

100

YEARS OF EXCEPTIONAL
WATER QUALITY

Your 2025 Water Quality Report

WATER QUALITY IS OUR TOP PRIORITY

LAGUNA BEACH COUNTY WATER DISTRICT

1925 • CELEBRATING A CENTURY OF SERVICE • 2025

Introduction

The Laguna Beach County Water District (LBCWD) is pleased to distribute this report to its water customers. It provides important information about where your water comes from and the work we perform each day to ensure the water delivered to your tap meets all federal and state drinking water standards.

The tap water that comes out of your faucet has to meet rigorous federal and state regulatory standards; otherwise, we wouldn't be able to deliver it to you. Our annual Water Quality Report shares details about the water you receive. You can see for yourself that we are meeting or even exceeding standards required to maintain water quality. Take a look inside for details on water sources, the constituents found in the water, and how you can have confidence in the quality of your water. The LBCWD is committed to safeguarding its water supply and ensuring that your tap water is safe to drink. We also strive to keep you informed about the quality of your water supply.

A Century of Safe, Reliable Water: Our Commitment to Quality Since 1925

For a century, the District has made water quality our top priority—since the very beginning, when the community first rallied together in 1925 to form a local water agency. Back then, Laguna Beach was a growing artist colony and beachside town with limited and unreliable water sources. Clean, safe drinking water wasn't just a luxury—it was a necessity for survival and growth. The District was created out of that urgent need, and from day one, delivering high-quality water has been at the core of our mission. Even in those early years, with limited technology and resources, the District took every measure possible to ensure the water reaching homes and businesses met the highest standards of the time.

As the decades rolled on, our commitment to water quality remained unwavering through every era of change in Laguna Beach. From the challenges of the Great Depression and World War II to the population booms of the postwar years and the environmental awakenings of the 1970s, the District has always held water safety as a guiding principle. Generations of dedicated staff have carried that responsibility with pride, treating water quality not just as a requirement but as a promise to the community. Whether times were tough or thriving, the District remained a steady presence—testing, monitoring, and protecting the water our residents rely on. It's a tradition of care that's been passed down for 100 years, and one we're proud to continue into the future.

Since 1990, California public water utilities have been providing an annual Water Quality Report to their customers. This year's report covers drinking water quality testing and reporting for 2024. The District vigilantly safeguards its water supply, and, as in years past, the water delivered meets the quality standards required by federal and state regulatory agencies. The U.S. Environmental Protection Agency (U.S. EPA) and the State Water Resources Control Board (SWRCB), Division of Drinking Water (DDW) are the agencies responsible for establishing and enforcing drinking water quality standards. In some cases, the District goes beyond what is required by testing for unregulated chemicals that may have known health risks but do not have drinking water standards.

Unregulated chemical monitoring helps U.S. EPA and DDW determine where certain chemicals occur and whether new standards need to be established for those chemicals to protect public health.

Through drinking water quality testing programs, your drinking water is constantly monitored from source to tap for constituents that are both regulated and unregulated. The state allows water agencies to monitor for some constituents less than once per year because the concentrations of these constituents do not change frequently. Some of the data, though representative, is more than a year old.

Sources of Supply

Your drinking water is surface water imported by the Metropolitan Water District of Southern California (MWDSC). MWDSC's imported water sources are the Colorado River and the State Water Project, which draws water from the Sacramento-San Joaquin River Delta

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead And Copper Service Line Inventory

For information on LBCWD's lead and copper service line inventory, please visit lbcwd.org.

We Invite You to Learn More About Your Water's Quality

If you have any questions about this report, please contact the Water Quality Specialist at (949) 464-3117 or visit the LBCWD's website, lbcwd.org. Please check lbcwd.org for the dates and times of the monthly Water District Commission Meetings at 306 Third Street in the City of Laguna Beach. You are encouraged to participate in these meetings.

Source Water Assessments

Imported (MWDSC) Water Assessment

Every five years, MWDSC is required by DDW to examine possible sources of drinking water contamination in its State Water Project and Colorado River source waters. The most recent surveys for MWDSC's source waters are the Colorado River Watershed Sanitary Survey—2020 Update and the State Water Project Watershed Sanitary Survey—2021 Update.

Water from the Colorado River is considered to be most vulnerable to contamination from recreation, urban/stormwater runoff, increasing urbanization in the watershed, and wastewater. Water supplies from Northern California's State Water Project are most vulnerable to contamination from urban/stormwater runoff, wildlife, agriculture, recreation, and wastewater.

The U.S. EPA also requires MWDSC to complete a source water assessment (SWA) that utilizes information collected in the watershed sanitary surveys. MWDSC completed its SWA in December 2002. The SWA is used to evaluate the vulnerability of water sources to contamination and helps determine whether more protective measures are needed.

A copy of the most recent summary of the Watershed Sanitary Survey and the SWA can be obtained by calling MWDSC at (800) CALL-MWD (800-225-5693).

About Lead in Tap Water

Lead can cause serious health effects in people of all ages, especially pregnant people, infants (both formula-fed and breastfed), and young children. Lead in drinking water is primarily from materials and parts used in service lines and home plumbing. LBCWD is responsible for providing high-quality drinking water and removing lead pipes but cannot control the variety of materials used in the plumbing in your home. Because lead levels may vary over time, lead exposure is possible even when your tap sampling results do not detect lead at one point in time. You can help protect yourself and your family by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Using a filter certified by an American National Standards Institute-accredited certifier to reduce lead is effective in reducing lead exposures. Follow the instructions provided with the filter to ensure it is used properly. Use only cold water for drinking, cooking, and making baby formula. Boiling does not remove lead from water.

Before using tap water for drinking, cooking, or making baby formula, flush your pipes for several minutes. You can do this by running your tap, taking a shower, or doing laundry or a load of dishes. If you have a lead or galvanized service line requiring replacement, you may need to flush your pipes for a longer period. If you are concerned about lead and wish to have your water tested, contact the Water Quality Specialist at (949) 464-3117. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at epa.gov/safewater/lead.

Drinking Water Contaminants

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants that can be naturally occurring or the result of oil and gas production and mining activities.

To ensure that tap water is safe to drink, the U.S. EPA and SWRCB prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Quality Water is Our Priority

Turn the tap and the water flows, as if by magic. Or so it seems. The reality is considerably different. Delivering high-quality drinking water to our customers is a scientific and engineering feat that requires considerable effort and talent to ensure the water is always there, always safe to drink. Because tap water is highly regulated by state and federal laws, water treatment and distribution operators must be licensed. LBCWD licensed water professionals have an understanding of a wide range of subjects, including mathematics, biology, chemistry, physics, and engineering. Some of the tasks they complete on a regular basis include:

- Operating and maintaining equipment to purify and clarify water;
- Monitoring and inspecting machinery, meters, gauges, and operating conditions;
- Conducting tests and inspections on water and evaluating the results;
- Documenting and reporting test results and system operations to regulatory agencies; and
- Serving our community through customer support, education, and outreach.

So the next time you turn on your faucet, think of the skilled professionals who stand behind every drop.

Cross Connections

In cooperation with the SWRCB DDW, LBCWD's major goal is to ensure the distribution of a safe potable water supply to all domestic water users. For the district to achieve this goal, a Cross-Connection Control Management Plan (CCCPMP) is being developed with an effective date of July 1, 2025. The district's CCCMP was developed pursuant to the requirements set forth in the Cross-Connection Control Policy Handbook (CCCPH), which replaced California Administrative Code title 17, sections 7583 through 7605 and applies to all California public water systems, as defined in California's Health and Safety Code (CHSC, section 116275(h)).

Drinking Water Fluoridation

Fluoride has been added to U.S. drinking water supplies since 1945 to help prevent tooth decay. As of today, the majority of public water suppliers in the country, including the MWDSC, fluoridate their water. MWDSC began adding fluoride in December 2007, complying with all provisions of California's fluoridation system requirements. Fluoride levels in drinking water are regulated in California and limited to a maximum of 2 parts per million (ppm). Some local groundwater supplies naturally contain fluoride, but they are not supplemented with additional fluoride.

Additional Information

For more details on water fluoridation, please visit:

- **U.S. Centers for Disease Control and Prevention (CDC):** cdc.gov/fluoridation or (800) 232-4636
- **State Water Resources Control Board, Division of Drinking Water:** waterboards.ca.gov/drinking_water/certlic/drinkingwater/Fluoridation.html
- **American Dental Association:** ada.org
- **American Water Works Association:** www.awwa.org

For specific inquiries about MWDSC's fluoridation program, please contact MWDSC directly at (800) 225-5693.

Cryptosporidium

Cryptosporidium is a microscopic organism that originates from animal and human waste and may be present in surface water. When ingested, it can cause diarrhea, fever, and other gastrointestinal symptoms. In 2024 the MWDSC tested their source and treated surface waters for Cryptosporidium and did not detect its presence. If Cryptosporidium is ever detected in drinking water, it is effectively removed through a combination of sedimentation, filtration, and disinfection.

The U.S. EPA and the Centers for Disease Control and Prevention (CDC) provide guidelines on how to reduce the risk of infection from Cryptosporidium and other microbial contaminants. For more information, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791 or visit epa.gov/safewater.

Water Conservation: A Little Effort Can Save a Lot of Water and Money

LCWD promotes the conservation of water to its residents so it can preserve this scarce resource and save residents money in the process. Water is imported to Southern California via large aqueduct systems that feed from rivers in the Central Valley and the Colorado River. There are large costs involved in maintaining these systems and transporting the water over miles of deserts, valleys, and mountain ranges. The MWDSC is the main supplier of this water and maintains the vast network of aqueducts, pumping stations, and filtration plants.

Local municipal water suppliers have the ability to tap into underground aquifers, but this local supply of water is not enough to meet the demands of the residents, so the more expensive imported water must be used. For these reasons, it is recommended that you conserve water by reducing water waste. This will save you money as well.

2024 Laguna Beach County Water District Drinking Water Quality

For more information about the health effects of the listed contaminants in the following tables, call the U.S. EPA hotline at (800) 426-4791.

2024 LAGUNA BEACH COUNTY WATER DISTRICT DISTRIBUTION SYSTEM WATER QUALITY

	MCL (MRDL/ MRDLG)	AVERAGE AMOUNT	RANGE OF DETECTIONS	MCL VIOLATION	TYPICAL SOURCE OF CONTAMINANT
Disinfection Byproducts					
Total Trihalomethanes (ppb)	80	62	21 - 96	No	Byproducts of Chlorine Disinfection
Haloacetic Acids (ppb)	60	28	12 - 51	No	Byproducts of Chlorine Disinfection
Chlorine Residual (ppm)	(4 / 4)	1.8	0.05 - 2.76	No	Disinfectant Added for Treatment
Aesthetic Quality					
Color (color units)	15*	1	ND - 1	No	Erosion of Natural Deposits
Odor (threshold odor number)	3*	1	ND - 1	No	Erosion of Natural Deposits
Turbidity (ntu)	5*	0.19	ND - 1.9	No	Erosion of Natural Deposits

Four locations in the distribution system are tested quarterly for trihalomethanes and haloacetic acids; twelve locations are tested monthly for color, odor and turbidity. MRDL = Maximum Residual Disinfectant Level; MRDLG = Maximum Residual Disinfectant Level Goal; *Contaminant is regulated by a secondary standard to maintain aesthetic qualities (taste, odor, color).

LEAD AND COPPER ACTION LEVELS AT RESIDENTIAL TAPS

	ACTION LEVEL (AL)	PUBLIC HEALTH GOAL	90TH PERCENTILE VALUE	SITES EXCEEDING AL / NUMBER OF SITES	AL VIOLATION?	TYPICAL SOURCE OF CONTAMINANT
Lead (ppb)	15	0.2	ND	0 / 34	No	Corrosion of Household Plumbing
Copper (ppm)	1.3	0.3	0.12	0 / 34	No	Corrosion of Household Plumbing

Every three years, at least 30 residences are tested for lead and copper at-the-tap. The most recent set of samples was collected in 2023. Lead was not detected in any homes. Copper was detected in 10 homes; none exceeded the regulatory action level. A regulatory action level is the concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Drinking Water Definitions

What are water quality standards?

Drinking water standards established by U.S. EPA and DDW set limits for substances that may affect consumer health or aesthetic qualities of drinking water.

The tables in this report show the following types of water quality standards:

- Maximum contaminant level (MCL):** The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible.
- Maximum residual disinfectant level (MRDL):** The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.
- Primary drinking water standard:** MCLs for contaminants that affect health, along with their monitoring and reporting requirements and water treatment requirements.
- Regulatory action level (AL):** The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.

What is a water quality goal?

In addition to mandatory water quality standards, U.S. EPA and DDW have set voluntary water quality goals for some contaminants. Water quality goals are often set at such low levels that they are not achievable in practice and are not directly measurable. Nevertheless, these goals provide useful guideposts and direction for water management practices.

The tables in this report include three types of water quality goals:

- Maximum contaminant level goal (MCLG):** The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by U.S. EPA.
- Maximum residual disinfectant level goal (MRDLG):** The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- Public health goal (PHG):** The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

How are contaminants measured?

Water is sampled and tested throughout the year. Contaminants are measured in:

- Parts per million (ppm) or milligrams per liter (mg/L)
- Parts per billion (ppb) or micrograms per liter (µg/L)
- Parts per trillion (ppt) or nanograms per liter (ng/L)

2024 METROPOLITAN WATER DISTRICT OF SOUTHERN CALIFORNIA TREATED SURFACE WATER

CONSTITUENT	MCL	PHG (MCLG)	AVERAGE AMOUNT	RANGE OF DETECTIONS	MCL VIOLATION?	TYPICAL SOURCE IN DRINKING WATER
Radiologicals - Tested in 2023 and 2024						
Gross Alpha Particle Activity (pCi/L)	15	(0)	ND	ND - 5	No	Erosion of Natural Deposits
Gross Beta Particle Activity (pCi/L)	50	(0)	4	ND - 5	No	Decay of Natural and Man-made Deposits
Uranium (pCi/L)	20	0.43	1	ND - 3	No	Erosion of Natural Deposits
Inorganic Chemicals - Tested in 2024						
Aluminum (ppm)	1	0.6	ND	ND - 0.11	No	Treatment Process Residue, Natural Deposits
Barium (ppm)	1	2	0.124	0.124	No	Refinery Discharge, Erosion of Natural Deposits
Bromate (ppb)	10	0.1	ND	ND - 1.6	No	Byproduct of Drinking Water Ozonation
Fluoride (ppm) treatment-related	2	1	0.7	0.6 - 0.8	No	Water Additive for Dental Health
Secondary Standards* - Tested in 2024						
Aluminum (ppb)	200*	600	ND	ND - 110	No	Treatment Process Residue, Natural Deposits
Chloride (ppm)	500*	n/a	104	93 - 116	No	Runoff or Leaching from Natural Deposits
Color (color units)	15*	n/a	2	1 - 2	No	Runoff or Leaching from Natural Deposits
Odor (threshold odor number)	3*	n/a	1	1	No	Naturally-occurring Organic Materials
Specific Conductance (μmho/cm)	1,600*	n/a	979	888 - 1,070	No	Substances that Form Ions in Water
Sulfate (ppm)	500*	n/a	224	196 - 253	No	Runoff or Leaching from Natural Deposits
Total Dissolved Solids (ppm)	1,000*	n/a	621	556 - 686	No	Runoff or Leaching from Natural Deposits
Unregulated Chemicals - Tested in 2024						
Alkalinity, total (ppm as CaCO₃)	Not Regulated	n/a	114	105 - 123	n/a	Runoff or Leaching from Natural Deposits
Boron (ppm)	Not Regulated	n/a	0.14	0.14	n/a	Runoff or Leaching from Natural Deposits
Calcium (ppm)	Not Regulated	n/a	68	58 - 78	n/a	Runoff or Leaching from Natural Deposits
Hardness, total (ppm as CaCO₃)	Not Regulated	n/a	270	235 - 305	n/a	Runoff or Leaching from Natural Deposits
Hardness, total (grains/gal)	Not Regulated	n/a	16	14 - 18	n/a	Runoff or Leaching from Natural Deposits
Magnesium (ppm)	Not Regulated	n/a	26	22 - 29	n/a	Runoff or Leaching from Natural Deposits
pH (units)	Not Regulated	n/a	8.2	8.2	n/a	Hydrogen Ion Concentration
Potassium (ppm)	Not Regulated	n/a	4.9	4.4 - 5.4	n/a	Runoff or Leaching from Natural Deposits
Sodium (ppm)	Not Regulated	n/a	103	90 - 116	n/a	Runoff or Leaching from Natural Deposits
Total Organic Carbon (ppm)	Not Regulated	n/a	2.4	2 - 2.5	n/a	Various Natural and Man-made Sources

ppb = parts per billion; ppm = parts per million; pCi/L = picoCuries per liter; μmho/cm = micromhos per centimeter; ND = not detected; MCL = Maximum Contaminant Level; (MCLG) = federal MCL Goal; PHG = California Public Health Goal; NL = Notification Level; n/a = not applicable; TT = treatment technique; * Chemical is regulated by a secondary standard.

METROPOLITAN WATER DISTRICT FILTRATION PLANTS	TREATMENT TECHNIQUE	DIEMER TURBIDITY MEASUREMENTS	WEYMOUTH TURBIDITY MEASUREMENTS	TT VIOLATION?	TYPICAL SOURCE IN DRINKING WATER
Turbidity - combined filter effluent					
1) Highest single turbidity measurement (NTU)	0.3	0.06	0.06	No	Soil Runoff
2) Percentage of samples less than or equal to 0.3 NTU	95%	100%	100%	No	Soil Runoff

Turbidity is a measure of the cloudiness of the water, an indication of particulate matter, some of which might include harmful microorganisms. Low turbidity in Metropolitan's treated water is a good indicator of effective filtration. Filtration is called a "treatment technique" (TT). A treatment technique is a required process intended to reduce the level of chemicals in drinking water that are difficult and sometimes impossible to measure directly. NTU = nephelometric turbidity units

Chloramines

All LBCWD's drinking water is treated with chloramines, a combination of chlorine and ammonia, as a disinfectant. Chloramines effectively eliminate bacteria and other microorganisms that may cause disease. Compared to chlorine alone, chloramines last longer in the distribution system, produce fewer disinfection by-products, and have little to no odor when used properly.

Precautions to be aware of:

- Kidney dialysis patients:** Individuals using kidney dialysis machines should consult their health-care provider regarding appropriate water treatment.
- Fish and aquatic life:** Chloramines are toxic to fish and other aquatic organisms. Customers maintaining fish ponds, tanks, or aquariums should adjust water treatment methods accordingly.

For more information, visit epa.gov/dwreginfo/chloramines-drinking-water.

PFAS Advisory

Per- and polyfluoroalkyl substances (PFAS) are a group of human-made chemicals that have been used in various consumer products since the 1940s due to their resistance to heat, water, oils, and stains. These chemicals are prevalent in the environment and have been detected in water supplies nationwide. Studies suggest that exposure to certain PFAS may pose health risks. The U.S. EPA and the DDW have established health-based advisories for PFAS. If PFAS levels exceed these guidelines, water agencies must notify their governing bodies and take necessary actions, such as removing affected sources from service or implementing treatment solutions.

To address PFAS contamination, water providers have conducted testing and taken proactive steps to ensure safe drinking water.

Regulatory actions: The U.S. EPA announced final National Primary Drinking Water Regulations for six PFAS in April 2024. Public water systems are required to monitor these substances, with full reporting and compliance expected by 2027.

For more details on PFAS regulations and water safety, visit:

- California State Water Resources Control Board, Division of Drinking Water: waterboards.ca.gov/pfas
- Orange County Water District: ocwd.com/what-we-do/water-quality/pfas
- U.S. EPA: epa.gov/pfas

This report contains important information about your drinking water. Translate it, or speak with someone who understands it.

Este informe contiene información importante sobre su agua potable. Traducirlo, o hablar con alguien que lo entienda.

이 보고서에는 식수에 관한 중요한 정보가 포함되어 있습니다. 번역해 보세요, 아니면 이해해주는 사람에게 얘기해봐

برشلا مایم لوح ټامولع یل ع ریرقتللا اذه یوچي
امم جررت، کې ټەخانلا
کلذ مەھفيي صىخى ع مەدختللا و

このレポートには、飲料水に関する重要な情報が含まれています。それを翻訳して、またはそれを理解している人に相談してください

Disinfectants and Disinfection By-Products in Drinking Water

Disinfection of drinking water was one of the greatest public health advancements of the 20th century, significantly reducing the spread of waterborne diseases caused by bacteria and viruses. Today chlorine and chloramines are commonly used disinfectants to ensure safe drinking water.

How Disinfection Works

- Chlorine is added at the water source (groundwater wells or treatment plants) to kill harmful microorganisms.
- Residual chlorine remains in the distribution system to prevent bacterial growth in the pipes that carry water to homes and businesses.
- Chloramines, a combination of chlorine and ammonia, are also used as a disinfectant and help reduce certain by-products.

Disinfection By-Products and Regulations

While effective, chlorine and chloramines can react with naturally occurring materials in water, forming disinfection by-products (DBPs), which may pose health risks. The most common DBPs are trihalomethanes (THMs) and haloacetic acids (HAAs).

To protect public health, the U.S. EPA regulates DBPs under the Safe Drinking Water Act.

- In 1979 the U.S. EPA set the maximum allowable total THM level at 100 parts per billion (ppb).
- In 2002 the Stage 1 Disinfectants/Disinfection Byproducts Rule lowered the limit to 80 ppb and added HAAs to the list of regulated chemicals.
- In 2006 the Stage 2 Disinfectants/Disinfection Byproducts Rule introduced further monitoring and control measures.
- Full compliance began in 2012.

Your drinking water meets or exceeds all state and federal standards, with rigorous monitoring in place. We regularly test for DBPs and adjust treatment methods to maintain a safe balance between disinfection and by-product control.

Your drinking water is treated, tested, and monitored to ensure it remains safe and reliable for you and your community.

Laguna Beach County Water District

306 Third Street • Laguna Beach, CA 92651
(949) 494-1041 • CustomerService@lbcwd.org

该报告包含有关您的饮用水的重要信息。

翻译一下，
或与理解它的人交谈

Báo cáo này chứa thông tin quan trọng về
nước uống của bạn. Dịch nó,
hoặc nói chuyện với người hiểu nó

このレポートには、飲料水に関する重要な情報が含まれています。それを翻訳して、またはそれを理解している人に相談してください