2021 Consumer Confidence Report

Water System Information

Water System Name: **SMWD – Nichols Institute**

Report Date: 10 June 2022

Type of Water Source(s) in Use: Treated surface water purchased from Santa Margarita Water

District (SMWD)

Name and General Location of Source(s): Santa Margarita Water District

Rancho Santa Margarita, CA 92688

Drinking Water Source Assessment Information: SMWD - The watershed sanitary surveys for Metropolitan Water District of Southern California's (MWDSC's) Colorado River supply was recently updated in 2020 and for the State Water Project supply in 2016.

The IRWD's watershed sanitary survey for Santiago Reservoir (Irvine Lake) was updated in 2019. Copies of the most recent summary of any of the aforementioned-watershed sanitary surveys can be obtained by calling SMWD Customer Service at (949) 459-6400.

Time and Place of Regularly Scheduled Board Meetings for Public Participation:

Santa Margarita Water District has two regular Board meetings each month. Meeting details can be found on the District's website at https://smwd.com/meetings

For More Information, contact: Rachel Pasco Phone Number: (949) 459-6674

About This Report

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2021 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse <u>SMWD-Nichols Institute</u> a <u>(949) 459 6400</u> para asistirlo en español.

Terms Used in This Report

Term	Definition
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Term	Definition
Maximum Contaminant Level (MCL)	The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.
Maximum Contaminant Level Goal (MCLG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).
Maximum Residual Disinfectant Level (MRDL)	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
Primary Drinking Water Standards (PDWS)	MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.
Public Health Goal (PHG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
Regulatory Action Level (AL)	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
Secondary Drinking Water Standards (SDWS)	MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.
Treatment Technique (TT)	A required process intended to reduce the level of a contaminant in drinking water.
Variances and Exemptions	Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.
ND	Not detectable at testing limit.
ppm	parts per million or milligrams per liter (mg/L)
ppb	parts per billion or micrograms per liter (µg/L)
ppt	parts per trillion or nanograms per liter (ng/L)
ppq	parts per quadrillion or picogram per liter (pg/L)
pCi/L	picocuries per liter (a measure of radiation)

Sources of Drinking Water and Contaminants that May Be Present in Source Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

Regulation of Drinking Water and Bottled Water Quality

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

About Your Drinking Water Quality

Drinking Water Contaminants Detected

Tables 1, 2, 3, 4, and 5 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Table 1. Sampling Results Showing the Detection of Coliform Bacteria

Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria
E. coli	2021				Human and animal
	0	0	(a)	0	fecal waste

⁽a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

Table 1.A. Compliance with Total Coliform MCL between January 1, 2021 and June 30, 2021 (inclusive)

Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria
Total Coliform Bacteria	(In a month)	0	1 positive monthly sample (a)	0	Naturally present in the environment
Fecal Coliform and <i>E. coli</i>	(in the year)	0	0	None	Human and animal fecal waste

⁽a) For systems collecting fewer than 40 samples per month: two or more positively monthly samples is a violation of the total coliform MCL

Table 2. Sampling Results Showing the Detection of Lead and Copper

Complete if lead or copper is detected in the last sample set.

Lead and Copper	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	PHG	No. of Schools Requesting Lead Sampling	Typical Source of Contaminant
Lead	12/06/2019	21	< 5	0	15	0.2	Not applicable	Internal corrosion of household water plumbing systems;
(ppb)	06/13/2019	21	< 5	0	15	0.2	Not applicable	discharges from industrial manufacturers; erosion of natural deposits
	12/06/2019	21	0.40	0	1.3	0.3	Not	Internal corrosion of household
Copper							applicable	plumbing systems; erosion of
(ppm)	06/13/2019	21	0.46	0	1.3	0.3	Not	natural deposits; leaching from wood preservatives
				,			applicable	Wood procervatives

Table 3. Sampling Results for Sodium and Hardness (SMWD Source1)

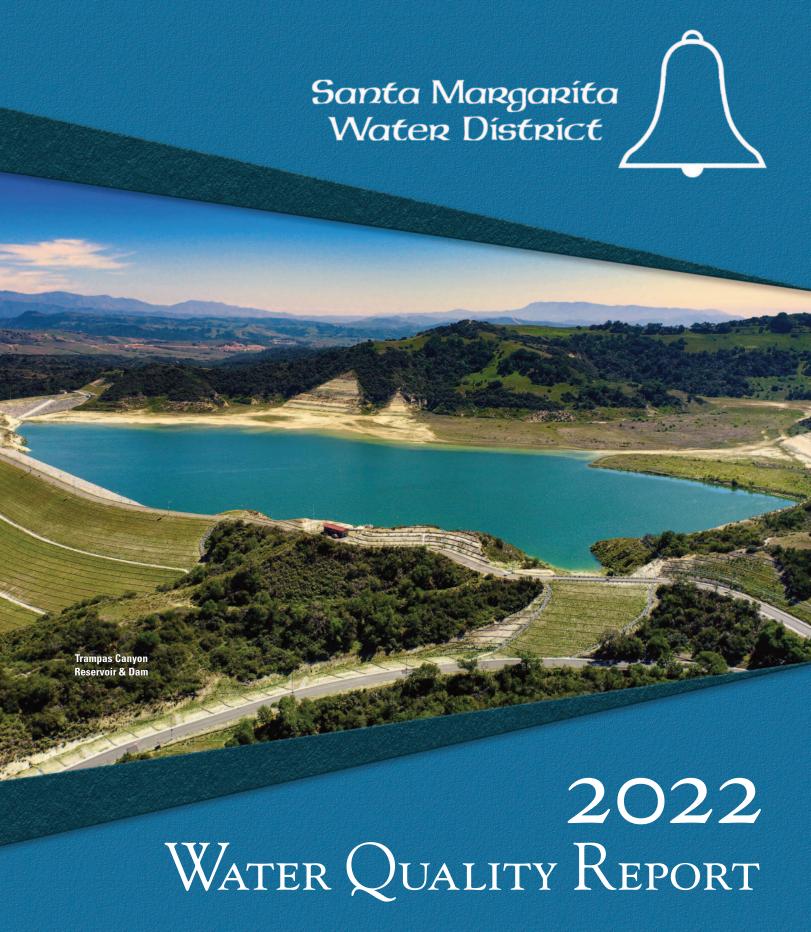
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	2021	90	89 – 92	None	None	Salt present in the water and is generally naturally occurring
Hardness (ppm)	2021	276	272 – 278	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring

Table 4. Detection of Contaminants with a Primary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Disinfection Byproduc	cts, Disinfectan	t Residuals, a	and Disinfection	Byproduct P	recursors (Di	stribution System)
Chlorine (ppm)	2021	1.64	0.7 – 1.96	[4.0]	[4.0]	Drinking water disinfectant added for treatment.
TTHMs [Total Trihalomethanes] (ppb)	2021	26	14 – 34	80	N/A	Byproduct of drinking water disinfection
HAA5 [Haloacetic Acids] (ppb)	2021	8	3.3 – 10	60	N/A	Byproduct of drinking water disinfection

Table 5. Detection of Contaminants with a Secondary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant						
	Distribution System Water Quality											
Odor (TON)	2021	<1	<1	3		Naturally-occurring organic materials						
Specific Conductance (µS/cm)	2021	981	780 – 1023	1600		Substances that form ions when in water; seawater influence						
Turbidity (NTU)	2021	0.1	ND - 0.5	5		Soil runoff						
Color (Color Units)	2021	1	1	15		Naturally-occurring organic materials						


Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. **SMWD – Nichols Institute** is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

State Revised Total Coliform Rule (RTCR): This Consumer Confidence Report (CCR) reflects changes in drinking water regulatory requirements during 2021. These revisions add the requirements of the federal Revised Total Coliform Rule, effective since April 1, 2016, to the existing state Total Coliform Rule. The revised rule maintains the purpose to protect public health by ensuring the integrity of the drinking water distribution system and monitoring for the presence of microbials (i.e., total coliform and E. coli bacteria). The U.S. EPA anticipates greater public health protection as the rule requires water systems that are vulnerable to microbial contamination to identify and fix problems. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment to determine if any sanitary defects exist. If found, these must be corrected by the water system. The state Revised Total Coliform Rule became effective July 1, 2021.

Through comprehensive water quality compliance testing programs, your drinking water is constantly monitored from source to tap, allowing Santa Margarita Water District to distribute well over 7.8 billion gallons of drinking water each year.

This ensures your drinking water meets or surpasses all federal and state Safe Drinking Water mandates.

Your 2022 Water Quality Report

Since 1990, California public water utilities have been providing an annual Water Quality Report to their customers. This year's report covers calendar year 2021 drinking water quality testing and reporting.

Santa Margarita Water District (SMWD) vigilantly safeguards its water supply and, as in years past, the water delivered to your home meets or surpasses the quality standards required by federal and state regulatory agencies. The U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board, Division of Drinking Water (DDW) are the agencies responsible for establishing and enforcing drinking water quality standards.

The Irvine Ranch Water District (IRWD) and Metropolitan Water District of Southern California (MWDSC) supply treated imported surface water to SMWD and test for unregulated chemicals in our water supply. Unregulated chemical monitoring helps USEPA and DDW determine where certain chemicals occur and whether new standards need to be established for those chemicals to protect public health.

We Appreciate All You Do to Save Water

Thank you! For all we've been through these many years of intermittent drought, the Santa Margarita Water District extends its heartfelt thanks to all of you who have worked so hard to conserve water. When the seemingly impossible was asked of you — that you conserve 20%

of our water at the height of the last drought — you not only met this goal, you exceeded it. And best of all, you continued to conserve water after the drought was officially declared to be over.

Now, as we potentially enter another year of drought, the District is in a better position than it has been in previous droughts. All because you, our customers, take your responsibilities seriously. You know we live in an arid land, and you recognize water conservation has to be more than a passing passion — it must be a way of life.

As with all of you, it is our fondest hope we will escape another year of drought. But beyond our hopes, we have confidence the customers of the Santa Margarita Water District will always know what to do to conserve their water.

For current drought information and available resources, please visit www.smwd.com/savewater.

Through drinking water quality testing programs carried out by IRWD and MWDSC for treated surface water and the SMWD for the distribution system, your drinking water is constantly monitored from source to tap for regulated and unregulated constituents. In most cases, SMWD goes beyond what is required by more frequent testing on chemicals that may have known health risks but do not have drinking water standards. The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though more than one year old, are representative.

This report contains
important information about
your drinking water.
Translate it, or speak with someone
who understands it.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.

Constant Monitoring Ensures Continued Excellence

Sources of Supply

Your drinking water consists of imported treated surface water from MWDSC, as well as treated surface water from IRWD's Baker Water Treatment Plant, which utilizes surface water from both MWDSC and Santiago Reservoir (Irvine Lake). MWDSC's imported water sources are the Colorado River and the State Water Project, which draws water from the Sacramento-San Joaquin River Delta.

Basic Information About Drinking Water Contaminants

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of land or through the layers of the ground it dissolves naturally occurring minerals and, in

some cases, radioactive material, and can pick up substances resulting from the presence of animal and human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm runoff, industrial or domestic wastewater discharges, oil and gas production, mining and farming.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, are by-products of industrial processes and petroleum production, and can also come from gasoline stations, urban stormwater runoff, agricultural application and septic systems.

- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production or mining activities.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff and residential uses.

In order to ensure that tap water is safe to drink, USEPA and the DDW prescribe regulations that limit the amount of certain contaminants in water provided by public water systems.

The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791. or check their website at: www.epa.gov/safewater.

Drinking Water Fluoridation

Fluoride has been added to U.S. drinking water supplies since 1945. Of the 50 largest cities in the $\,$

U.S., 43 fluoridate their drinking water.

In December 2007, MWDSC joined a majority of the nation's

public water suppliers in adding fluoride to drinking water in order to prevent tooth decay. MWDSC was in compliance with all provisions of the State's fluoridation system requirements. Fluoride levels in

drinking water are limited under California state regulations at a maximum dosage of 2 parts per million.

Additional information about the fluoridation of drinking water is available on these websites:

U.S. Centers for Disease Control and Prevention

1 (800) 232-4636 • www.cdc.gov/fluoridation/

State Water Resources Control Board, Division of Drinking Water

www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/Fluoridation.html

For more information about MWDSC's fluoridation program, please contact Edgar G. Dymally at (213) 217-5709 or at edymally@mwdh2o.com.

To Safeguard Against Issues that May Affect Your Health

We Comply with All State & Federal Water Quality Regulations

Disinfectants and Disinfection Byproducts

Disinfection of drinking water was one of the major public health advances in the 20th century. Disinfection was a major factor in reducing waterborne disease epidemics caused by pathogenic bacteria and viruses, and it remains an essential part of drinking water treatment today.

Water imported from IRWD and MWDSC contain chloramines, a combination of chlorine and ammonia, as a drinking water disinfectant. Chloramines are effective killers of bacteria and other microorganisms that may cause diseases.

Chlorine disinfection has almost completely eliminated from our lives the risks of microbial waterborne diseases. Chlorine is added to your drinking water at the source (surface water

treatment plant). Enough chlorine is added so that it does not completely dissipate through the distribution system pipes. This chlorine helps to prevent the growth of bacteria in the pipes that carry drinking water from the source into your home.

However, chlorine can react with naturally-occurring materials in the water to form unintended chemical byproducts, called disinfection byproducts (DBPs), which may pose health risks. A major challenge is how to balance the risks from microbial pathogens and DBPs. It is important to provide protection from these microbial pathogens while simultaneously ensuring decreasing health risks from disinfection byproducts. The Safe Drinking Water Act requires the USEPA to develop rules to achieve these goals.

Trihalomethanes (THMs) and Haloacetic Acids (HAAs) are the most common and most studied DBPs found in drinking water treated with chlorine. In 1979, the USEPA set the

maximum amount of total THMs allowed in drinking water at 100 parts per billion as an annual running average. Effective in January 2002, the Stage 1 Disinfectants / Disinfection Byproducts Rule lowered the total THM maximum contaminant level to 80 parts per billion and added HAAs to the list of regulated chemicals in drinking water.

Stage 2 of the regulation was finalized by USEPA in 2006, which further controls allowable levels of DBPs in drinking water without compromising disinfection itself. A required distribution system evaluation was completed in 2008 and a Stage 2 monitoring plan has been approved by DDW. Full Stage 2 compliance began in 2012. Your drinking water complies with the Stage 2 Disinfectants / Disinfection Byproducts Rule.

Chloramines form less disinfectant by-products. People who use dialysis machines may want to take special precautions and consult their physician for appropriate type of water treatment. Customers who maintain fish ponds, tanks or aquaria should also make necessary adjustments in water quality treatment, as these disinfectants are toxic to fish.

Cryptosporidium

Cryptosporidium is a microscopic organism that, when ingested, can cause diarrhea, fever, and other gastrointestinal symptoms. The organism comes from animal and/or human

wastes and may be in surface water. MWDSC tested their source water and treated surface water for *Cryptosporidium* in 2021 but did not detect it. As a safeguard, *Cryptosporidium* is eliminated from the water using an effective treatment combination

including sedimentation, filtration, and disinfection.

The USEPA and the federal Centers for Disease Control guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from USEPA's Safe Drinking Water hotline at (800) 426-4791 between 10 a.m. and 4 p.m. Eastern Time (7 a.m. to 1 p.m. in California).

Immunocompromised People

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised people, such as those with cancer who are undergoing chemotherapy, persons who have had organ transplants, people with

HIV/AIDS or other immune system disorders, some elderly persons and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers.

2021 [Metropolitan	Water Di	strict of Sou	ıthern Califo	rnia Treated	Surface Water
Chemical	MCL	PHG (MCLG)	Average Amount	Range of Detections	MCL Violation?	Typical Source of Chemical
Radiologicals – Tested in 2020	and 2021					
Alpha Radiation (pCi/L)	15	(0)	ND	ND – 3	No	Erosion of Natural Deposits
Beta Radiation (pCi/L)	50	(0)	5	4 – 6	No	Decay of Natural and Man-made Deposits
Uranium (pCi/L)	20	0.43	2	1 – 3	No	Erosion of Natural Deposits
Inorganic Chemicals – Tested i	in 2021					
Aluminum (ppm)	1	0.6	0.141	ND - 0.21	No	Treatment Process Residue, Natural Deposits
Barium (ppm)	1	2	0.111	0.111	No	Refinery Discharge, Erosion of Natural Deposits
Bromate (ppb)	10	0.1	ND	ND - 4.6	No	Byproduct of Drinking Water Ozonation
Fluoride (ppm)	2	1	0.7	0.6 - 0.9	No	Water Additive for Dental Health
Secondary Standards* – Teste	d in 2021					
Aluminum (ppb)	200*	600	141	ND - 210	No	Treatment Process Residue, Natural Deposits
Chloride (ppm)	500*	n/a	96	95 – 97	No	Runoff or Leaching from Natural Deposits
Color (color units)	15*	n/a	1	1	No	Naturally-occurring Organic Materials
Odor (threshold odor number)	3*	n/a	2	2	No	Naturally-occurring Organic Materials
Specific Conductance (µmho/cm)	1,600*	n/a	958	950 – 965	No	Substances that Form Ions in Water
Sulfate (ppm)	500*	n/a	214	214 – 215	No	Runoff or Leaching from Natural Deposits
Total Dissolved Solids (ppm)	1,000*	n/a	597	597	No	Runoff or Leaching from Natural Deposits
Unregulated Chemicals – Test	ed in 2021					
Alkalinity, total as CaCO3 (ppm)	Not Regulated	n/a	125	124 – 126	n/a	Runoff or Leaching from Natural Deposits
Boron (ppm)	NL = 1	n/a	0.13	0.13	n/a	Runoff or Leaching from Natural Deposits
Calcium (ppm)	Not Regulated	n/a	66	65 – 66	n/a	Runoff or Leaching from Natural Deposits
Hardness, total as CaCO3 (ppm)	Not Regulated	n/a	274	271 – 276	n/a	Runoff or Leaching from Natural Deposits
Hardness, total (grains/gallon)	Not Regulated	n/a	16	16	n/a	Runoff or Leaching from Natural Deposits
Magnesium (ppm)	Not Regulated	n/a	25	24 – 26	n/a	Runoff or Leaching from Natural Deposits
oH (pH units)	Not Regulated	n/a	8.1	8.1	n/a	Hydrogen Ion Concentration
Potassium (ppm)	Not Regulated	n/a	4.4	4.2 - 4.6	n/a	Runoff or Leaching from Natural Deposits
Sodium (ppm)	Not Regulated	n/a	94	93 – 95	n/a	Runoff or Leaching from Natural Deposits
Total Organic Carbon (ppm)	TT	n/a	2.4	1.9 - 2.8	n/a	Various Natural and Man-made Sources

ppb = parts per billion; **ppm** = parts per million; **pCi/L** = picoCuries per liter; **μmho/cm** = micromhos per centimeter; **ND** = not detected;

MCL = Maximum Contaminant Level; (MCLG) = federal MCL Goal; PHG = California Public Health Goal;

^{*}Chemical is regulated by a secondary standard.

Turbidity – combined filter effluent Metropolitan Water District Diemer Filtration Plant	Treatment Technique	Turbidity Measurements	TT Violation?	Typical Source of Chemical	
1) Highest single turbidity measurement	0.3 NTU	0.03	No	Soil Runoff	
2) Percentage of samples less than 0.3 NTU	95%	100%	No	Soil Runoff	

Turbidity is a measure of the cloudiness of the water, an indication of particulate matter, some of which might include harmful microorganisms. Low turbidity in Metropolitan's treated water is a good indicator of effective filtration. Filtration is called a "treatment technique" (TT).

NTU = nephelometric turbidity units

A treatment technique is a required process intended to reduce the level of chemicals in drinking water that are difficult and sometimes impossible to measure directly.

Unregulated Chemicals Requiring Monitoring									
Chemical	Chemical Notification Level PHG Average Amount Range of Detections Most Recent Sampling Date								
Manganese (ppb) **	SMCL = 50	n/a	2.2	1.1 – 4.8	2020				

SMCL = Secondary MCL

Table Legend

What is a Water Quality Goal?

In addition to mandatory water quality standards, USEPA and the DDW have set voluntary water quality goals for some contaminants. Water quality goals are often set at such low levels that they are not achievable in practice and are not directly measurable. Nevertheless, these goals provide useful guidance and directions for water management practices.

The charts in this report include three types of water quality goals:

- Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the USEPA.
- Maximum Residual Disinfectant Level Goal (MRDLG): The level of a disinfectant added for water treatment below which there is no known or expected risk to health. MRDLGs are set by USEPA.
- Public Health Goals (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency — Office of Environmental Health Hazard Assessment.

What are Water Quality Standards?

Drinking water standards established by the USEPA and DDW set limits for substances that may affect consumer health or aesthetic qualities of drinking water. The charts in this report show the following types of water quality standards:

- Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible.
- Maximum Residual Disinfectant Level (MRDL): The level of a disinfectant added for water treatment that may not be exceeded at the consumer's tap.
- Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.
- Primary Drinking Water Standard: MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.
- Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers
 treatment or other requirements that a water system must follow.
- Treatment Technique (TT): A required process intended to reduce the level of chemicals in drinking water that are difficult and sometimes impossible to measure directly.

NL = Notification Level; n/a = not applicable; TT = treatment technique

^{**}Manganese is regulated with a secondary standard of 50 ppb but was not detected, based on the detection limit for purposes of reporting of 20 ppb. Manganese was included as part of the unregulated chemicals requiring monitoring.

	2021 In	vine Ranch	Water Dist	rict – Baker Wate	r Treatment P	lant
Chemical	MCL	PHG (MCLG)	Avg. Amount	Range of Detections	MCL Violation?	Typical Source of Chemical
Radiologicals – Tested in 202	1					
Uranium (pCi/L)	20	0.43	1.5	1.5	No	Erosion of Natural Deposits
Inorganic Chemicals – Tested	in 2021					
Aluminum (ppm)	1	0.6	< 0.05	ND - 1.1**	No	Treatment Process Residue, Natural Deposits
Barium (ppm)	1	2	0.111	0.111	No	Refinery Discharge, Erosion of Natural Deposi
Fluoride (ppm)	2.0	1	0.33	0.33	No	Erosion of Natural Deposits; Water Additive forDental Health
Secondary Standards* – Test	ed in 2021					
Aluminum (ppb)	200*	600	<50	ND - 1,100**	No	Treatment Process Residue, Natural Deposits
Chloride (ppm)	500*	n/a	97.7	97.7	No	Runoff or Leaching from Natural Deposits
Odor (threshold odor number)	3*	n/a	1	1	No	Naturally-occurring Organic Materials
Specific Conductance (µmho/cm)	1,600*	n/a	973	973	No	Substances that Form Ions in Water
Sulfate (ppm)	500*	n/a	211	211	No	Runoff or Leaching from Natural Deposits
Total Dissolved Solids (ppm)	1,000*	n/a	590	590	No	Runoff or Leaching from Natural Deposits
Turbidity (NTU)	5*	n/a	0.1	0.1	No	Soil Runoff
Unregulated Chemicals – Tes	ted in 2021					
Alkalinity, total as CaCO ₃ (ppm)	Not Regulated	n/a	124	124	n/a	Runoff or Leaching from Natural Deposits
Boron (ppm)	NL=1	n/a	0.134	0.134	n/a	Runoff or Leaching from Natural Deposits
Calcium (ppm)	Not Regulated	n/a	68.8	68.8	n/a	Runoff or Leaching from Natural Deposits
Hardness, total as CaCO ₃ (ppm)	Not Regulated	n/a	276	276	n/a	Runoff or Leaching from Natural Deposits
Hardness, total (grains/gallon)	Not Regulated	n/a	16	16	n/a	Runoff or Leaching from Natural Deposits
Magnesium (ppm)	Not Regulated	n/a	25.4	25.4	n/a	Runoff or Leaching from Natural Deposits
pH (pH units)	Not Regulated	n/a	7.9	7.9	n/a	Hydrogen Ion Concentration
Potassium (ppm)	Not Regulated	n/a	4.9	4.9	n/a	Runoff or Leaching from Natural Deposits
Sodium (ppm)	Not Regulated	n/a	91.3	91.3	n/a	Runoff or Leaching from Natural Deposits
Total Organic Carbon (ppm)	TT	n/a	2.4	2.4	n/a	Various Natural and Man-made Sources

ppb = parts per billion; ppm = parts per million; pCi/L = picoCuries per liter; µmho/cm = micromhos per centimeter; NTU = nephelometric turbidity units; MCL = Maximum Contaminant Level; PHG = California Public Health Goal; NL = Notification Level; n/a = not applicable; TT = treatment technique

^{*}Chemical is regulated by a secondary standard. **MCL compliance is based on rolling annual average.

Turbidity – combined filter effluent Irvine Ranch Water District Baker Water Treatment Plant	Treatment Technique	Turbidity Measurements	TT Violation?	Typical Source of Chemical
1) Highest single turbidity measurement	0.1 NTU	0.034	No	Soil Runoff
2) Percentage of samples less than 0.3 NTU	95%	100%	No	Soil Runoff

Turbidity is a measure of the cloudiness of the water, an indication of particulate matter, some of which might include harmful microorganisms.

Low turbidity in the treated water is a good indicator of effective filtration. Filtration is called a "treatment technique" (TT)

A treatment technique is a required process intended to reduce the level of chemicals in drinking water that are difficult and sometimes impossible to measure directly.

Source Water Assessments

USEPA requires water suppliers to complete one Source Water Assessment (SWA) that utilizes information collected in the watershed sanitary surveys. MWDSC completed its SWA in

December 2002. The most recent SWA for IRWD's Santiago Reservoir was completed in 2001. The SWA is used to evaluate the vulnerability of water sources to contamination and helps determine whether more protective measures are needed.

Every five years, water suppliers are required by DDW to examine possible sources of drinking water contamination in their water sources. The watershed sanitary survey for MWDSC's Colorado River supply was recently updated in 2020 and for the State Water Project supply in 2016. The IRWD's watershed sanitary survey for Santiago Reservoir (Irvine Lake) was updated in 2019.

Water from the Colorado River is considered to be most vulnerable to contamination from recreation, urban/stormwater

NTU = nephelometric turbidity units

runoff, increasing urbanization in the watershed, and wastewater. Water supplies from Northern California's State Water Project are most vulnerable to contamination from urban/stormwater runoff, wildlife, agriculture, recreation, and wastewater. Water supplies from the Santiago Reservoir are most vulnerable to contamination from septic systems

and wildfires.

Copies of the most recent summary of either Watershed Sanitary Surveys or the SWAs can be obtained by calling SMWD Customer Service at (949) 459-6400.

2021 Santa Margarita Water District Distribution System Water Quality **Disinfection Byproducts** MCL (MRDL/MRDLG) **Average Amount Range of Detections** MCL Violation? **Typical Source of Contaminant** Total Trihalomethanes (ppb) 19 – 47 Byproducts of Chlorine Disinfection ND - 8.4 No Byproducts of Chlorine Disinfection Haloacetic Acids (ppb) 60 (4 / 4) 1.59 Disinfectant Added for Treatment 1.03 - 1.83Chlorine Residual (ppm) No **Aesthetic Quality** Color (color units) 153 Nο **Erosion of Natural Deposits** <1 ND - 1Odor (threshold odor number) Nο Erosion of Natural Deposits Erosion of Natural Deposits <0.1 ND - 0.5 Turbidity (NTU) 1.0003 Total Dissolved Solids (ppm) 626 590 - 654 No Erosion of Natural Deposits **Unregulated Chemicals - Tested in 2021** Hardness, total as CaCO₃ (ppm) Not Regulated 276 272 – 278 Runoff or Leaching from Natural Deposits n/a Hardness, total (grains/gallon) Not Regulated 16 15.9 - 16.2n/a Runoff or Leaching from Natural Deposits Alkalinity, total as CaCO₃ (ppm) Not Regulated 129 126 - 136n/a Runoff or Leaching from Natural Deposits

Eight locations in the distribution system are tested quarterly for total trihalomethanes and haloacetic acids; forty-three locations are tested monthly for color, odor, and turbidity.

MRDL = Maximum Residual Disinfectant Level; MRDLG = Maximum Residual Disinfectant Level Goal *Contaminant is regulated by a secondary standard to maintain aesthetic qualities (taste, odor, color).

Microbiological	MCL	MCLG	Highest Number Nof Detections	Number of Months in Violation	Typical Source of Contaminant
E. coli	(a)	0	0	0	Human and animal fecal waste

(a) Routine and repeat samples are total coliform-positive and either is E. coli-positive or system fails to take repeat samples following E. coli-positive routine sample or system fails to analyze total coliform-positive repeat sample for E. coli.

Lead and Copper Action Levels at Residential Taps						
	Action Level (AL)	Public Health Goal	90 th Percentile Value	Sites Exceeding AL / Number of Sites	AL Violation?	Typical Source of Contaminant
Lead (ppb)	15	0.2	ND	0 / 51	No	Corrosion of Household Plumbing
Copper (ppm)	1.3	0.3	0.064	0 / 51	No	Corrosion of Household Plumbing

Every three years, at least 50 residences are tested for lead and copper at-the-tap. Santa Margarita Water District tested 51 homes in the most recent set of samples collected in 2021.

Lead was not detected in any sample. Copper was detected in 9 samples; none exceeded the Action Level (AL).

A regulatory action level is the concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

In 2021, no schools submitted a request to be sampled for lead

Unregulated Chemicals Requiring Monitoring in the Distribution System					
Chemical	Notification Level	PHG	Average Amount	Range of Detections	Most Recent Sampling Date
Haloacetic acids (HAA5) (ppb)	n/a	n/a	7.23	2.73 – 12.8	2020
Haloacetic acids (HAA6Br) (ppb)	n/a	n/a	5.57	3.82 – 7.38	2020
Haloacetic acids (HAA9) (ppb)	n/a	n/a	11.7	6.17 – 18.2	2020

About Lead in Tap Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and

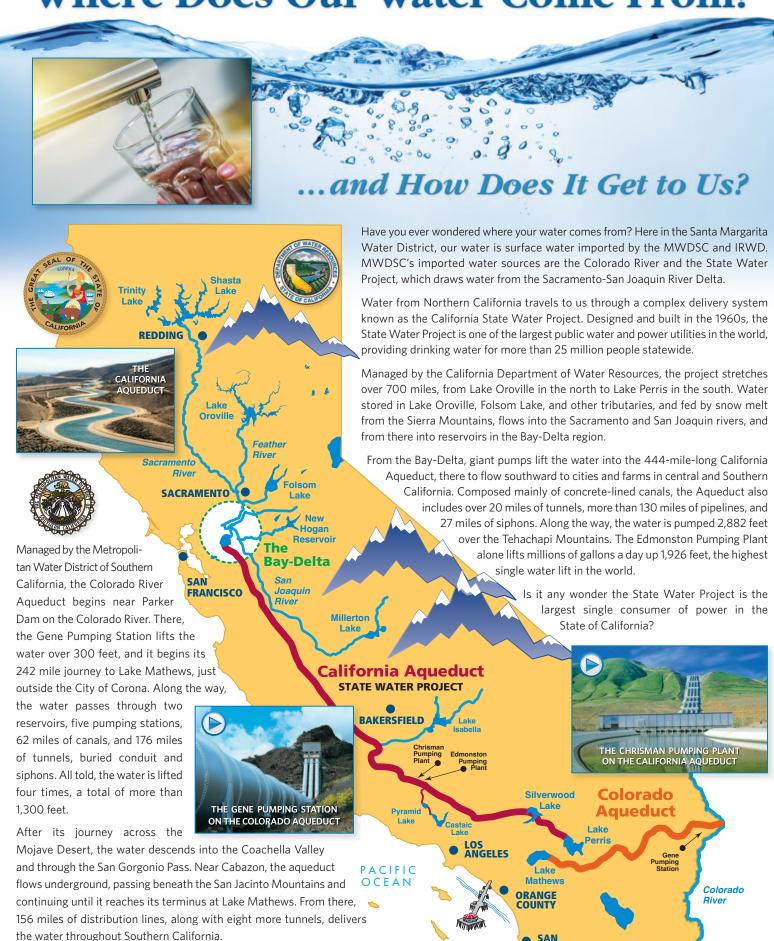
components associated with lead service lines and home plumbing. SMWD is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components.

When your water has been

sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline, (800) 426-4791, or at: www.epa.gov/safewater/lead.

Total Coliform Rule


This Consumer Confidence Report (CCR) reflects changes in drinking water regulatory requirements during 2021. These revisions add the requirements of the federal Revised Total

Coliform Rule, effective since April 1, 2016, to the existing state Total Coliform Rule. The revised rule maintains the purpose to protect public health by ensuring the integrity of the drinking water distribution system and monitoring for the presence of microbials (i.e., total coliform and

E. coli bacteria). The U.S. EPA anticipates greater public health protection as the rule requires water systems that are vulnerable to microbial contamination to identify and fix problems. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment to determine if any sanitary defects exist. If found, these must be corrected by the water system. The state Revised Total Coliform Rule became effective July 1, 2021.

Where Does Our Water Come From?

Total Dissolved Solids, Alkalinity, and Hardness

Total Dissolved Solids (TDS) is an indicator of the aesthetic characteristics of drinking water, and a gauge of a broad array of chemical constituents within the water. It is a measure of all the combined inorganic and organic substances, and while it is not associated with any health effects, TDS can impact the appearance and taste of water.

TDS is mainly inorganic salts, as well as a small amount of organic matter. Common inorganic salts found in water include calcium, magnesium, potassium and sodium, along with nitrates, chlorides and sulfates. These minerals originate from a variety of sources, both natural and through human activity.

Alone, dissolved solids are usually not a health hazard. Some people, in fact, buy mineral water, which

has naturally elevated levels of dissolved solids. The USEPA includes TDS as a secondary standard, meaning it is a voluntary guideline for aesthetic and cosmetic effects. Kept within the established guidelines, TDS can impart a favorable taste to water. Too low, however, can give water a flat taste.

There are issues, however, with high levels of TDS. Increased TDS concentrations can produce hard water, which stains household fixtures, corrodes pipes, and imparts a metallic taste.

Within the SMWD system, however, you can be assured that TDS are kept well within the established secondary standards.

Total Dissolved Solids

Average Amount: 626 mg/L Range: 590 - 654 mg/L

Alkalinity

Average Amount: 129 mg/L Range: 126 - 136 mg/L

Hardness

Average Amount: 276 mg/L Range: 272 - 278 mg/L

Where Do We Use Water the Most?

Outdoor watering of lawns and gardens makes up approximately 60% of home water use. By reducing your outdoor water use — by either cutting back on irrigation or planting more drought tolerant landscaping — you can dramatically reduce your overall water use.

Save the most where you use the most: Make your outdoor use efficient.

Water Conservation is Always a Priority

Southern California has an arid climate and wise water use needs to become a part of everyone's daily lives. For as finite as our water resources are, they get smaller every year. Simple water saving acts like the ones listed here can save countless gallons of water every day.

- Soak pots and pans instead of letting water run while you scrub them clean. This both saves water and makes the job easier.
- Keep a pitcher of drinking water in the refrigerator. This can save gallons of water every day and it's always cold!
- Plug the sink instead of running water to rinse your razor or wet your toothbrush. This can save upwards of 300 gallons of water a month.
- Use a broom instead of a hose to clean off sidewalks and driveways.
 It takes very little time to sweep and the water savings quickly adds up.
- Check your sprinkler system for leaks, overspray, and broken sprinkler heads and repair promptly. This can save countless gallons each time you water.
- Water plants in the early morning. It reduces evaporation and ensures deeper watering.
- Check your toilets for leaks and make sure to close showers and faucets properly. *This can save countless gallons of water.*

How Can You Learn More?

There's a wealth of information on the internet about Drinking Water Quality and water issues in general. Some good sites to begin your own research are:

Metropolitan Water District of So. California:

www.mwdh2o.com

California Department of Water Resources:

www.water.ca.gov

The Water Education Foundation: www.watereducation.org

To learn more about **Water Conservation & Rebate Information**: http://smwd.com/conservation

And to see the Aqueducts in action, checkout these two videos:

Wings Over the State Water Project: youtu.be/8A1v1Rr2neU Wings Over the Colorado Aqueduct: youtu.be/KipMQh5t0f4

We Invite You to Learn More About Your Water's Quality

For information about this report, or your water quality in general, please contact Customer Service at (949) 459-6420 or custservice@smwd.com.

The Santa Margarita Water District has two Regular Board meetings each

month. Meeting details can be found on the District's website at https://smwd.com/meetings.

Please feel free to participate in these meetings.

For more information about the health effects of the listed contaminants in the following tables, call the USEPA hotline at (800) 426-4791. The USEPA also maintains a water-related website at www.epa.gov/safewater.

26111 Antonio Parkway
Rancho Santa Margarita, California 92688
(949) 459-6400 www.smwd.com