2023 Consumer Confidence Report

Water System Name:	Hess Collection Winery	Report Date:	5/14/2024
_	ter quality for many constituents as requering for the period of January 1 - Decem	-	-
Este informe contiene infor Napa para asistirlo en espa	mación muy importante sobre su agua para b ñol.	eber. Favor de comunicarse	Hess Winery a 4411 Redwood Road
这份报告含有关于您的饮用	水的重要讯息。请用以下地址和电话联系 He	ss Winery 以获得中文的帮助	: 4411 Redwood Road, Napa
	lalaman ng mahalagang impormasyon tungko Redwood Road, Napa para matulungan sa wi	• 0 0	langyaring makipag-ugnayan sa Hes
Báo cáo này chứa thông tin rợ giúp bằng tiếng Việt.	quan trọng về nước uống của bạn. Xin vui lò	ng liên hệ Hess Winery tại 4	411 Redwood Road, Napa để được hổ
Tsab ntawy no muaj cov nt pab hauv lus Askiv.	siab lus tseem ceeb txog koj cov dej haus. The	ov hu rau Hess Winery ntawn	n 4411 Redwood Road, Napa rau kev
Type of water source(s)	in use: 3 Springs		
Name & general locatio	n of source(s): Partrick Spring, Main	Spring, Middle Spring	
•	Assessment information: Napa Count	y Department of Environi	nental Management
1195 Th	nird Street, Room 101, Napa, CA 94559		
Time and place of regul	arly scheduled board meetings for public	e participation:	
For more information, c	ontact: Tyler Judson, Weeks Water Tre	eatment Phone: (70	07) 823-3184
		HIG DEDODE	

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (μg/L)

 \boldsymbol{ppt} : parts per trillion or nanograms per liter (ng/L)

 \boldsymbol{ppq} : parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1 – SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA							
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of months in violation	MCL	MCLG	Typical Source of Bacteria		
Total Coliform Bacteria (state Total Coliform Rule)	(In a mo.) <u>0</u>	0	1 positive monthly sample	0	Naturally present in the environment		
Fecal Coliform or <i>E. coli</i> (state Total Coliform Rule)	(In the year)	0	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive		Human and animal fecal waste		
E. coli (federal Revised Total Coliform Rule)	(In the year)	0	(a)	0	Human and animal fecal waste		

(a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER								
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. of samples collected	90 th percentile level detected	No. sites exceeding AL	AL	PHG	Typical Source of Contaminant	
Lead (ppb)	8/31/21	5	4.9	0	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits	
Copper (ppm)	8/31/21	5	0.69	0	1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives	

TABLE 3 – SAMPLING RESULTS FOR SODIUM AND HARDNESS								
Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant			
5/3/23	11	10-12	none	none	Salt present in the water and is generally naturally occurring			
5/3/23	16.33	12-22	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring			
ECTION O	F CONTAMIN	ANTS WITH A	PRIMARY	DRINKING				
Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant			
5/3/23	0.15	0-0.45	1	0.6	Erosion of natural deposits; residue from some surface water treatment processes			
5/3/23	0.15	0-0.23	2.0	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories			
5/3/23	2.3	0-3.7	10	0.004	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes			
2023	1.36	0.80-1.60	[MRDL = 4.0 (as Cl ₂₎]	[MRDLG = 4 (as Cl ₂₎	Drinking water disinfectant added for treatment			
2/06/23	0.54	0-0.90	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits			
6/13/23	9.77	N/A	80	N/A	By-product of drinking water disinfection			
6/13/23	5.3	N/A	60	N/A	Byproduct of drinking water disinfection			
1/10/18	1.99	1.24-3.4	15	(0)	Erosion of natural deposits			
CTION OF	CONTAMINA	NTS WITH A S	ECONDAR	Y DRINKIN	IG WATER STANDARD			
Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant			
5/3/23	150	0-450	200	N/A	Erosion of natural deposits; residual from some surface water treatment processes			
5/3/23	1.44	0-4.0	5	N/A	Soil runoff			
5/3/23	103	98-110	1000	N/A	Runoff/leaching from natural deposits			
5/3/23	103	100-110	1600	N/A	Substances that form ions when in water; seawater influence			
5/3/23	6.7	6.1-7.4	500	N/A	Runoff/leaching from natural deposits; seawater influence			
5/3/23	8.0	6.3-9.2	500	N/A	Runoff/leaching from natural deposits; industrial wastes			
5/3/23					Leaching from natural deposits;			
	Sample Date 5/3/23 5/3/23 ECTION O Sample Date 5/3/23 5/3/23 2/06/23 6/13/23 6/13/23 1/10/18 CTION OF Sample Date 5/3/23 5/3/23 5/3/23 5/3/23	Sample Date Level Detected 5/3/23 11 5/3/23 16.33 ECTION OF CONTAMIN Sample Date Level Detected 5/3/23 0.15 5/3/23 0.15 5/3/23 2.3 2023 1.36 2/06/23 0.54 6/13/23 9.77 6/13/23 5.3 1/10/18 1.99 CTION OF CONTAMINA Sample Date Level Detected 5/3/23 150 5/3/23 1.44 5/3/23 103 5/3/23 103 5/3/23 6.7	Sample Date Level Detected Range of Detections 5/3/23 11 10-12 5/3/23 16.33 12-22 ECTION OF CONTAMINANTS WITH A Range of Detections 5/3/23 0.15 0-0.45 5/3/23 0.15 0-0.23 5/3/23 0.15 0-0.23 5/3/23 0.34 0-0.90 6/13/23 0.54 0-0.90 6/13/23 5.3 N/A 1/10/18 1.99 1.24-3.4 CTION OF CONTAMINANTS WITH A SIMPLE CONTAMINANTS WITH A SIM	Sample Date Level Detected Range of Detections MCL 5/3/23 11 10-12 none 5/3/23 16.33 12-22 none ECTION OF CONTAMINANTS WITH A PRIMARY Sample Date Range of Detections MCL [MRDL] 5/3/23 0.15 0-0.45 1 5/3/23 0.15 0-0.23 2.0 5/3/23 2.3 0-3.7 10 2023 1.36 0.80-1.60 [MRDL] = 4.0 (as Cl2) 2/06/23 0.54 0-0.90 10 6/13/23 9.77 N/A 80 6/13/23 5.3 N/A 60 1/10/18 1.99 1.24-3.4 15 CTION OF CONTAMINANTS WITH A SECONDAR Sample Date Detected Range of Detections MCL 5/3/23 1.50 0-450 200 5/3/23 1.03 98-110 1000 5/3/23 103 100-110 1600 5/3/23 6.7 6.1-7.4 500	Nample Level Detections MCL PHG (MCLG)			

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects Language
None					

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Hess Collections Winery is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4701) or at http://www.epa.gov/lead.

The Hess Collection Winery water system is operated under contract by Weeks Water Treatment of Sebastopol.

To inquire about the system or to report trouble, please call (707) 823-3184.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT							
ViolationExplanationDurationActions Taken to Correct the ViolationHealth Effects Language							
None							

For Water Systems Providing Ground Water as a Source of Drinking Water

TABLE 7 – SAMPLING RESULTS SHOWING FECAL INDICATOR-POSITIVE GROUND WATER SOURCE SAMPLES								
Microbiological Contaminants (complete if fecal-indicator detected) Total No. of Detections Sample Dates MCL [MRDL] [MRDL] Typical Source of Contaminant Typical Source of Contaminant								
E. coli	(In the year)		0	(0)	Human and animal fecal waste			
Enterococci	(In the year)		TT	n/a	Human and animal fecal waste			
Coliphage	(In the year)		TT	n/a	Human and animal fecal waste			

Summary Information for Fecal Indicator-Positive Ground Water Source Samples, Uncorrected Significant Deficiencies, or Ground Water TT

SPECIAL NOTICE OF FECAL INDICATOR-POSITIVE GROUND WATER SOURCE SAMPLE									
None									
	SPECIAL NOTICE FOR UNCORRECTED SIGNIFICANT DEFICIENCIES								
None									
VIOLATION OF GROUND WATER TT									
TT Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language					
None									

For Systems Providing Surface Water as a Source of Drinking Water

TABLE 8 - SAMPLING RESULTS SHOWING TREATMENT OF SURFACE WATER SOURCES				
Treatment Technique (a) (Type of approved filtration technology used) Seccua Ultrafiltration Membrane System				
	Turbidity of the filtered water must:			
Turbidity Performance Standards ^(b) (that must be met through the water treatment process)	1 – Be less than or equal to <u>0.1</u> NTU in 95% of measurements in a month.			
	2 – Not exceed <u>0.1</u> NTU for more than eight consecutive hours.			
	3 – Not exceed <u>1.0</u> NTU at any time.			
Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1.	99.9			
Highest single turbidity measurement during the year	0.458			
Number of violations of any surface water treatment requirements	0			

- (a) A required process intended to reduce the level of a contaminant in drinking water.
- (b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements.

Summary Information for Violation of a Surface Water TT

VIOLATION OF A SURFACE WATER TT							
TT Violation Explanation Duration Actions Taken to Correct the Violation Language							
None							