2018 Consumer Confidence Report

Water System Name: William Hill Estate Winery

Report Date: June 30th 2019

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2018 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse William Hill Estate Winery a 1761 Atlas Peak Rd. Napa, CA para asistirlo en español.

这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 William Hill Estate Winery 以获得中文的帮助:1761 Atlas Peak Rd. Napa, CA(707)265-3014.

Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa William Hill Estate Winery 1761 Atlas Peak Rd. Napa, CA. o tumawag sa (707)265-3014 para matulungan sa wikang Tagalog.

Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ William Hill Estate Winery tại (707)265-3014 để được hỗ trợ giúp bằng tiếng Việt.

Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau William Hill Estate Winery ntawm (707)265-3014 rau kev pab hauv lus Askiv.

Type of water source(s) in use: Unde	rground Water Well
Name & general location of source(s):	Well #1, in the Vineyard NE of Winery 38°21'27.52"N 1761 Atlas Peak Rd. Napa, California 94558
Drinking Water Source Assessment infor	nation: An assessment of the well water has been completed. The well sits above ground and the solid rock formation surrounding it is intact. The relief and check valves are in good working condition. This system is unfiltered and as such it is recommended that it is not suitable for drinking and appropriate signage is in place around the winery. Bottled water is provided on site for all winery employees and hospitality guests. For a copy of the report contact Troy Rohde at (707)265-3014

Time and place of regularly scheduled board meetings for public participation:

N/A

For more information, contact: Troy Rohde

Phone: (707)265-3014

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking The set of the protect the odor.	Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. Treatment Technique (TT) : A required process intended to reduce
water.theMaximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).Water Water below which there is no known or expected risk to health. MCLGs are set by the U.S. Water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.Water below which there is no known or expected rotection Agency.Maximum Residual Disinfectant Level (MRDL):The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.Let Maximum Residual Disinfectant Level Goal (MRDLG): to	he level of a contaminant in drinking water. Regulatory Action Level (AL) : The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. Variances and Exemptions : Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions. Level 1 Assessment : A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. Level 2 Assessment : A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why otal coliform bacteria have been found in our water system on

is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

ND: not detectable at testing limit **ppm**: parts per million or milligrams per liter (mg/L) **ppb**: parts per billion or micrograms per liter (µg/L) **ppt**: parts per trillion or nanograms per liter (ng/L) **ppq**: parts per quadrillion or picogram per liter (pg/L) **pCi/L**: picocuries per liter (a measure of radiation) **The sources of drinking water** (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides*, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants*, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1 –	SAMPLI	NG RES	ULTS SHO	WIN	NG THE DE	TECTIO	ON OF	COLIFORM B	ACTERIA
Microbiological Contaminants (complete if bacteria detected)	Highest N Detecti	lo. of Nons	o. of Months in Violation	8	N	ICL		MCLG	Typical Source of Bacteria
Total Coliform Bacteria (state Total Coliform Rule)	(In a mo	nth)	0	1 1	positive month	ily sample	9	0	Naturally present in the environment
Fecal Coliform or <i>E. coli</i> (state Total Coliform Rule)	(In the y	ear)	0	A sai an co	routine sample mple are total d one of these liform or <i>E. ca</i>	e and a re coliform is also fe oli positiv	peat positive, cal e		Human and animal fecal waste
<i>E. coli</i> (federal Revised Total Coliform Rule)	(In the y	ear)	0			(a)		0	Human and animal fecal waste
(a) Routine and repeat samples ar or system fails to analyze total co	e total colifo liform-positi	rm-positive ve repeat sa	e and either is <i>E</i> ample for <i>E</i> . <i>co</i>	. coli- i.	positive or syste	em fails to	take repea	samples following	<i>E. coli</i> -positive routine sample
TABLE 2 -	- SAMPL	ING RE	SULTS SH	OW)	ING THE D	етест	ION OF	LEAD AND	COPPER
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. o Sample Collecte	f 90 th es Level ed Detecto	ile ed	No. Sites Exceeding AL	AL	PHG	No. of Schools Requesting Lead Sampling	Typical Source of Contaminant
Lead (ppb)	08/14/19	5	0.010		0	15	0.2		Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	08/14/19	5	0.185		0	1.3	0.3	Not applicable	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

Consumer Confidence Report

	TABLE 3	8 – SAMPL	ING RESULT	rs for so	DIUM AND	HARDNESS
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	11/12/13	61	N/A	None	None	Salt present in the water and is generally naturally occurring
Hardness (ppm)	11/25/13	190	N/A	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring
TABLE 4 – DET	FECTION C	OF CONTA	MINANTS W	ITH A PR	IMARY DRI	NKING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
ALUMINUM (PPM)	03/14/18	ND	N/A	1000	50	Erosion of natural deposits; residue from some surface water treatment processes.
ANTIMONY (PPB)	03/14/18	ND	N/A	6	6	Some people who drink water containing antimony in excess of the MCL over many years may experience increases in blood cholesterol and decreases in blood sugar.
ASBESTOS (MFL)	03/14/18	ND	N/A	7	0.2	Internal corrosion of asbestos cement water mains; erosion of natural deposits
ARSENIC (PPB)	03/14/18	5.0	N/A	10	2	Erosion of natural deposits; runoff from orchards; glass and electronics production waste.
BARIUM (PPM)	03/14/18	23	N/A	1000	100	Discharge of oil drilling wastes and from metal refineries; erosion of natural deposits.
BERYLLIUM (PPB)	03/14/18	ND	N/A	4	1	Some people who drink water containing beryllium in excess of the MCL over many years may develop intestinal lesions.
CADMIMUM (PPB)	03/14/18	ND	N/A	5	1	Internal corrosion of galvanized pipes; erosion of natural deposits; discharge from electroplating and industrial chemical factories, and metal refineries; runoff from waste batteries and paint.
CHROMIUM (PPB)	03/14/18	ND	N/A	50	10	Discharge from steel and pulp mills and chrome plating; erosion of natural deposits.
CHROMIUM, Hexavalent	06/22/15	<1.0	N/A	10		
FLUORIDE (PPM)	03/14/18	0.19	N/A	2	0.1	Erosion of natural deposits; water additives which promotes strong teeth; discharge from fertilizer and aluminum factories.
MERCURY (PPB)	03/14/18	0.0010	N/A	2	1	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and cropland.
NICKEL (PPB)	03/14/18	1.2	N/A	100	10	Some people who drink water containing nickel in excess of the MCL over many years may experience liver and heart effects.
GROSS ALPHA Particle Activity (pCi/L)	03/14/18	3.53	N/A	15	3	Erosion of natural doposits.

NITRATE (PPM)	10/17/18	0.6	N/A	10	0.4	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits.
SELENIUM (PPB)	03/14/18	ND	N/A	50	5	Discharge from petroleum, glass, and metal refineries; erosion of natural deposits; discharge from mines and chemical manufacturers; runoff from livestock lots (feed additives)
THALLIUM (PPB)	03/14/18	ND	N/A	2	1	Some people who drink water containing thallium in excess of the MCL over many years may experience hair loss, changes in their blood, or kidney, intestinal, or liver problems.
PERCHLORATE (PPB)	03/28/15	ND	N/A	6	6	Perchlorate has been shown to interfere with uptake of iodide by the thyroid gland, and to thereby reduce the production of thyroid hormones, leading to adverse affects associated with inadequate hormone levels. Thyroid hormones are needed for normal prenatal growth and development of the fetus, as well as for normal growth and development in the infant and child. In adults, thyroid hormones are needed for normal metabolism and mental function.
TABLE 5 – DETE	ECTION OF	CONTAN	IINANTS WI	TH A SECO	ONDARY DI	RINKING WATER STANDARD
			and the second se			
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant
Chemical or Constituent (and reporting units) IRON (PPB)	Sample Date	Level Detected	Range of Detections 50 - 630	SMCL 300	PHG (MCLG) N/A	Typical Source of Contaminant Leaching from natural deposit; industrial waste.
Chemical or Constituent (and reporting units) IRON (PPB) MAGNESIUM (PPM)	Sample Date 11/25/13 11/25/13	Level Detected ND 25	Range of Detections 50 - 630 0.24 - 25	SMCL 300 N/A	PHG (MCLG) N/A N/A	Typical Source of Contaminant Leaching from natural deposit; industrial waste. Leaching from natural deposit.
Chemical or Constituent (and reporting units) IRON (PPB) MAGNESIUM (PPM) SPECIFIC CONDUCTANCE (us/cm)	Sample Date 11/25/13 11/25/13 12/13/07	Level Detected ND 25 595	Range of Detections 50 - 630 0.24 - 25 N/A	SMCL 300 N/A 1600	PHG (MCLG) N/A N/A N/A	Typical Source of Contaminant Leaching from natural deposit; industrial waste. Leaching from natural deposit. Substances that form ions when in water; seawater influence.
Chemical or Constituent (and reporting units) IRON (PPB) MAGNESIUM (PPM) SPECIFIC CONDUCTANCE (us/cm) SULFATE (PPM)	Sample Date 11/25/13 11/25/13 12/13/07 12/13/07	Level Detected ND 25 595 8	Range of Detections 50 - 630 0.24 - 25 N/A	SMCL 300 N/A 1600 500	PHG (MCLG) N/A N/A N/A N/A	Typical Source of Contaminant Leaching from natural deposit; industrial waste. Leaching from natural deposit. Substances that form ions when in water; seawater influence. Runoff/leaching from natural deposits; industrial wastes.
Chemical or Constituent (and reporting units) IRON (PPB) MAGNESIUM (PPM) SPECIFIC CONDUCTANCE (us/cm) SULFATE (PPM) SILVER (PPB)	Sample Date 11/25/13 11/25/13 12/13/07 12/13/07 03/07/12	Level Detected ND 25 595 8 8 ND	Range of Detections 50 - 630 0.24 - 25 N/A N/A	SMCL 300 N/A 1600 500 100	PHG (MCLG) N/A N/A N/A N/A N/A	Typical Source of Contaminant Leaching from natural deposit; industrial waste. Leaching from natural deposit. Substances that form ions when in water; seawater influence. Runoff/leaching from natural deposits; industrial wastes. Industrial waste / discharge.
Chemical or Constituent (and reporting units) IRON (PPB) MAGNESIUM (PPM) SPECIFIC CONDUCTANCE (us/cm) SULFATE (PPM) SILVER (PPB) TURBIDITY (NTU)	Sample Date 11/25/13 11/25/13 11/25/13 12/13/07 03/07/12 12/13/07	Level Detected ND 25 595 8 ND 0.3	Range of Detections 50 - 630 0.24 - 25 N/A N/A N/A 0.228 - 0.3	SMCL 300 N/A 1600 500 100 5	PHG (MCLG) N/A N/A N/A N/A N/A	Typical Source of Contaminant Leaching from natural deposit; industrial waste. Leaching from natural deposit. Substances that form ions when in water; seawater influence. Runoff/leaching from natural deposits; industrial wastes. Industrial waste / discharge. Soil runoff
Chemical or Constituent (and reporting units) IRON (PPB) MAGNESIUM (PPM) SPECIFIC CONDUCTANCE (us/cm) SULFATE (PPM) SILVER (PPB) TURBIDITY (NTU) MANGANESE	Sample Date 11/25/13 11/25/13 12/13/07 03/07/12 12/13/07 11/25/13	Level Detected ND 25 595 8 ND 0.3 ND	Range of Detections 50 - 630 0.24 - 25 N/A N/A N/A N/A N/A N/A	SMCL 300 N/A 1600 500 100 5 5	PHG (MCLG) N/A N/A N/A N/A N/A N/A	Typical Source of Contaminant Leaching from natural deposit; industrial waste. Leaching from natural deposit; industrial Substances that form ions when in water; seawater influence. Runoff/leaching from natural deposits; industrial wastes. Industrial waste / discharge. Soil runoff Leaching from natural deposits.
Chemical or Constituent (and reporting units) IRON (PPB) MAGNESIUM (PPM) SPECIFIC CONDUCTANCE (us/cm) SULFATE (PPM) SILVER (PPB) TURBIDITY (NTU) MANGANESE CHLORIDE (PPM)	Sample Date 11/25/13 11/25/13 12/13/07 12/13/07 12/13/07 12/13/07 12/13/07 12/13/07 12/13/07 12/13/07 12/13/07 12/13/07 12/13/07 12/13/07	Level Detected ND 25 595 8 ND 0.3 ND 9	Range of Detections 50 - 630 0.24 - 25 N/A N/A N/A N/A N/A N/A N/A	SMCL 300 N/A 1600 500 100 5 50 500	PHG (MCLG) N/A N/A N/A N/A N/A N/A N/A N/A	Typical Source of Contaminant Image: Contaminant of Contamina
Chemical or Constituent (and reporting units) IRON (PPB) MAGNESIUM (PPM) SPECIFIC CONDUCTANCE (us/cm) SULFATE (PPM) SILVER (PPB) TURBIDITY (NTU) MANGANESE CHLORIDE (PPM)	Sample Date 11/25/13 11/25/13 12/13/07 12/13/07 12/13/07 12/13/07 12/13/07 12/13/07 12/13/07 12/13/07 12/13/07 12/13/07 12/13/07	Level Detected ND 25 595 8 ND 0.3 ND 9	Range of Detections 50 - 630 0.24 - 25 N/A	SMCL 300 N/A 1600 500 100 5 50 500	PHG (MCLG) N/A N/A N/A N/A N/A N/A N/A N/A	Typical Source of Contaminant Leaching from natural deposit; industrial waste. Leaching from natural deposit. Substances that form ions when in water; seawater influence. Runoff/leaching from natural deposits; industrial wastes. Industrial waste / discharge. Soil runoff Leaching from natural deposits. Runoff/leaching from natural deposits. Runoff/leaching from natural deposits.

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects Language
BORON	11/19/08	0.115	N/A	1	The babies of some pregnant women who drink water containing boron in excess of the notification level may have an increased risk of developmental effects, based on studies in laboratory animals

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. <u>William Hill Estate Winery</u> is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [*OPTIONAL:* If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at <u>http://www.epa.gov/lead</u>.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT						
Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language			
			8			
	OF A MCL, MRDL, AL	OF A MCL, MRDL, AL, TT, OR MONITORIN Explanation Duration	OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUE Explanation Duration Actions Taken to Correct the Violation Image: Colspan="2">Image: Colspan="2">Colspan="2" Explanation Duration Actions Taken to Correct the Violation Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2" Colspan="2"			

For Water Systems Providing Groundwater as a Source of Drinking Water

TABLE 7 – SAMPLING RESULTS SHOWING FECAL INDICATOR-POSITIVE GROUNDWATER SOURCE SAMPLES

Microbiological Contaminants (complete if fecal-indicator detected)	Total No. of Detections	Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
E. coli	(In the year) 0	N/A	0	(0)	Human and animal fecal waste
Enterococci	(In the year) 0	N/A	TT	N/A	Human and animal fecal waste
Coliphage	(In the year) 0	N/A	TT	N/A	Human and animal fecal waste

Summary Information for Fecal Indicator-Positive Groundwater Source Samples, Uncorrected Significant Deficiencies, or Groundwater TT

SPECIAL	NOTICE OF FECAL INI	DICATOR-POSITIVE G	ROUNDWATER SOURCE	SAMPLE
	SPECIAL NOTICE FOR	UNCORRECTED SIGNI	IFICANT DEFICIENCIES	
	VIOLA	TION OF GROUNDWA	TER TT	
TT Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language
N/A				
N/A				

For Systems Providing Surface Water as a Source of Drinking Water

TABLE 8 - SAMPLING RESULTS SHOWING TREATMENT OF SURFACE WATER SOURCES

Treatment Technique ^(a) (Type of approved filtration technology used)	
Turbidity Performance Standards ^(b) (that must be met through the water treatment process)	 Turbidity of the filtered water must: 1 – Be less than or equal to NTU in 95% of measurements in a month. 2 – Not exceed NTU for more than eight consecutive hours. 3 – Not exceed NTU at any time.
Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1.	
Highest single turbidity measurement during the year	
Number of violations of any surface water treatment requirements	

(a) A required process intended to reduce the level of a contaminant in drinking water.

(b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements.

Summary Information for Violation of a Surface Water TT

	VIOLATI	ON OF A SURFACE	WATER TT	
TT Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language
N/A				
N/A				
N/A				

Summary Information for Operating Under a Variance or Exemption

Summary Information for Federal Revised Total Coliform Rule Level 1 and Level 2 Assessment Requirements

Level 1 or Level 2 Assessment Requirement not Due to an E. coli MCL Violation

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

During the past year we were required to conduct 0 Level 1 assessment(s). 0 Level 1 assessment(s) were completed. In addition, we were required to take 0 corrective actions and we completed 0 of these actions.

During the past year 0 Level 2 assessments were required to be completed for our water system. 0 Level 2 assessments were completed. In addition, we were required to take 0 corrective actions and we completed 0 of these actions.

Level 2 Assessment Requirement Due to an E. coli MCL Violation

E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, the elderly, and people with severely-compromised immune systems. We found *E. coli* bacteria, indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) identify problems and to correct any problems that were found during these assessments.

We were required to complete a Level 2 assessment because we found *E. coli* in our water system. In addition, we were required to take 0 corrective actions and we completed 0 of these actions.

APPENDIX G: CCR Certification Form (Suggested Format)

Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR)

(To certify electronic delivery of the CCR, use the certification form on the State Board's website at <u>http://www.swrcb.ca.gov/drinking_water/certlic/drinkingwater/CCR.shtml</u>)

Water System Name:	William Hill Estate Winery	
Water System Number:	28-01055	

The water system named above hereby certifies that its Consumer Confidence Report was distributed on *(date)* to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the State Water Resources Control Board, Division of Drinking Water.

Certified by:	Name:	Troy Rohde		
	Signature:	Le.		
	Title:	Operations Team Lead		
	Phone Number:	(707)265-3014	Date:	06/30/2019

To summarize report delivery used and good-faith efforts taken, please complete the below by checking all items that apply and fill-in where appropriate:

CCR was distributed by mail or other direct delivery methods. Specify other direct delivery methods used: FedEx / e-mail to DRINC web site_____

Good faith" efforts were used to reach non-bill paying consumers. Those efforts included the following methods:

	Posting	the	CCR	on	the	Internet	at	WWW.	
--	---------	-----	-----	----	-----	----------	----	------	--

Mailing the CCR to	postal patrons within the service area ((attach zip codes used)
--------------------	--	-------------------------

- Advertising the availability of the CCR in news media (attach copy of press release)
 - Publication of the CCR in a local newspaper of general circulation (attach a copy of the published notice, including name of newspaper and date published)
- Posted the CCR in public places (attach a list of locations) Bulletin Board in Breakroom

Delivery of multiple copies of CCR to single-billed addresses serving several persons, such as apartments, businesses, and schools

Delivery to community organizations (attach a list of organizations)

- Other (attach a list of other methods used)
- For systems serving at least 100,000 persons: Posted CCR on a publicly-accessible internet site at the following address: www._____
- For investor-owned utilities: Delivered the CCR to the California Public Utilities Commission

This form is provided as a convenience for use to meet the certification requirement of the California Code of Regulations, section 64483(c).