federal and state drinking water standards.

The tap water that comes out of your faucet has to meet rigorous state and federal regulatory standards; otherwise, we wouldn't be able to deliver it to your home. Our annual water quality report shares details about the water you receive. You can see for yourself that we are meeting or even exceeding standards required to maintain water quality. Take a look inside for details on water sources, the constituents found in the water, and how our water compares with state and federal standards.

The City of La Habra Water Division is committed to safeguarding its water supply and ensuring that your tap water is safe to drink. We also strive to keep you informed about the quality of your water supply.

Quality Water is Our Priority

Turn the tap and the water flows, as if by magic. Or so it seems. The reality is considerably different. Delivering high-quality drinking water to our customers is a scientific and engineering feat that requires considerable effort and talent to ensure the water is always there, always safe to drink.

Because tap water is highly regulated by state and federal laws, water treatment and distribution operators must be licensed and are required to complete on-the-job training and technical education before becoming certified by the state.

Our licensed water professionals have an understanding of a wide range of subjects, including mathematics, biology, chemistry, physics, and engineering. Some of the tasks they complete on a regular basis include:

- Operating and maintaining equipment to purify and clarify water;
- Monitoring and inspecting machinery, meters, gauges, and operating conditions;
- Conducting tests and inspections on water and evaluating the results;
- Documenting and reporting test results and system operations to regulatory agencies; and
- Serving our community through customer support, education, and outreach.

So the next time you turn on your faucet, think of the skilled professionals who stand behind every drop.

Your Water: Always Available, Always Assured

The Diemer Water Treatment Plant, located in the hills above Yorba Linda, processes up to 520 million gallons of clean water per day—enough to fill the Rose Bowl every four hours. The water is a blend from the Colorado River Aqueduct and the State Water Project.

At 212 acres, it's one of the largest water treatment plants in the U.S. It provides nearly half of Orange County's total water supply. Water flowing from Diemer meets—or exceeds—all state and federal regulations, and it is kept safe from the treatment plant to your tap by constant testing throughout the distribution network. This constant surveillance ensures your drinking water stays within the requirements mandated by the federal Safe Drinking Water Act.

We Invite You to Learn More About Your Water's Quality

For information about this report, or your water quality in general, please contact Brian Jones, Water and Sewer Manager, at (562) 383-4170. The La Habra City Council meets on the first and third Monday of each month at 6:30 p.m. in Council Chambers at 110 East La Habra Boulevard. Public attendance and participation are welcomed.

Source Water Assessments

Imported (MWDSC) Water Every five years, MWDSC is required by DDW to examine possible sources of drinking water contamination in its State Water Project and Colorado River source waters.

The most recent surveys for MWDSC's source waters are the Colorado River Watershed Sanitary Survey—2020 Update and the State Water Project Watershed Sanitary Survey—2021 Update.

Water from the Colorado River is considered to be most vulnerable to contamination from recreation, urban/stormwater runoff, increasing urbanization in the watershed, and wastewater. Water supplies from Northern California's State Water Project are most vulnerable to contamination from urban/stormwater runoff, wildlife, agriculture, recreation, and wastewater.

U.S. EPA also requires MWDSC to complete a source water assessment (SWA) that uses information collected in the watershed sanitary surveys. MWDSC completed its SWA in December 2002. The SWA is used to evaluate the vulnerability of water sources to contamination and helps determine whether more protective measures are needed.

A copy of the most recent summary of the Watershed Sanitary Survey or the SWA can be obtained by calling MWDSC at (800) CALL-MWD (800-225-5693).

Groundwater Assessment

An assessment of the drinking water sources for the City was completed in December 2010 by City staff. The sources are considered most vulnerable to the following activities associated with contaminants not detected in the water supply: body shops, gas stations, machine shops, metal plating/finishing/fabricating, repair shops, and sewer collection systems.

A copy of the complete assessment is available at State Water Resources Control Board, Division of Drinking Water, 2 MacArthur Place, Suite 150, Santa Ana, CA 92707. You may request a summary of the assessment by contacting the City at (562) 383-4170.

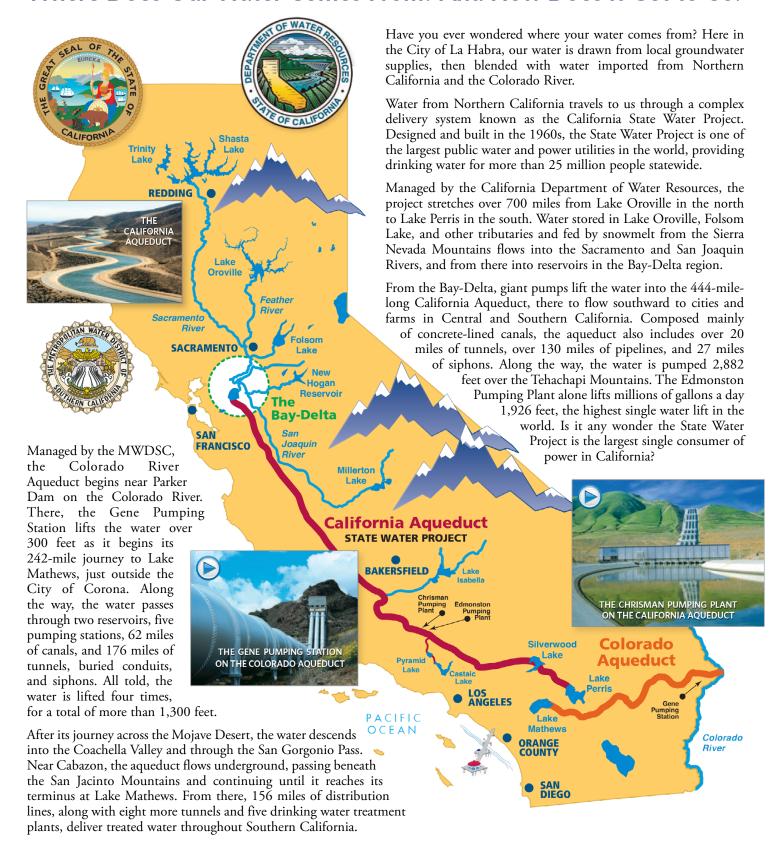
An assessment of the drinking water sources for Cal Domestic was completed in October 2010. The sources are considered most vulnerable to the following activities associated with contaminants detected in the water supply: drinking water treatment plants, known contaminant plumes, underground storage tanks—confirmed leaking tanks, housing—high density, wells—water supply, and schools. The sources are considered most vulnerable to the following activities not associated with any detected contaminants: transportation corridors—freeways/state highways and transportation corridors—railroads. A copy of the complete assessment may be viewed at Cal Domestic, 15505 Whittier Boulevard, Whittier, CA 90603. You may request a summary of the assessment by contacting Ernesto Che Venegas, Operations Manager, at (562) 947-3811.

About Lead in Tap Water

ead can cause serious health effects in people of all ages, respecially pregnant people, infants (both formula-fed and breastfed), and young children. Lead in drinking water is primarily from materials and parts used in service lines and home plumbing. The City of La Habra Water Division is responsible for providing high-quality drinking water and removing lead pipes but cannot control the variety of materials used in the plumbing in your home. Because lead levels may vary over time, lead exposure is possible even when your tap sampling results do not detect lead at one point in time. You can help protect yourself and your family by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Using a filter certified by an American National Standards Instituteaccredited certifier to reduce lead is effective in reducing lead exposures. Follow the instructions provided with the filter to ensure it is used properly. Use only cold water for drinking, cooking, and making baby formula. Boiling does not remove lead from water.

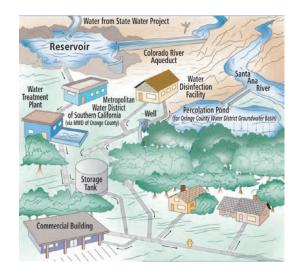
Before using tap water for drinking, cooking, or making baby formula, flush your pipes for several minutes. You can do this by running your tap, taking a shower, or doing laundry or a load of dishes. If you have a lead or galvanized service line requiring replacement, you may need to flush your pipes for a longer period. If you are concerned about lead and wish to have your water tested, contact Brian Jones, Water and Sewer Manager, at (562) 383-4170. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at epa.gov/safewater/lead.

Lead Service Line Inventory


To address lead in drinking water, public water systems were required to develop and maintain an inventory of service line materials by October 16, 2024. Developing an inventory and identifying the location of lead service lines (LSL) is the first step for beginning LSL replacement and protecting public health. The lead service inventory may be found at lahabraca.gov. Please contact us if you would like more information about the inventory or any lead sampling that has been done.

The Need To Conserve Water Remains a High Priority Throughout California

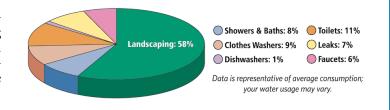
Southern California has an arid climate, and wise water use needs to become a part of everyone's daily life. Our water resources are finite, and they get smaller every year.



Where Does Our Water Comes From? And How Does it Get to Us?

How Does Our Water Get to Us?

Importing water from hundreds of miles away is only the start to providing you clean, fresh water. Once the water is in Southern California, it is distributed to individual agencies and municipalities throughout the Southland by MWDSC.



The City of La Habra Water Division vigorously works to ensure the safety of your drinking water and, in conjunction with MWDSC and OCWD, continuously monitors the water to verify adherence with drinking water regulations.

Where Do We Use Water the Most?

Outdoor watering of lawns and gardens makes up approximately 60 percent of home water use. By reducing your outdoor water use by either cutting back on irrigation or planting more drought-tolerant landscaping, you can dramatically reduce your overall water use. Save the most where you use the most—make your outdoor use efficient.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disor-

ders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health-care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Where Can You Learn More?

There's a wealth of information on the internet about drinking water quality and water issues in general. Some good sites to begin your research are:

- Metropolitan Water District of Southern California: mwdh2o.com
- California Department of Water Resources: water.ca.gov
- The Water Education Foundation: watereducation.org

To learn more about water conservation and rebate information: bewaterwise.com and ocwatersmart.com

To see the aqueducts in action, check out these two videos:

- Wings Over Water: youtu.be/8A1v1Rr2neU
- Wings Over Metropolitan's Colorado River Aqueduct: youtu.be/KipMQh5t0f4

2024 City of La Habra Drinking Water Quality

 F^{or} more information about the health effects of the listed contaminants in the following tables, call the U.S. EPA hotline at (800) 426-4791.

2024 CITY OF LA HABRA DISTRIBUTION SYSTEM WATER QUALITY								
	MCL (MRDL/ MRDLG)	AVERAGE AMOUNT	RANGE OF DETECTIONS	MCL VIOLATION	TYPICAL SOURCE OF CONTAMINANT			
Disinfection Byproducts								
Total Trihalomethanes (ppb)	80	59	3.7 - 56	No	Byproducts of Chlorine Disinfection			
Haloacetic Acids (ppb)	60	7	1 - 8.8	No	Byproducts of Chlorine Disinfection			
Chlorine Residual (ppm)	(4 / 4)	1.1	0.08 - 2.7	No	Disinfectant Added for Treatment			
Aesthetic Quality								
Color (color units)	15*	3	ND - 20	No	Erosion of Natural Deposits			
Odor (threshold odor number)	3*	1	1 - 2	No	Erosion of Natural Deposits			
Turbidity (ntu)	5*	ND	ND - 1.1	No	Erosion of Natural Deposits			

Eight locations in the distribution system are tested quarterly for total trihalomethanes and haloacetic acids, and 46 monthly for color, odor and turbidity.

MRDL = Maximum Residual Disinfectant Level; MRDLG = Maximum Residual Disinfectant Level Goal;

^{*}Contaminant is regulated by a secondary standard to maintain aesthetic qualities.

LEAD AND COPPER ACTION LEVELS AT RESIDENTIAL TAPS									
	ACTION LEVEL (AL)	PUBLIC HEALTH GOAL	90TH PERCENTILE VALUE	SITES EXCEEDING AL / NUMBER OF SITES	AL VIOLATION?	TYPICAL SOURCE OF CONTAMINANT			
Lead (ppb)	15	0.2	ND	0 / 30	No	Corrosion of Household Plumbing			
Copper (ppm)	1.3	0.3	0.23	0 / 30	No	Corrosion of Household Plumbing			

Every three years 30 residences are tested for lead and copper at-the-tap. The most recent set of samples was collected in 2024. Lead was detected in 1 home; which did not exceed the lead AL. Copper was detected in 20 homes; none exceeded the copper AL. A regulatory action level is the concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Drinking Water Definitions

What are water quality standards?

Drinking water standards established by U.S. EPA and DDW set limits for substances that may affect consumer health or aesthetic qualities of drinking water.

The tables in this report show the following types of water quality standards:

- Maximum contaminant level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible.
- Maximum residual disinfectant level (MRDL): The highest level
 of a disinfectant allowed in drinking water. There is convincing
 evidence that addition of a disinfectant is necessary for control of
 microbial contaminants.
- Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.
- Primary drinking water standard: MCLs for contaminants that affect health, along with their monitoring and reporting requirements and water treatment requirements.
- Regulatory action level (AL): The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.

What is a water quality goal?

In addition to mandatory water quality standards, U.S. EPA and DDW have set voluntary water quality goals for some contaminants. Water quality goals are often set at such low levels that they are not achievable in practice and are not directly measurable. Nevertheless, these goals provide useful guideposts and direction for water management practices.

The tables in this report include three types of water quality goals:

- Maximum contaminant level goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by U.S. EPA.
- Maximum residual disinfectant level goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- Public health goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

How are contaminants measured?

Water is sampled and tested throughout the year. Contaminants are measured in:

- · Parts per million (ppm) or milligrams per liter (mg/L)
- Parts per billion (ppb) or micrograms per liter (µg/L)
- Parts per trillion (ppt) or nanograms per liter (ng/L)

CHEMICAL	MCL	PHG (MCLG)	AVERAGE GROUNDWATER AMOUNT	AVERAGE MWD WATER	RANGE OF DETECTIONS	MCL VIOLATION?	TYPICAL SOURCE OF CONTAMINATION
Organic Chemicals - Tested in 20	24						
Tetrachloroethylene, PCE (ppb)	5	0.06	ND	ND	ND - 1.1	No	Industrial Waste Discharge
Trichloroethylene, TCE (ppb)	5	1.7	0.75	ND	ND - 2.7	No	Industrial Waste Discharge
Radiologicals - Tested in 2022, 20	023, and 202	4					
Combined Radium (pCi/L)	5	(O)	ND	ND	ND - 1	No	Erosion of Natural Deposits
Gross Alpha Particle Activity (pCi/L)	15	(O)	ND	ND	ND - 5	No	Erosion of Natural Deposits
Gross Beta Particle Activity pCi/L)	50	(O)	NR	4	ND - 5	No	Decay of Natural and Man-made Deposits
Uranium (pCi/l)	20	0.43	2.1	1	ND - 3.2	No	Erosion of Natural Deposits
norganic Chemicals - Tested in 2	023 and 202	4					
Aluminum (ppb)	1	0.6	ND	ND	ND - 0.11	No	Treatment Process Residue, Natural Deposits
Barium (ppm)	1	2	ND	0.12	ND - 0.14	No	Erosion of Natural Deposits
Bromate (ppb)	10	0.1	NR	ND	ND - 1.6	No	Byproduct of Drinking Water Ozonati
Chromium, Hexavalent (ppb)	10	0.02	1.5	ND	ND - 3.4	No	Runoff or Leaching from Natural Deposits; Industrial Wastes
Fluoride (ppm) naturally- occurring	2	1	0.35	NR	0.31 - 0.4	No	Erosion of Natural Deposits
Fluoride (ppm) treatment- related	2	1	NR	0.7	0.6 - 0.8	No	Water Additive for Dental Health
Nitrate as N (ppm)	10	10	1.8	ND	ND - 4	No	Agriculture Runoff and Sewage
Nitrate+Nitrite as N (ppm)	10	10	1.8	ND	ND - 4	No	Agriculture Runoff and Sewage
Perchlorate (ppb)	6	1	ND	ND	ND - 1.8	No	Industrial Waste Discharge
Secondary Standards* - Tested in	2023 and 20	024					
Aluminum (ppm)	200*	600	ND	ND	ND - 110	No	Treatment Process Residue, Natural Deposits
Chloride (ppm)	500*	n/a	73	104	23 - 120	No	Runoff or Leaching from Natural Deposits
Color (color units)	15*	n/a	1.3	2	ND - 5	No	Runoff or Leaching from Natural Deposits
Manganese (ppb)	50*	n/a	18	ND	ND - 37	No	Runoff or Leaching from Natural Deposits
Odor (threshold odor number)	3*	n/a	1	1	1	No	Naturally-occurring Organic Materials
Specific Conductance (µmho/ cm)	1,600*	n/a	945	979	520 - 1,400	No	Substances that Form lons in Water
Sulfate (ppm)	500*	n/a	134	224	45 - 253	No	Runoff or Leaching from Natural Deposits
Total Dissolved Solids (ppm)	1,000*	n/a	568	621	310 - 830	No	Runoff or Leaching from Natural Deposits
Turbidity (ntu)	5*	n/a	0.17	ND	ND - 0.35	No	Runoff or Leaching from Natural Deposits

2024 CITY OF LA HABRA GROUNDWATER AND IMPORTED MWD DRINKING WATER QUALITY (CONTINUED)

CHEMICAL	MCL	PHG (MCLG)	AVERAGE GROUNDWATER AMOUNT	AVERAGE IMPORTED MWD AMOUNT	RANGE OF DETECTIONS	MCL VIOLATION?	TYPICAL SOURCE OF CONTAMINATION		
Unregulated Chemicals - Tested in 2023 and 2024									
Alkalinity, total as CaCO3 (ppm)	Not Regulated	n/a	243	114	105 - 320	n/a	Runoff or Leaching from Natural Deposits		
Boron (ppm)	NL = 1	n/a	0.26	0.14	ND - 0.53	n/a	Runoff or Leaching from Natural Deposits		
Calcium (ppm)	Not Regulated	n/a	68	68	58 - 78	n/a	Runoff or Leaching from Natural Deposits		
Hardness, total as CaCO3 (ppm)	Not Regulated	n/a	258	270	220 - 305	n/a	Runoff or Leaching from Natural Deposits		
Hardness, total (grains/gallon)	Not Regulated	n/a	15	16	13 - 18	n/a	Runoff or Leaching from Natural Deposits		
Magnesium (ppm)	Not Regulated	n/a	22	26	12 - 37	n/a	Runoff or Leaching from Natural Deposits		
pH (pH unit)	Not Regulated	n/a	7.7	8.2	7.6 - 8.2	n/a	Hydrogen Ion Concentration		
Potassium (ppm)	Not Regulated	n/a	4	4.9	3.3 - 5.4	n/a	Runoff or Leaching from Natural Deposits		
Sodium (ppm)	Not Regulated	n/a	102	103	17 - 190	n/a	Runoff or Leaching from Natural Deposits		
Total Organic Carbon (ppm)	ТТ	n/a	NR	2.4	2 - 2.5	n/a	Various Natural and Man-made Sources		

ppb = parts-per-billion; ppm = parts-per-million; pCi/L = picoCuries per liter; ntu = nephelometric turbidity units; µmho/cm = micromhos per centimeter; NR = not required to be tested; ND = not detected; MCL = Maximum Contaminant Level; (MCLG) = federal MCL Goal; PHG = California Public Health Goal; n/a = not applicable; NL = Notification Level; TT = treatment technique

^{*} Contaminant is regulated by a secondary standard.

METROPOLITAN WATER DISTRICT DIEMER FILTRATION PLANT	TREATMENT TECHNIQUE	TURBIDITY MEASUREMENTS	TT VIOLATION?	TYPICAL SOURCE IN DRINKING WATER
Turbidity - combined filter effluent				
1) Highest single turbidity measurement (NTU)	0.3	0.06	No	Soil Runoff
2) Percentage of samples less than or equal to 0.3 NTU	95%	100%	No	Soil Runoff

Turbidity is a measure of the cloudiness of the water, an indication of particulate matter, some of which might include harmful microorganisms. Low turbidity in Metropolitan's treated water is a good indicator of effective filtration. Filtration is called a "treatment technique" (TT). A treatment technique is a required process intended to reduce the level of chemicals in drinking water that are difficult and sometimes impossible to measure directly.

NTU = nephelometric turbidity units

Drinking Water Contaminants

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants that can be naturally occurring or the result of oil and gas production and mining activities.

To ensure that tap water is safe to drink, the U.S. EPA and the SWRCB prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Your drinking water is a blend of surface water imported by MWDSC, groundwater imported from Cal Domestic, and two wells within the city. Cal Domestic water originates from the main San Gabriel groundwater basin. MWDSC's imported water sources are the Colorado River and the State Water Project, which draws water from the Sacramento—San Joaquin River Delta. City wells draw water from La Habra Groundwater Basin.

Cross Connections

In cooperation with the SWRCB DDW, La Habra's major goal is to ensure the distribution of a safe potable water supply to all domestic water users. For the City to achieve this goal, a Cross-Connection Control Management Plan (CCCMP)

is being developed with an effective date of July 1, 2025. The City's CCCMP was developed pursuant to the requirements set forth in the Cross-Connection Control Policy Handbook (CCCPH), which replaced California Administrative Code title 17, sections 7583 through 7605 and applies to all California public water systems as defined in California's Health and Safety Code (CHSC, section 116275(h)).

How to Read Your Residential Water Meter

Your water meter is usually located between the sidewalk and curb under a cement cover. Remove the cover by inserting a screwdriver in the hole in the lid, and then carefully lift the cover. The meter reads straight across, like the odometer on your car. The city bills in 100-cubic-foot (748-gallon) increments, with 100 cubic feet equivalent to one billing unit.

Water Meter Reading

The number shown indicates all water that has passed through the meter in its lifetime (in cubic feet). To know how much water is used in a given period, subtract the last reading from the current total (you'll need to take two readings or look at your last billing statement). The difference is the amount of water used.

Rate of Flow

A second reading, the rate, will be displayed constantly with the meter reading. The rate is the amount of water (in gallons per minute) passing through the meter at that moment. It can be used for leak detection. If all water is shut off and a rate is observed, this means water is flowing through the meter. Many of the water system's meters are automated. These meters have the ability to record hourly volumes of water used and can help determine the presence of a leak when flow is continuous over extended periods of time. If your meter has been exchanged for a new automated meter, you can view your water use by creating an online account at www. mywateradvisor2.com.

Water Conservation: A Little Effort Can Save a Lot of Water and Money

La Habra Water Division promotes the conservation of water so the city can preserve this scarce resource and save residents money in the process. Water is brought to Southern California via large aqueduct systems that feed from rivers in the Central Valley and the Colorado River. There are large costs involved in maintaining these systems and transporting the water over miles of deserts, valleys, and mountain ranges. The MWDSC is the main supplier of this water and controls the vast network of aqueducts, pumping stations, and filtration plants. Local municipal water suppliers have the ability to tap into underground aquifers, but this local supply of water is not enough to meet the demands of the residents, and the more expensive aqueduct water must be used. For these reasons, it is recommended that you conserve water by reducing water waste. This will save you money as well.

Simple water-saving acts like the ones listed here can save countless gallons of water every day.

- Soak pots and pans instead of letting water run while you scrub them clean. This saves water and makes the job easier.
- Keep a pitcher of drinking water in the refrigerator. This can save gallons of water every day, and it's always cold!
- Plug the sink instead of running water to rinse your razor or wet your toothbrush. This can save upward of 300 gallons of water a month.
- Use a broom instead of a hose to clean off sidewalks and driveways. It takes very little time to sweep, and the water savings quickly add up.
- Check your sprinkler system for leaks, overspray, and broken sprinkler heads and repair promptly. This can save countless gallons each time you water.
- Water plants in the early morning. It reduces evaporation and ensures deeper watering.

MWDSC has its own water conservation website. To find more information on water-saving plants and other useful tips, visit bewaterwise.com.

