

June 25, 2021

Mr. Nic Valoff Caymus Vineyards 8700 Conn Creek Road Napa, California 94574

Re: 2020 Consumer Confidence Report (CCR)

Dear Mr. Valoff:

Please see the attached Caymus Vineyards 2020 CCR and Attachment 7 CCR Certification Form that has been prepared by Natural Systems Utilities-CA formerly Phillips Services Inc. dba Phillips & Associates.

The Caymus Vineyards 2020 CCR must be mailed, posted or electronically delivered to all your bill-paying customers by July 1, 2021, see Attachment 7 for instructions. Keep your report on file for three (3) years, and make it available to the public upon request.

You will need to complete Attachment 7 CCR Certification Form and mail it with a copy of the 2020 Caymus Vineyards CCR to:

California Department of Public Health Division of Drinking Water 1195 Third Street Suite 210 Napa, California 94559

Please do not hesitate to contact me if you have any questions.

Sincerely,

Brandon Jacka Operations Supervisor Napa Region Office – (707) 254-1931 Cell – (707) 227-2424

Water Distribution Operator D2 # 46068 Water Treatment Operator T2 # 37747

NSU-CA was formerly Phillips Services Inc. dba Phillips & Associates

2020 Consumer Confidence Report

Water System Name: Caymus Vineyards – CA2801076 Report Date: 06/25/2021

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2020 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse Caymus Vineyards a 8700 Conn Creek Road, Napa, CA 94573 707-967-3010 para asistirlo en español.

这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 Caymus Vineyards 以获得中文的帮助: 8700 Conn Creek Road, Napa, CA 94574 707-963-4204

Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa Caymus Vineyards, 8700 Conn Creek Road, Napa, CA 94574 o tumawag sa 707-963-4204 para matulungan sa wikang Tagalog.

Báo cáo này chứa thông tin quan tr3ng về nước uống của bạn. Xin vui lòng liên hệ Caymus Vineyards tại 8700 Conn Creek Road, Napa, CA 94574 707-967-4202 để được hỗ trợ giúp bằng tiếng Việt.

Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau Caymus Vineyards ntawm 8700 Conn Creek Road, Napa, CA 94574 707-963-4202 rau kev pab hauv lus Askiv.

Type of water source(s) in use: Ground Water Wells

Name & location of source(s): Well 1 and 2 on Northwest side of property. Near storage and treatment area.

Drinking Water Source Assessment information: Nic Valoff, Heritage Systems, and NCEH

Time and place of regularly scheduled board meetings for public participation: Request meeting with Nic Valoff

For more information, contact: Nic Valoff

Phone: (707) 963-4204

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (μ g/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides*, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1 –	SAMPLING R	ESULTS SHOV	VING THE DETECTION OF C	OLIFORM I	BACTERIA
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria
Total Coliform Bacteria (state Total Coliform Rule)	(In a month)	0	1 positive monthly sample	0	Naturally present in the environment
Fecal Coliform or <i>E. coli</i> (state Total Coliform Rule)	(In the year)	0	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive		Human and animal fecal waste
E. coli (federal Revised Total Coliform Rule)	(In the year)	0	(a)	0	Human and animal fecal waste

(a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

TABLE 2	TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER											
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	PHG	No. of Schools Requesting Lead Sampling	Typical Source of				
Lead (ppb)	6/18/2019	5	2.3	0	15	0.2		Internal corrosion of				
	6/30/2020	5	0					household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits				
Copper (ppm)	6/18/2019	5	3.0	0	1.3	0.3	Not applicable	Internal corrosion of				
	6/30/2020	5	1.55					household plumbing systems; erosion of natural deposits; leaching from wood preservatives				

		TABLE 3	– SAMPLING F	RESULTS FOR	SODIUM A	ND HARDI	NESS
Chemical or (and repor		Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	Well 1,2	3/14/2018	16.5	NA	None	None	Salt present in the water and is generally naturally occurring
Hardness (ppn	n) Well 1,2	3/14/2018	190	170-210	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring
TA	BLE 4 – DET	TECTION O	F CONTAMINA	ANTS WITH A	PRIMARY	DRINKING	WATER STANDARD
Chemical or (and report	Constituent ting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Turbidity (NTU)	Well 1,2	3/14/2018	.54	.1296	TT	NA	Soil runoff
Gross Alpha Par (pCi/L)	ticle Activity Well 1 Well 2	6/24/2020 7/22/2020	0.695 1.50	3.0	15	(0)	Erosion of natural deposits
Arsenic (ug/L)	Well 1,2	3/14/2018	1.675	.75-2.6	10	.004	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Barium (mg/L)	Well 1,2	3/14/2018	.0895	.069110	1	2	Discharge of oil drilling wastes and from metal refineries; erosion of natural deposits
Chromium (ug/L)	Well 1	3/14/2018	2.4	NA	50	(100)	Discharge from steel and pulp mills and chrome plating; erosion of natural deposits
Nitrate (ppm))	12/15/2020	1.5	N/A	45	N/A	Erosion from natural deposits
Lead (ug/L)	Well 2	3/14/2018	6.5	NA	(AL=15)	.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Nickel (ug/L)	Well 1,2	3/14/2018	1.5	1-2	100	12	Erosion of natural deposits; discharge from metal factories
Nitrate (mg/L)	Well 1,2	6/26/2019	.68	.26-1.1	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
m D.			CONTINUE	100 1110 1 A			IG WAARD GEAAAD AD
			CONTAMINAL		ECONDAR		G WATER STANDARD
Chemical or (and report	Constituent ting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant
Color (UNITS)	Well 1,2	3/20/2018	3	3	15	NA	Naturally-occurring organic materials
Iron (ug.L)	Well 2	3/14/2018	230	NA	300	NA	Leaching from natural deposits; industrial wastes
Manganese (ug/L)	Well 2	3/14/2018	.15	NA	50	NA	Leaching from natural deposits
Odor (TON)	Well 1,2	3/20/2018	1	1	3	NA	Naturally-occurring organic materials
Turbidity (NTU)	Well 1,2	3/14/2018	.54	.1296	TT	NA	Soil runoff
Zinc (mg/L)	Well 2	3/14/2018	.9	NA	5	NA	Runoff/leaching from natural deposits; industrial wastes

TDS (mg/L)	Well 1,2	3/14/2018	265	260-270	1,000	NA	Runoff/leaching from natural deposits
Specific Cond (uS/cm)	Well 1,2	3/14/2018 7/22/2020	475 450	470-480	1,600	NA	Substances that form ions when in water; seawater influence
Chloride (mg/L)	Well 1,2	3/14/2018	9.75	9.7-9.8	500	NA	Runoff/leaching from natural deposits; seawater influence
Sulfate (mg/L)	Well 1,2	3/14/2018	25	25	500	NA	Runoff/leaching from natural deposits; industrial wastes

	TABLE 6 – DETECTION OF UNREGULATED CONTAMINANTS											
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects Language							
Potassium Well 1,2 (mg/L)	3/14/2018	2.65	1.3-4	NA	NONE							
1,2,3-Trichloropropane (1,2,3-TCP) (ng/L)	2/11/2020	<0.0050	N/A	0.000005	Some people who drink water containing 1,2,3-TCP in excess of any MCL over many years may have an increased risk of getting cancer.							

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. **Caymus Vineyards** is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [**OPTIONAL:** If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR)

(To certify electronic delivery of the CCR, use the certification form on the State Water Board's website at

http://www.swrcb.ca.gov/drinking_water/certlic/drinkingwater/CCR.shtml)

Water Syst	em Name:	Cayr	nus Vineyards	
Water Syste	em Number:	CA28	301076	
was distribut of availabilit contained in	ed on y have been the report is	given)	hereby certifies that its Co (date) to custome). Further, the system ce et and consistent with the ce e Water Resources Control	ers (and appropriate notices ertifies that the information compliance monitoring data
Certified by	: Name:		Mr. Nic Valoff	
	Signature:			
	Title:		Operations Manager	
	Phone Number:		(707) 963-4204	Date:
below by che CCR w delivery "Good t include	ecking all items as distributed to methods used faith" efforts we ed the following	oy mai d: ere use g meth	ed to reach non-bill paying c	priate: hods. Specify other direct
u \[A	sed)		estal patrons within the servi	
C			R in a local newspaper of ge notice, including name of ne	
☐ P	osted the CCR	lin pu	blic places (attach a list of lo	ocations)
	-	-	pies of CCR to single-billed rtments, businesses, and sc	_
	elivery to com	munity	organizations (attach a list	of organizations)

Reference Manual, Appendix G Revised February 2021 Other (attach a list of other methods used) For systems serving at least 100,000 persons: Posted CCR on a publicly-accessible internet site at the following address: www._______ For investor-owned utilities: Delivered the CCR to the California Public Utilities Commission This form is provided as a convenience for use to meet the certification requirement of the California Code of Regulations, section 64483(c).

Water Quality Sampling Results

Storet Number	Group/Constituent Identification	Sampling Date	XMOD	Result	MCL	DLR	Trigger	Unit
00081	COLOR	2018-03-20		3.0	15.000	0.000	15.000	UNITS
00086	ODOR THRESHOLD @ 60 C	2018-03-20		1.0	3.000	1.000	3.000	TON
00095	SPECIFIC CONDUCTANCE	2018-03-14		470	1600.000	0.000	900.000	US
00095	SPECIFIC CONDUCTANCE	2020-06-24		400	1600.000	0.000	900.000	US
00095	SPECIFIC CONDUCTANCE	2020-07-22		450	1600.000	0.000	900.000	US
00403	PH, LABORATORY	2018-03-14		7.8	0.000	0.000	0.000	
00410	ALKALINITY (TOTAL) AS CACO3	2018-03-14		198	0.000	0.000	0.000	MG/L
00440	BICARBONATE ALKALINITY	2018-03-14		242	0.000	0.000	0.000	MG/L
00445	CARBONATE ALKALINITY	2018-03-14	<	0000000000	0.000	0.000	0.000	MG/L
00618	NITRATE (AS N)	2016-03-11		1.3	10.000	0.400	5.000	mg/L
00618	NITRATE (AS N)	2017-05-05		1.9	10.000	0.400	5.000	mg/L
00618	NITRATE (AS N)	2018-03-14		1.4	10.000	0.400	5.000	mg/L
00618	NITRATE (AS N)	2019-06-26		1.1	10.000	0.400	5.000	mg/L
00618	NITRATE (AS N)	2020-12-15		1.5	10.000	0.400	5.000	mg/L
00620	NITRITE (AS N)	2009-02-10	<	.0000	1000.000	400.000	500.000	UG/L
00620	NITRITE (AS N)	2016-03-11	<	0000000000	1.000	0.400	0.500	mg/L
00620	NITRITE (AS N)	2017-05-05	<	0000000000	1.000	0.400	0.500	mg/L
00620	NITRITE (AS N)	2018-03-14	<	0000000000	1.000	0.400	0.500	mg/L
00620	NITRITE (AS N)	2021-03-09		0	1.000	0.400	0.500	mg/L
00900	HARDNESS (TOTAL) AS CACO3	2018-03-14		210	0.000	0.000	0.000	MG/L
00916	CALCIUM	2018-03-14		29	0.000	0.000	0.000	MG/L
00927	MAGNESIUM	2018-03-14		34	0.000	0.000	0.000	MG/L
00929	SODIUM	2018-03-14		14	0.000	0.000	0.000	MG/L
00937	POTASSIUM	2018-03-14		1.3	0.000	0.000	0.000	MG/L
00940	CHLORIDE	2018-03-14		9.7	500.000	0.000	250.000	MG/L
00945	SULFATE	2018-03-14		25	500.000	0.500	250.000	MG/L
00951	FLUORIDE (F) (NATURAL- SOURCE)	2018-03-14	<	0000000000	2.000	0.100	2.000	MG/L
00951	FLUORIDE (F) (NATURAL- SOURCE)	2021-03-09		0	2.000	0.100	2.000	MG/L
01002	ARSENIC	2018-03-14		0.75	10.000	2.000	5.000	UG/L
01002	ARSENIC	2021-03-09		0	10.000	2.000	5.000	UG/L
01007	BARIUM	2018-03-14		69	1000.000	100.000	1000.000	UG/L
01007	BARIUM	2021-03-09		0	1000.000	100.000	1000.000	UG/L
01012	BERYLLIUM	2018-03-14	<	0000000000	4.000	1.000	4.000	UG/L
01012	BERYLLIUM	2021-03-09		0	4.000	1.000	4.000	UG/L
01027	CADMIUM	2018-03-14	<	0000000000	5.000	1.000	5.000	UG/L
01027	CADMIUM	2021-03-09		0	5.000	1.000	5.000	UG/L
01032	CHROMIUM, HEXAVALENT	2018-03-14		2.5	0.000	1.000	10.000	UG/L
01034	CHROMIUM (TOTAL)	2018-03-14		2.4	50.000	10.000	50.000	UG/L
01034	CHROMIUM (TOTAL)	2021-03-09		0	50.000	10.000	50.000	UG/L
01042	COPPER	2018-03-14	<	0000000000	1000.000	50.000	1000.000	UG/L
01045	IRON	2018-03-14	<	100	300.000	100.000	300.000	UG/L
01051	LEAD	2018-03-14	<	0000000000	0.000	5.000	15.000	UG/L
01055	MANGANESE	2018-03-14	<	0000000000	50.000	20.000	50.000	UG/L

Storet Number	Group/Constituent Identification	Sampling Date	XMOD	Result	MCL	DLR	Trigger	Unit
01059	THALLIUM	2018-03-14	<	0000000000	2.000	1.000	2.000	UG/L
01059	THALLIUM	2021-03-09		0	2.000	1.000	2.000	UG/L
01067	NICKEL	2018-03-14		2.0	100.000	10.000	100.000	UG/L
01067	NICKEL	2021-03-09		0	100.000	10.000	100.000	UG/L
01077	SILVER	2018-03-14	<	0000000000	100.000	10.000	100.000	UG/L
01092	ZINC	2018-03-14	<	0000000000	5000.000	50.000	5000.000	UG/L
01097	ANTIMONY	2018-03-14	<	0000000000	6.000	6.000	6.000	UG/L
01097	ANTIMONY	2021-03-09		0	6.000	6.000	6.000	UG/L
01105	ALUMINUM	2018-03-14	<	0000000000	1000.000	50.000	200.000	UG/L
01105	ALUMINUM	2021-03-09		0	1000.000	50.000	200.000	UG/L
01147	SELENIUM	2018-03-14	<	0000000000	50.000	5.000	50.000	UG/L
01147	SELENIUM	2021-03-09		0	50.000	5.000	50.000	UG/L
01501	GROSS ALPHA	2019-06-26	<	3	15.000	3.000	5.000	PCI/L
01501	GROSS ALPHA	2020-06-24		0.824	15.000	3.000	5.000	PCI/L
01501	GROSS ALPHA	2020-07-22		0.601	15.000	3.000	5.000	PCI/L
01502	GROSS ALPHA COUNTING ERROR	2019-06-26		0.1	0.000	0.000	0.000	PCI/L
01502	GROSS ALPHA COUNTING ERROR	2020-06-24		1.26	0.000	0.000	0.000	PCI/L
01502	GROSS ALPHA COUNTING ERROR	2020-07-22		0.317	0.000	0.000	0.000	PCI/L
32102	CARBON TETRACHLORIDE	2018-03-20	<	0000000000	0.500	0.500	0.500	UG/L
34010	TOLUENE	2018-03-20	<	0000000000	150.000	0.500	0.500	UG/L
34030	BENZENE	2018-03-20	<	0000000000	1.000	0.500	0.500	UG/L
34301	MONOCHLOROBENZENE	2018-03-20	<	0000000000	70.000	0.500	0.500	UG/L
34371	ETHYL BENZENE	2018-03-20	<	000000000	300.000	0.500	0.500	UG/L
34423	DICHLOROMETHANE	2018-03-20	<	000000000	5.000	0.500	0.500	UG/L
34475	TETRACHLOROETHYLENE	2018-03-20	<	0000000000	5.000	0.500	0.500	UG/L
34488	TRICHLOROFLUOROMETHANE FREON 11	2018-03-20	<	000000000	150.000	5.000	5.000	UG/L
34496	1,1-DICHLOROETHANE	2018-03-20	<	000000000	5.000	0.500	0.500	UG/L
34501	1,1-DICHLOROETHYLENE	2018-03-20	<	0000000000	6.000	0.500	0.500	UG/L
34506	1,1,1-TRICHLOROETHANE	2018-03-20	<	000000000	200.000	0.500	0.500	UG/L
34511	1,1,2-TRICHLOROETHANE	2018-03-20	<	0000000000	5.000	0.500	0.500	UG/L
34516	1,1,2,2-TETRACHLOROETHANE	2018-03-20	<	000000000	1.000	0.500	0.500	UG/L
34531	1,2-DICHLOROETHANE	2018-03-20	<	0000000000	0.500	0.500	0.500	UG/L
34536	1,2-DICHLOROBENZENE	2018-03-20	<	000000000	600.000	0.500	0.500	UG/L
34541	1,2-DICHLOROPROPANE	2018-03-20	<	000000000	5.000	0.500	0.500	UG/L
34546	TRANS-1,2- DICHLOROETHYLENE	2018-03-20	<	0000000000	10.000	0.500	0.500	UG/L
34551	1,2,4-TRICHLOROBENZENE	2018-03-20	<	0000000000	5.000	0.500	0.500	UG/L
34561	1,3-DICHLOROPROPENE (TOTAL)	2018-03-20	<	0000000000	0.500	0.500	0.500	UG/L
34571	1,4-DICHLOROBENZENE	2018-03-20	<	0000000000	5.000	0.500	0.500	UG/L
34671	PCB-1016 (AS DECACHLOROBIPHENYL (DCB))	2018-03-20	<	0.5	0.000	0.500	0.500	UG/L
38260	FOAMING AGENTS (MBAS)	2018-03-14	<	0000000000	0.500	0.000	0.500	MG/L
38432	DALAPON	2018-03-20	<	10.0	200.000	10.000	10.000	UG/L

Storet Number	Group/Constituent Identification	Sampling Date	XMOD	Result	MCL	DLR	Trigger	Unit
38432	DALAPON	2021-03-09	<	10	200.000	10.000	10.000	UG/L
38500	METHIOCARB	2018-03-20	<	0.50	0.000	0.000	0.000	UG/L
38500	METHIOCARB	2021-03-09	<	0.50	0.000	0.000	0.000	UG/L
38537	PROPOXUR	2018-03-20	<	0.50	0.000	0.000	0.000	UG/L
38537	PROPOXUR	2021-03-09	<	0.50	0.000	0.000	0.000	UG/L
38710	BENTAZON	2018-03-20	<	2	18.000	2.000	2.000	UG/L
38710	BENTAZON	2021-03-09	<	2	18.000	2.000	2.000	UG/L
38761	DIBROMOCHLOROPROPANE (DBCP)	2018-03-20	<	0.01	0.200	0.010	0.010	UG/L
38865	OXAMYL	2018-03-20	<	20	50.000	20.000	20.000	UG/L
38865	OXAMYL	2021-03-09	<	20	50.000	20.000	20.000	UG/L
38926	ENDOTHALL	2018-03-14	<	45	100.000	45.000	45.000	UG/L
38926	ENDOTHALL	2021-03-09	<	45	100.000	45.000	45.000	UG/L
39032	PENTACHLOROPHENOL	2018-03-20	<	0.2	1.000	0.200	0.200	UG/L
39032	PENTACHLOROPHENOL	2021-03-09	<	0.2	1.000	0.200	0.200	UG/L
39033	ATRAZINE	2018-03-14	<	0.5	1.000	0.500	0.500	UG/L
39033	ATRAZINE	2021-03-09	<	0.5	1.000	0.500	0.500	UG/L
39045	2,4,5-TP (SILVEX)	2018-03-20	<	1	50.000	1.000	1.000	UG/L
39045	2,4,5-TP (SILVEX)	2021-03-09	<	1	50.000	1.000	1.000	UG/L
39051	METHOMYL	2018-03-20	<	2	0.000	2.000	2.000	UG/L
39051	METHOMYL	2021-03-09	<	2	0.000	2.000	2.000	UG/L
39053	ALDICARB	2018-03-20	<	3	0.000	3.000	7.000	UG/L
39053	ALDICARB	2021-03-09	<	3	0.000	3.000	7.000	UG/L
39055	SIMAZINE	2018-03-14	<	1	4.000	1.000	1.000	UG/L
39055	SIMAZINE	2021-03-09	<	1	4.000	1.000	1.000	UG/L
39175	VINYL CHLORIDE	2018-03-20	<	0000000000	0.500	0.500	0.500	UG/L
39180	TRICHLOROETHYLENE	2018-03-20	<	0000000000	5.000	0.500	0.500	UG/L
39330	ALDRIN	2018-03-20	<	0.075	0.000	0.075	0.002	UG/L
39340	LINDANE	2018-03-20	<	0.2	0.200	0.200	0.200	UG/L
39350	CHLORDANE	2018-03-20	<	0.1	0.100	0.100	0.100	UG/L
39380	DIELDRIN	2018-03-20	<	0.02	0.000	0.020	0.002	UG/L
39390	ENDRIN	2018-03-20	<	0.1	2.000	0.100	0.100	UG/L
39400	TOXAPHENE	2018-03-20	<	1.0	3.000	1.000	1.000	UG/L
39410	HEPTACHLOR	2018-03-20	<	0.01	0.010	0.010	0.010	UG/L
39420	HEPTACHLOR EPOXIDE	2018-03-20	<	0.01	0.010	0.010	0.010	UG/L
39480	METHOXYCHLOR	2018-03-20	<	10.0	30.000	10.000	10.000	UG/L
39488	PCB-1221 (AS DCB)	2018-03-20	<	0.5	0.000	0.500	0.500	UG/L
39492	PCB-1232 (AS DCB)	2018-03-20	<	0.5	0.000	0.500	0.500	UG/L
39496	PCB-1242 (AS DCB)	2018-03-20	<	0.5	0.000	0.500	0.500	UG/L
39500	PCB-1248 (AS DCB)	2018-03-20	<	0.5	0.000	0.500	0.500	UG/L
39504	PCB-1254 (AS DCB)	2018-03-20	<	0.5	0.000	0.500	0.500	UG/L
39508	PCB-1260 (AS DCB)	2018-03-20	<	0.5	0.000	0.500	0.500	UG/L
39516	POLYCHLORINATED BIPHENYLS, TOTAL, AS DCB	2018-03-20	<	0.5	0.500	0.500	0.500	UG/L
39720	PICLORAM	2018-03-20	<	1.0	500.000	1.000	1.000	UG/L
39720	PICLORAM	2021-03-09	<	1	500.000	1.000	1.000	UG/L
39730	2,4-D	2018-03-20	<	10.0	70.000	10.000	10.000	UG/L

Storet Number	Group/Constituent Identification	Sampling Date	XMOD	Result	MCL	DLR	Trigger	Unit
39730	2,4-D	2021-03-09	<	10	70.000	10.000	10.000	UG/L
46491	METHYL-TERT-BUTYL-ETHER (MTBE)	2018-03-20	<	000000000	13.000	3.000	3.000	UG/L
70300	TOTAL DISSOLVED SOLIDS	2018-03-14		260	1000.000	0.000	500.000	MG/L
71830	HYDROXIDE ALKALINITY	2018-03-14	<	0000000000	0.000	0.000	0.000	MG/L
71850	NITRATE (AS NO3)	2003-01-23		3.0000	45.000	2.000	23.000	MG/L
71850	NITRATE (AS NO3)	2004-01-07		7.0000	45.000	2.000	23.000	MG/L
71850	NITRATE (AS NO3)	2005-02-01	<	.0000	45.000	2.000	23.000	MG/L
71850	NITRATE (AS NO3)	2008-02-25		5.0000	45.000	2.000	23.000	MG/L
71850	NITRATE (AS NO3)	2009-02-10		5.4000	45.000	2.000	23.000	MG/L
71850	NITRATE (AS NO3)	2010-01-25		6.9000	45.000	2.000	23.000	MG/L
71900	MERCURY	2018-03-14	<	0000000000	2.000	1.000	2.000	UG/L
71900	MERCURY	2021-03-09		0	2.000	1.000	2.000	UG/L
77093	CIS-1,2-DICHLOROETHYLENE	2018-03-20	<	0000000000	6.000	0.500	0.500	UG/L
77128	STYRENE	2018-03-20	<	0000000000	100.000	0.500	0.500	UG/L
77135	O-XYLENE	2018-03-20	<	0000000000	0.000	0.500	0.000	UG/L
77288	DICHLOROACETIC ACID (DCAA)	2018-03-20	<	1.0	0.000	1.000	0.000	UG/L
77443	1,2,3-TRICHLOROPROPANE (1,2,3-TCP)	2018-03-20	<	0.0050	0.005	0.005	0.005	UG/L
77443	1,2,3-TRICHLOROPROPANE (1,2,3-TCP)	2019-06-26	<	0.0050	0.005	0.005	0.005	UG/L
77443	1,2,3-TRICHLOROPROPANE (1,2,3-TCP)	2020-02-11	<	0.0050	0.005	0.005	0.005	UG/L
77443	1,2,3-TRICHLOROPROPANE (1,2,3-TCP)	2020-12-15	<	0.0050	0.005	0.005	0.005	UG/L
77651	ETHYLENE DIBROMIDE (EDB)	2018-03-20	<	0.02	0.050	0.020	0.020	UG/L
77700	CARBARYL	2018-03-20	<	5	0.000	5.000	700.000	UG/L
77700	CARBARYL	2021-03-09	<	5	0.000	5.000	700.000	UG/L
77825	ALACHLOR	2018-03-20	<	1.0	2.000	1.000	1.000	UG/L
78885	DIQUAT	2018-03-14	<	4	20.000	4.000	4.000	UG/L
78885	DIQUAT	2021-03-09	<	4	20.000	4.000	4.000	UG/L
81287	DINOSEB	2018-03-20	<	2	7.000	2.000	2.000	UG/L
81287	DINOSEB	2021-03-09	<	2	7.000	2.000	2.000	UG/L
81405	CARBOFURAN	2018-03-20	<	5.0	18.000	5.000	5.000	UG/L
81405	CARBOFURAN	2021-03-09	<	5	18.000	5.000	5.000	UG/L
81551	XYLENES (TOTAL)	2018-03-20	<	0000000000	1750.000	0.500	1750.000	UG/L
81611	TRICHLOROTRIFLUOROETHANE (FREON 113)	2018-03-20	<	000000000	1200.000	10.000	10.000	UG/L
81855	ASBESTOS	2018-03-14		0000000000	7.000	0.200	7.000	MFL
82052	DICAMBA	2018-03-20	<	1.5	0.000	1.500	0.000	UG/L
82052	DICAMBA	2021-03-09	<	1.5	0.000	1.500	0.000	UG/L
82079	TURBIDITY, LABORATORY	2018-03-14		0.12	5.000	0.100	5.000	NTU
82721	DIBROMOACETIC ACID (DBAA)	2018-03-20	<	1.0	0.000	1.000	0.000	UG/L
82723	TRICHLOROACETIC ACID (TCAA)	2018-03-20	<	1.0	0.000	1.000	0.000	UG/L
A-014	M,P-XYLENE	2018-03-20	<	0000000000	0.000	0.500	0.000	UG/L
A-019	ALDICARB SULFOXIDE	2018-03-20	<	3.0	0.000	3.000	3.000	UG/L
A-019	ALDICARB SULFOXIDE	2021-03-09	<	3.0	0.000	3.000	3.000	UG/L

Storet Number	Group/Constituent Identification	Sampling Date	XMOD	Result	MCL	DLR	Trigger	Unit
A-020	ALDICARB SULFONE	2018-03-20	<	4	0.000	4.000	4.000	UG/L
A-020	ALDICARB SULFONE	2021-03-09	<	4	0.000	4.000	4.000	UG/L
A-021	3-HYDROXYCARBOFURAN	2018-03-20	<	3	0.000	3.000	3.000	UG/L
A-021	3-HYDROXYCARBOFURAN	2021-03-09	<	3	0.000	3.000	3.000	UG/L
A-031	PERCHLORATE	2018-03-14	<	000000000	6.000	4.000	4.000	UG/L
A-031	PERCHLORATE	2019-06-26		0	6.000	4.000	4.000	UG/L
A-031	PERCHLORATE	2020-06-24		0	6.000	4.000	4.000	UG/L
A-031	PERCHLORATE	2020-07-22		0	6.000	4.000	4.000	UG/L
A-031	PERCHLORATE	2021-03-09	<	4	6.000	4.000	4.000	UG/L
A-038	BROMOCHLOROACETIC ACID (BCAA)	2018-03-20	<	1.0	0.000	1.000	0.000	UG/L
A-041	MONOBROMOACETIC ACID (MBAA)	2018-03-20	<	1.0	0.000	1.000	0.000	UG/L
A-042	MONOCHLOROACETIC ACID (MCAA)	2018-03-20	<	2.0	0.000	2.000	0.000	UG/L
A-045	DCPA (TOTAL DI & MONO ACID DEGRADATES)	2018-03-20	<	0.10	0.000	0.000	0.000	UG/L
A-045	DCPA (TOTAL DI & MONO ACID DEGRADATES)	2021-03-09	<	0.10	0.000	0.000	0.000	UG/L
A-049	HALOACETIC ACIDS (5) (HAA5)	2018-03-20	<	2.0	60.000	0.000	60.000	UG/L
A-072	GROSS ALPHA MDA95	2019-06-26		0.033	3.000	0.000	0.000	PCI/L
A-072	GROSS ALPHA MDA95	2020-06-24		1.57	3.000	0.000	0.000	PCI/L
A-072	GROSS ALPHA MDA95	2020-07-22		0.415	3.000	0.000	0.000	PCI/L

Water Quality Sampling Results

		- 1						
Storet Number	Group/Constituent Identification	Sampling Date	XMOD	Result	MCL	DLR	Trigger	Unit
00081	COLOR	2018-03-20		3.0	15.000	0.000	15.000	UNITS
00086	ODOR THRESHOLD @ 60 C	2018-03-20		1.0	3.000	1.000	3.000	TON
00095	SPECIFIC CONDUCTANCE	2018-03-14		480	1600.000	0.000	900.000	US
00095	SPECIFIC CONDUCTANCE	2020-06-24		390	1600.000	0.000	900.000	US
00095	SPECIFIC CONDUCTANCE	2020-07-22		370	1600.000	0.000	900.000	US
00403	PH, LABORATORY	2018-03-14		8.1	0.000	0.000	0.000	
00410	ALKALINITY (TOTAL) AS CACO3	2018-03-14		207	0.000	0.000	0.000	MG/L
00440	BICARBONATE ALKALINITY	2018-03-14		253	0.000	0.000	0.000	MG/L
00445	CARBONATE ALKALINITY	2018-03-14	<	0000000000	0.000	0.000	0.000	MG/L
00618	NITRATE (AS N)	2018-03-14		1.3	10.000	0.400	5.000	mg/L
00618	NITRATE (AS N)	2019-06-26		0.26	10.000	0.400	5.000	mg/L
00618	NITRATE (AS N)	2020-12-15		0	10.000	0.400	5.000	mg/L
00620	NITRITE (AS N)	2009-02-10	<	.0000	1000.000	400.000	500.000	UG/L
00620	NITRITE (AS N)	2018-03-14	<	0000000000	1.000	0.400	0.500	mg/L
00620	NITRITE (AS N)	2021-03-09		0	1.000	0.400	0.500	mg/L
00900	HARDNESS (TOTAL) AS CACO3	2018-03-14		170	0.000	0.000	0.000	MG/L
00916	CALCIUM	2018-03-14		25	0.000	0.000	0.000	MG/L
00927	MAGNESIUM	2018-03-14		26	0.000	0.000	0.000	MG/L
00929	SODIUM	2018-03-14		19	0.000	0.000	0.000	MG/L
00937	POTASSIUM	2018-03-14		4.0	0.000	0.000	0.000	MG/L
00940	CHLORIDE	2018-03-14		9.8	500.000	0.000	250.000	MG/L
00945	SULFATE	2018-03-14		25	500.000	0.500	250.000	MG/L
00951	FLUORIDE (F) (NATURAL- SOURCE)	2018-03-14	<	0000000000	2.000	0.100	2.000	MG/L
00951	FLUORIDE (F) (NATURAL- SOURCE)	2021-03-09		0	2.000	0.100	2.000	MG/L
01002	ARSENIC	2018-03-14		2.6	10.000	2.000	5.000	UG/L
01002	ARSENIC	2021-03-09		0	10.000	2.000	5.000	UG/L
01007	BARIUM	2018-03-14		110	1000.000	100.000	1000.000	UG/L
01007	BARIUM	2021-03-09		200	1000.000	100.000	1000.000	UG/L
01012	BERYLLIUM	2018-03-14	<	0000000000	4.000	1.000	4.000	UG/L
01012	BERYLLIUM	2021-03-09		0	4.000	1.000	4.000	UG/L
01027	CADMIUM	2018-03-14	<	000000000	5.000	1.000	5.000	UG/L
01027	CADMIUM	2021-03-09		0	5.000	1.000	5.000	UG/L
01032	CHROMIUM, HEXAVALENT	2018-03-14	<	1.0	0.000	1.000	10.000	UG/L
01034	CHROMIUM (TOTAL)	2018-03-14	<	0000000000	50.000	10.000	50.000	UG/L
01034	CHROMIUM (TOTAL)	2021-03-09		0	50.000	10.000	50.000	UG/L
01042	COPPER	2018-03-14	<	0000000000	1000.000	50.000	1000.000	UG/L
01045	IRON	2018-03-14		230	300.000	100.000	300.000	UG/L
01051	LEAD	2018-03-14		6.5	0.000	5.000	15.000	UG/L
01055	MANGANESE	2018-03-14		0.15	50.000	20.000	50.000	UG/L
01059	THALLIUM	2018-03-14	<	0000000000	2.000	1.000	2.000	UG/L
01059	THALLIUM	2021-03-09		0	2.000	1.000	2.000	UG/L
01067	NICKEL	2018-03-14		1.0	100.000	10.000	100.000	UG/L
01067	NICKEL	2021-03-09		0	100.000	10.000	100.000	UG/L

Storet Number	Group/Constituent Identification	Sampling Date	XMOD	Result	MCL	DLR	Trigger	Unit
01077	SILVER	2018-03-14	<	0000000000	100.000	10.000	100.000	UG/L
01092	ZINC	2018-03-14		0.9	5000.000	50.000	5000.000	UG/L
01097	ANTIMONY	2018-03-14	<	0000000000	6.000	6.000	6.000	UG/L
01097	ANTIMONY	2021-03-09		0	6.000	6.000	6.000	UG/L
01105	ALUMINUM	2018-03-14	<	0000000000	1000.000	50.000	200.000	UG/L
01105	ALUMINUM	2021-03-09		0	1000.000	50.000	200.000	UG/L
01147	SELENIUM	2018-03-14	<	0000000000	50.000	5.000	50.000	UG/L
01147	SELENIUM	2021-03-09		0	50.000	5.000	50.000	UG/L
01501	GROSS ALPHA	2018-03-14	<	3	15.000	3.000	5.000	PCI/L
01501	GROSS ALPHA	2019-07-18	<	3	15.000	3.000	5.000	PCI/L
01501	GROSS ALPHA	2020-06-24		0.695	15.000	3.000	5.000	PCI/L
01501	GROSS ALPHA	2020-07-22		1.50	15.000	3.000	5.000	PCI/L
01502	GROSS ALPHA COUNTING ERROR	2018-03-14		0.152	0.000	0.000	0.000	PCI/L
01502	GROSS ALPHA COUNTING ERROR	2019-07-18		0.089	0.000	0.000	0.000	PCI/L
01502	GROSS ALPHA COUNTING ERROR	2020-06-24		1.22	0.000	0.000	0.000	PCI/L
01502	GROSS ALPHA COUNTING ERROR	2020-07-22		1.51	0.000	0.000	0.000	PCI/L
32102	CARBON TETRACHLORIDE	2018-03-20	<	0000000000	0.500	0.500	0.500	UG/L
34010	TOLUENE	2018-03-20	<	0000000000	150.000	0.500	0.500	UG/L
34030	BENZENE	2018-03-20	<	0000000000	1.000	0.500	0.500	UG/L
34301	MONOCHLOROBENZENE	2018-03-20	<	0000000000	70.000	0.500	0.500	UG/L
34371	ETHYL BENZENE	2018-03-20	<	0000000000	300.000	0.500	0.500	UG/L
34423	DICHLOROMETHANE	2018-03-20	<	0000000000	5.000	0.500	0.500	UG/L
34475	TETRACHLOROETHYLENE	2018-03-20	<	0000000000	5.000	0.500	0.500	UG/L
34488	TRICHLOROFLUOROMETHANE FREON 11	2018-03-20	<	000000000	150.000	5.000	5.000	UG/L
34496	1,1-DICHLOROETHANE	2018-03-20	<	000000000	5.000	0.500	0.500	UG/L
34501	1,1-DICHLOROETHYLENE	2018-03-20	<	0000000000	6.000	0.500	0.500	UG/L
34506	1,1,1-TRICHLOROETHANE	2018-03-20	<	0000000000	200.000	0.500	0.500	UG/L
34511	1,1,2-TRICHLOROETHANE	2018-03-20	<	0000000000	5.000	0.500	0.500	UG/L
34516	1,1,2,2-TETRACHLOROETHANE	2018-03-20	<	0000000000	1.000	0.500	0.500	UG/L
34531	1,2-DICHLOROETHANE	2018-03-20	<	0000000000	0.500	0.500	0.500	UG/L
34536	1,2-DICHLOROBENZENE	2018-03-20	<	0000000000	600.000	0.500	0.500	UG/L
34541	1,2-DICHLOROPROPANE	2018-03-20	<	0000000000	5.000	0.500	0.500	UG/L
34546	TRANS-1,2- DICHLOROETHYLENE	2018-03-20	<	0000000000	10.000	0.500	0.500	UG/L
34551	1,2,4-TRICHLOROBENZENE	2018-03-20	<	0000000000	5.000	0.500	0.500	UG/L
34561	1,3-DICHLOROPROPENE (TOTAL)	2018-03-20	<	000000000	0.500	0.500	0.500	UG/L
34571	1,4-DICHLOROBENZENE	2018-03-20	<	000000000	5.000	0.500	0.500	UG/L
34671	PCB-1016 (AS DECACHLOROBIPHENYL (DCB))	2018-03-20	<	0.5	0.000	0.500	0.500	UG/L
38260	FOAMING AGENTS (MBAS)	2018-03-14	<	0000000000	0.500	0.000	0.500	MG/L
38432	DALAPON	2018-03-20	<	10.0	200.000	10.000	10.000	UG/L
38432	DALAPON	2021-03-09	<	10	200.000	10.000	10.000	UG/L

Storet Number	Group/Constituent Identification	Sampling Date	XMOD	Result	MCL	DLR	Trigger	Unit
38500	METHIOCARB	2018-03-20	<	0.50	0.000	0.000	0.000	UG/L
38500	METHIOCARB	2021-03-09	<	0.50	0.000	0.000	0.000	UG/L
38537	PROPOXUR	2018-03-20	<	0.50	0.000	0.000	0.000	UG/L
38537	PROPOXUR	2021-03-09	<	0.50	0.000	0.000	0.000	UG/L
38710	BENTAZON	2018-03-20	<	2	18.000	2.000	2.000	UG/L
38710	BENTAZON	2021-03-09	<	2	18.000	2.000	2.000	UG/L
38761	DIBROMOCHLOROPROPANE (DBCP)	2018-03-20	<	0.01	0.200	0.010	0.010	UG/L
38865	OXAMYL	2018-03-20	<	20	50.000	20.000	20.000	UG/L
38865	OXAMYL	2021-03-09	<	20	50.000	20.000	20.000	UG/L
38926	ENDOTHALL	2018-03-14	<	45	100.000	45.000	45.000	UG/L
38926	ENDOTHALL	2021-03-09	<	45	100.000	45.000	45.000	UG/L
39032	PENTACHLOROPHENOL	2018-03-20	<	0.2	1.000	0.200	0.200	UG/L
39032	PENTACHLOROPHENOL	2021-03-09	<	0.2	1.000	0.200	0.200	UG/L
39033	ATRAZINE	2018-03-14	<	0.5	1.000	0.500	0.500	UG/L
39033	ATRAZINE	2021-03-09	<	0.5	1.000	0.500	0.500	UG/L
39045	2,4,5-TP (SILVEX)	2018-03-20	<	1	50.000	1.000	1.000	UG/L
39045	2,4,5-TP (SILVEX)	2021-03-09	<	1	50.000	1.000	1.000	UG/L
39051	METHOMYL	2018-03-20	<	2	0.000	2.000	2.000	UG/L
39051	METHOMYL	2021-03-09	<	2	0.000	2.000	2.000	UG/L
39053	ALDICARB	2018-03-20	<	3	0.000	3.000	7.000	UG/L
39053	ALDICARB	2021-03-09	<	3	0.000	3.000	7.000	UG/L
39055	SIMAZINE	2018-03-14	<	1	4.000	1.000	1.000	UG/L
39055	SIMAZINE	2021-03-09	<	1	4.000	1.000	1.000	UG/L
39175	VINYL CHLORIDE	2018-03-20	<	0000000000	0.500	0.500	0.500	UG/L
39180	TRICHLOROETHYLENE	2018-03-20	<	0000000000	5.000	0.500	0.500	UG/L
39330	ALDRIN	2018-03-20	<	0.075	0.000	0.075	0.002	UG/L
39340	LINDANE	2018-03-20	<	0.2	0.200	0.200	0.200	UG/L
39350	CHLORDANE	2018-03-20	<	0.1	0.100	0.100	0.100	UG/L
39380	DIELDRIN	2018-03-20	<	0.02	0.000	0.020	0.002	UG/L
39390	ENDRIN	2018-03-20	<	0.1	2.000	0.100	0.100	UG/L
39400	TOXAPHENE	2018-03-20	<	1.0	3.000	1.000	1.000	UG/L
39410	HEPTACHLOR	2018-03-20	<	0.01	0.010	0.010	0.010	UG/L
39420	HEPTACHLOR EPOXIDE	2018-03-20	<	0.01	0.010	0.010	0.010	UG/L
39480	METHOXYCHLOR	2018-03-20	<	10.0	30.000	10.000	10.000	UG/L
39488	PCB-1221 (AS DCB)	2018-03-20	<	0.5	0.000	0.500	0.500	UG/L
39492	PCB-1232 (AS DCB)	2018-03-20	<	0.5	0.000	0.500	0.500	UG/L
39496	PCB-1242 (AS DCB)	2018-03-20	<	0.5	0.000	0.500	0.500	UG/L
39500	PCB-1248 (AS DCB)	2018-03-20	<	0.5	0.000	0.500	0.500	UG/L
39504	PCB-1254 (AS DCB)	2018-03-20	<	0.5	0.000	0.500	0.500	UG/L
39508	PCB-1260 (AS DCB)	2018-03-20	<	0.5	0.000	0.500	0.500	UG/L
39516	POLYCHLORINATED BIPHENYLS, TOTAL, AS DCB	2018-03-20	<	0.5	0.500	0.500	0.500	UG/L
39720	PICLORAM	2018-03-20	<	1.0	500.000	1.000	1.000	UG/L
39720	PICLORAM	2021-03-09	<	1	500.000	1.000	1.000	UG/L
39730	2,4-D	2018-03-20	<	10.0	70.000	10.000	10.000	UG/L
39730	2,4-D	2021-03-09	<	10	70.000	10.000	10.000	UG/L

Storet Number	Group/Constituent Identification	Sampling Date	XMOD	Result	MCL	DLR	Trigger	Unit
46491	METHYL-TERT-BUTYL-ETHER (MTBE)	2018-03-20	<	0000000000	13.000	3.000	3.000	UG/L
70300	TOTAL DISSOLVED SOLIDS	2018-03-14		270	1000.000	0.000	500.000	MG/L
71830	HYDROXIDE ALKALINITY	2018-03-14	<	0000000000	0.000	0.000	0.000	MG/L
71850	NITRATE (AS NO3)	2009-02-10		4.9000	45.000	2.000	23.000	MG/L
71850	NITRATE (AS NO3)	2010-01-25		8.3000	45.000	2.000	23.000	MG/L
71900	MERCURY	2018-03-14	<	0000000000	2.000	1.000	2.000	UG/L
71900	MERCURY	2021-03-09		0	2.000	1.000	2.000	UG/L
77093	CIS-1,2-DICHLOROETHYLENE	2018-03-20	<	0000000000	6.000	0.500	0.500	UG/L
77128	STYRENE	2018-03-20	<	0000000000	100.000	0.500	0.500	UG/L
77135	O-XYLENE	2018-03-20	<	0000000000	0.000	0.500	0.000	UG/L
77443	1,2,3-TRICHLOROPROPANE (1,2,3-TCP)	2018-03-20	<	0.0050	0.005	0.005	0.005	UG/L
77443	1,2,3-TRICHLOROPROPANE (1,2,3-TCP)	2019-06-26	<	0.0050	0.005	0.005	0.005	UG/L
77443	1,2,3-TRICHLOROPROPANE (1,2,3-TCP)	2020-02-11	<	0.0050	0.005	0.005	0.005	UG/L
77443	1,2,3-TRICHLOROPROPANE (1,2,3-TCP)	2020-12-15	<	0.0050	0.005	0.005	0.005	UG/L
77651	ETHYLENE DIBROMIDE (EDB)	2018-03-20	<	0.02	0.050	0.020	0.020	UG/L
77700	CARBARYL	2018-03-20	<	5	0.000	5.000	700.000	UG/L
77700	CARBARYL	2021-03-09	<	5	0.000	5.000	700.000	UG/L
77825	ALACHLOR	2018-03-20	<	1.0	2.000	1.000	1.000	UG/L
78885	DIQUAT	2018-03-14	<	4	20.000	4.000	4.000	UG/L
78885	DIQUAT	2021-03-09	<	4	20.000	4.000	4.000	UG/L
81287	DINOSEB	2018-03-20	<	2	7.000	2.000	2.000	UG/L
81287	DINOSEB	2021-03-09	<	2	7.000	2.000	2.000	UG/L
81405	CARBOFURAN	2018-03-20	<	5.0	18.000	5.000	5.000	UG/L
81405	CARBOFURAN	2021-03-09		5	18.000	5.000	5.000	UG/L
81551	XYLENES (TOTAL)	2018-03-20		0000000000	1750.000	0.500	1750.000	UG/L
81611	TRICHLOROTRIFLUOROETHANE (FREON 113)	2018-03-20	<	0000000000	1200.000	10.000	10.000	UG/L
81855	ASBESTOS	2018-03-14		0000000000	7.000	0.200	7.000	MFL
82052	DICAMBA	2018-03-20		1.5	0.000	1.500	0.000	UG/L
82052	DICAMBA	2021-03-09	<	1.5	0.000	1.500	0.000	UG/L
82079	TURBIDITY, LABORATORY	2018-03-14		0.96	5.000	0.100	5.000	NTU
A-014	M,P-XYLENE	2018-03-20		0000000000	0.000	0.500	0.000	UG/L
A-019	ALDICARB SULFOXIDE	2018-03-20		3.0	0.000	3.000	3.000	UG/L
A-019	ALDICARB SULFOXIDE	2021-03-09		3.0	0.000	3.000	3.000	UG/L
A-020	ALDICARB SULFONE	2018-03-20		4	0.000	4.000	4.000	UG/L
A-020	ALDICARB SULFONE	2021-03-09		4	0.000	4.000	4.000	UG/L
A-021	3-HYDROXYCARBOFURAN	2018-03-20		3	0.000	3.000	3.000	UG/L
A-021	3-HYDROXYCARBOFURAN	2021-03-09		3	0.000	3.000	3.000	UG/L
A-031	PERCHLORATE	2018-03-14	<	0000000000	6.000	4.000	4.000	UG/L
A-031	PERCHLORATE	2019-06-26		0	6.000	4.000	4.000	UG/L
A-031	PERCHLORATE	2020-06-24		0	6.000	4.000	4.000	UG/L
A-031	PERCHLORATE	2020-07-22		0	6.000	4.000	4.000	UG/L
A-031	PERCHLORATE	2021-03-09	<	4	6.000	4.000	4.000	UG/L

Storet Number	Group/Constituent Identification	Sampling Date	XMOD	Result	MCL	DLR	Trigger	Unit
A-045	DCPA (TOTAL DI & MONO ACID DEGRADATES)	2018-03-20	<	0.10	0.000	0.000	0.000	UG/L
A-045	DCPA (TOTAL DI & MONO ACID DEGRADATES)	2021-03-09	<	0.10	0.000	0.000	0.000	UG/L
A-072	GROSS ALPHA MDA95	2018-03-14		0.033	3.000	0.000	0.000	PCI/L
A-072	GROSS ALPHA MDA95	2019-07-18		0.033	3.000	0.000	0.000	PCI/L
A-072	GROSS ALPHA MDA95	2020-06-24		1.62	3.000	0.000	0.000	PCI/L
A-072	GROSS ALPHA MDA95	2020-07-22		1.57	3.000	0.000	0.000	PCI/L

Lead and Copper Sample Summary Results

MP *	MP Begin	MP End	Туре	# Samples	Measure	Units	Analyte Code/ Name	Begin Sampling	End Sampling
6M1ST-2020	01-01-2020	06-30-2020	90	5	1.55	MG/L	CU90 - COPPER SUMMARY	06-24-2020	06-24-2020
6M1ST-2020	01-01-2020	06-30-2020	AL	2 Exceeding Action Level	0		CU90 - COPPER SUMMARY	06-24-2020	06-24-2020
6M1ST-2020	01-01-2020	06-30-2020	90	5	0	MG/L	PB90 - LEAD SUMMARY	06-24-2020	06-24-2020
6M2ND-2019	07-01-2019	12-31-2019	90	5	3	MG/L	CU90 - COPPER SUMMARY	11-08-2019	11-08-2019
6M2ND-2019	07-01-2019	12-31-2019	AL	3 Exceeding Action Level	0		CU90 - COPPER SUMMARY	11-08-2019	11-08-2019
6M2ND-2019	07-01-2019	12-31-2019	90	5	0.002	MG/L	PB90 - LEAD SUMMARY	11-08-2019	11-08-2019
6M2ND-2020	07-01-2020	12-31-2020	90	5	1.3	MG/L	CU90 - COPPER SUMMARY	07-22-2020	07-22-2020
6M2ND-2020	07-01-2020	12-31-2020	AL	1 Exceeding Action Level	0		CU90 - COPPER SUMMARY	07-22-2020	07-22-2020
6M2ND-2020	07-01-2020	12-31-2020	90	5	0	MG/L	PB90 - LEAD SUMMARY	07-22-2020	07-22-2020