Consumer Confidence Report Certification Form (To be submitted with a copy of the CCR) | Water System Name: | Vailima Mutual Water Company | |----------------------|------------------------------| | Water System Number: | 28-00532 | The water system named above hereby certifies that its Consumer Confidence Report was distributed on July 14, 2022 to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the State Water Resources Control Board, Division of Drinking Water (DDW). #### Certified by: | Name: Nicholaus Lutz | Title:Operator | |----------------------------|--------------------| | Signature: | Date:July 14, 2022 | | Phone number: 707-944-2471 | blank | To summarize report delivery used and good-faith efforts taken, please complete this page by checking all items that apply and fill-in where appropriate: | | | was distributed by mail or other direct delivery methods (attach description of direct delivery methods used). | |-------------|-------|--| | | CCR | was distributed using electronic delivery methods described in the Guidance | | | for E | ectronic Delivery of the Consumer Confidence Report (water systems utilizing | | | elect | ronic delivery methods must complete the second page). | | \boxtimes | | d faith" efforts were used to reach non-bill paying consumers. Those efforts | | | inclu | ided the following methods: | | | | Posting the CCR at the following URL: www | | | | Mailing the CCR to postal patrons within the service area (attach zip codes | | | | used) | | | | Advertising the availability of the CCR in news media (attach copy of press release) | | | | Publication of the CCR in a local newspaper of general circulation (attach a | | | | copy of the published notice, including name of newspaper and date published) | | | | Posted the CCR in public places (attach a list of locations) | | | | Delivery of multiple copies of CCR to single-billed addresses serving several persons, such as apartments, businesses, and schools | | | | Delivery to community organizations (attach a list of organizations) | | | □ Publication of the CCR in the electronic city newsletter or electronic community newsletter or listserv (attach a copy of the article or notice) □ Electronic announcement of CCR availability via social media outlets (attach list of social media outlets utilized) □ Other: See Electronic Delivery Certification below. For systems serving at least 100,000 persons: Posted CCR on a publicly-accessible internet site at the following URL: www. For privately-owned utilities: Delivered the CCR to the California Public Utilities Commission | |-------|--| | | Consumer Confidence Report Electronic Delivery Certification | | | er systems utilizing electronic distribution methods for CCR delivery must complete page by checking all items that apply and fill-in where appropriate. | | | Water system mailed a notification that the CCR is available and provides a direct URL to the CCR on a publicly available website where it can be viewed (attach a copy of the mailed CCR notification). URL: www | | | Water system emailed a notification that the CCR is available and provides a direct URL to the CCR on a publicly available site on the Internet where it can be viewed (attach a copy of the emailed CCR notification). URL: www | | | Water system emailed the CCR as an electronic file email attachment. Water system emailed the CCR text and tables inserted or embedded into the body of an email, not as an attachment (attach a copy of the emailed CCR). | | | Requires prior DDW review and approval. Water system utilized other electronic delivery method that meets the direct delivery requirement. | | inclu | vide a brief description of the water system's electronic delivery procedures and ude how the water system ensures delivery to customers unable to receive electronic very. | | | sers of the water system with no access to email will receive a hard copy the 2020 CCR either hand delivered or via interoffice or US Postal Service mail. | | 100 | | This form is provided as a convenience and may be used to meet the certification requirement of section 64483(c) of the California Code of Regulations. ## 2021 Consumer Confidence Report #### **Water System Information** Water System Name: Vailima Estates Water Suystem Report Date: June 28, 2021 Type of Water Source(s) in Use: Two groundwater wells Name and General Location of Source(s): Both wells are located on parcel #21-390-12 directly southwest of Bournemouth Rd; 13 Bournemouth Rd. They are approximately 50' apart. Drinking Water Source Assessment Information: See California Waterboards Division of Drinking Water Source Chemical Monitoring data @ https://sdwis.waterboards.ca.gov/PDWW/ Time and Place of Regularly Scheduled Board Meetings for Public Participation: N/A For More Information, Contact: Oakville Pump Service - 707-944-2471 #### **About This Report** We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2021 and may include earlier monitoring data. # Importance of This Report Statement in Five Non-English Languages (Spanish, Mandarin, Tagalog, Vietnamese, and Hmong) Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse Vailima Estates Water Company a P.O. Box 526, St. Helena, CA 94574 para asistirlo en español.. Language in Mandarin: 这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 Vailima Estates Water Company以获得中文的帮助: P.O. Box 526, St. Helena, CA 94574 707-944-2471 Language in Tagalog: Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa Vailima Estates Water Company, P.O. Box 526, St. Helena, CA o tumawag sa 707-944-2471 para matulungan sa wikang Tagalog. Language in Vietnamese: **Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ Vailima Estates Water Company tại P.O. Box 526, St. Helena, CA 94574 để được hỗ trợ giúp bằng tiếng Việt.** Language in Hmong: Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau Grgich Hills Winery ntawm 1829 St. Helena Hwy. Rutherford, CA 94573 rau kev pab hauv lus Askiv. ## **Terms Used in This Report** | Term | Definition | |--|---| | Level 1 Assessment | A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. | | Level 2 Assessment | A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. | | Maximum Contaminant
Level (MCL) | The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. | | Maximum Contaminant
Level Goal (MCLG) | The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA). | | Maximum Residual
Disinfectant Level (MRDL) | The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. | | Maximum Residual
Disinfectant Level Goal
(MRDLG) | The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. | | Primary Drinking Water
Standards (PDWS) | MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. | | Public Health Goal
(PHG) | The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. | | Regulatory Action Level (AL) | The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. | | Secondary Drinking Water
Standards (SDWS) | MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. | | Treatment Technique
(TT) | A required process intended to reduce the level of a contaminant in drinking water. | | Variances and
Exemptions | Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions. | | ND | Not detectable at testing limit. | | ppm | parts per million or milligrams per liter (mg/L) | | ppb | parts per billion or micrograms per liter (µg/L) | | ppt | parts per trillion or nanograms per liter (ng/L) | | ppq | parts per quadrillion or picogram per liter (pg/L) | | pCi/L | picocuries per liter (a measure of radiation) | ## Sources of Drinking Water and Contaminants that May Be Present in Source Water The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally- occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems. - Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. ## Regulation of Drinking Water and Bottled Water Quality In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health. ## **About Your Drinking Water Quality** #### **Drinking Water Contaminants Detected** Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report. #### Table 1. Sampling Results Showing the Detection of Coliform Bacteria Complete if bacteria are detected. | Microbiological
Contaminants | Highest No. of
Detections | No. of Months
in Violation | MCL | MCLG | Typical Source of
Bacteria | |---------------------------------|------------------------------|-------------------------------|-----|------|-------------------------------| | E. coli | (In the year)
0 | 0 | (a) | 0 | Human and animal fecal waste | (a) Routine and repeat samples are total coliform-positive and either is E. coli-positive or system fails to take repeat samples following E. colipositive routine sample or system fails to analyze total coliform-positive repeat sample for E. coli. Table 1.A. Compliance with Total Coliform MCL between January 1, 2021 and June 30, 2021 (inclusive) | Microbiological
Contaminants | Highest No. of
Detections | No. of Months
in Violation | WCF | MCLG | Typical Source of
Bacteria | | |---------------------------------|------------------------------|-------------------------------|-------------------------------|------|--------------------------------------|--| | Total Coliform Bacteria | (In a month) | 1 | 1 positive monthly sample (a) | 0 | Naturally present in the environment | | | Fecal Coliform and E. | (In the year)
0 | 0 | 0 | None | Human and animal fecal waste | | ⁽a) For systems collecting fewer than 40 samples per month: two or more positively monthly samples is a violation of the total coliform MCL For violation of the total coliform MCL, include potential adverse health effects, and actions taken by water system to address the violation: Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found. Vailima MWC's monthly sample was positive for Total Coliform on 8/11/21. On 8/12/21 we pulled a sample from the well and four repeat samples from the distribution system and flushed the system. All five samples came back absent for Total Coliform. As a precaution, we added a small amount of chlorine to the tank. The following month, we took 4 more follow up samples from the distribution system and all were good. Table 2. Sampling Results Showing the Detection of Lead and Copper Complete if lead or copper is detected in the last sample set. | Lead and Copper | Sample Dafe | No. of Samples
Collected | 90th Percentile
Level Detected | No. Sites
Exceeding AL | Al | PHG | No. of Schools
Requesting Lead
Sampling | Typical Source of
Contaminant | |-----------------|-------------|-----------------------------|-----------------------------------|---------------------------|-----|-----|---|---| | Lead
(ppb) | 10/30/19 | 5 | ND | 0 | 15 | 0.2 | Not
applicable | Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits | | Copper
(ppm) | 10/30/19 | 5 | 0.113 | 0 | 1.3 | 0.3 | Not
applicable | Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives | Table 3. Sampling Results for Sodium and Hardness | Chemical or Constituent (and reporting units) | Sample Date | Level
Detected | Range of
Detections | MCL | PHG
(MCLG) | Typical Source of Contaminant | |---|-------------|-------------------|------------------------|------|---------------|--| | Sodium (ppm) | 10/9/1 | 10.5 mg/L | 0 - 21 | None | None | Salt present in the water and is generally naturally occurring | | Hardness (ppm) | 3/4/21 | 24 mg/L | 0 - 48 | None | None | Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring | Table 4. Detection of Contaminants with a Primary Drinking Water Standard | Chemical or
Constituent
(and
reporting
units) | Sample
Date | Level
Detected | Range of
Detections | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Source of Contaminant | |---|----------------|-------------------|------------------------|---------------|--------------------------|--| | Fluoride | 10/9/18 | 0.275 | 0.27 - 0.28 | 2 | | Water additive that promotes strong teeth; discharge from aluminum factories; erosion of natural deposits | | Hexavalent
Chromium-6 | 3/29/18 | 0.265 | ND53 | 10 | | Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production and textile manufacturing factories; erosion of natural deposits. | | Barium | 10/9/18 | 3.12 | 2.7 – 3.7 | 10 | | Erosion of natural deposits | | Aluminum | 10/9/18 | 0.005 | ND - 0.010 | 1 | | Erosion of natural deposits; residue from some surface water treatment processes | | Arsenic | 10/1/18 | 3.5 | 3.1 – 3.9 | 10 | | Erosion of natural deposits; runoff from orchards; glass and electronics production wastes | | Nitrate | 1/13/20 | 0.135 | 0.13-0.14 | 10 | | Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits | Table 5. Detection of Contaminants with a Secondary Drinking Water Standard | Chemical or
Constituent (and
reporting units) | Sample
Date | Level
Detected | Range of
Detections | SMCL | PHG (MCLG) | Typical Source
of
Contaminant | |---|----------------|-------------------|------------------------|------------|------------|---| | Bicarbonate | 10/9/18 | 116 mg/L | 120 - 116 | | | Anions of weak acids that contribute to the capacity of water to neutralize acids | | Calcium | 10/9/18 | 9.55
mg/L | 9.1 - 10 | | | Erosion of natural deposits. | | Magnesium | 10/9/18 | 6.5
mg/L | | | | Erosion of natural deposits. | | Manganese | 10/9/18 | 2.06 ug/L | 0.72 – 3.4 | 50 | | Leaching from natural deposits | | Specific
Conductance | 8/29/19 | 205 US | 200 - 210 | 1600
US | | Substances that form ions when in water; seawater influence | | Chloride | 8/29/19 | 11.65
Mg/L | 5.3 - 18 | 500 | | Chlorides are leached from various rocks into soil and water by weathering. | | Table 6. | Detection of | Contaminants wi | ith a Secondary | Drinking Wate | r Standard (| cont'd.) | |----------|--------------|-------------------|------------------|-----------------|--------------|-----------| | TODIC V. | Delection of | COMMUNICATION WIL | IIII a secondary | Dimining trains | | WALLE MAY | | Chemical or
Constituent (and
reporting units) | Sample
Date | Level
Detected | Range of
Detections | SMCL | PHG
(MCLG) | Typical Source
of
Contaminant | |---|----------------|-------------------|------------------------|-------|---------------|-------------------------------------| | рН | 10/9/18 | 7.2
mg/L | 7.2 – 7.2 | | | Measure of acidity in water. | | Turbidity | 8/29/19 | 0.27
NTU | 0.12 - 0.42 | 5 NTU | | Soil runoff | | Sulfate | 8/29/19 | 2.0 | 2.0 – 2.0 | 500 | | Erosion of natural deposits. | | TDS | 8/29/19 | 220 mg/L | 210 – 240 | 1000 | | Erosion of natural deposits | #### **Table 7. Detection of Unregulated Contaminants** | Chemical or Constituent (and reporting units) | Sample Date | Level
Detected | Range of
Detections | Notification Level | Health Effects | |---|-------------|-------------------|------------------------|--------------------|----------------| | None to report. | | | | | | #### Additional General Information on Drinking Water Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Vailima Mutual Water Company is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead. State Revised Total Coliform Rule (RTCR): Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogen's may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. Summary Info.mation for Violation of a MCL, MRDL, AL, IT, or Monitoring and Reporting Requirement – See Table 7 below. Table 7. Violation of a MCL, MRDL, AL, TT or Monitoring Reporting Requirement | Violation | Explanation | Duration | Actions Taken to Correct Violation | Health Effects Language | |---|---|----------|---|---| | Total Coliform
detection in
ythe Distribution
System | Vailima MWC's
monthly sample
was positive for
Total Coliform on
8/11/21 | 1 Day | On 8/12/21 we pulled a sample from the well and four repeat samples from the distribution system and flushed the system. All five samples came back absent for Total Coliform. As a precaution, we added a small amount of chlorine to the tank. The following month, we took 4 more follow up samples from the distribution system and all were good | Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogen's may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found. | #### For Water Systems Providing Groundwater as a Source of Drinking Water Table 8. Sampling Results Showing Fecal Indicator-Positive Groundwater Source Samples | Microbiological Contaminants (complete if fecal-indicator detected) | Total No. of
Detections | Sample Dates | MCL
[MRDL] | PHG (MCLG)
[MRDLG] | Typical Source of
Contaminant | |---|----------------------------|--------------|---------------|-----------------------|----------------------------------| | E. coli | (In the year) | | 0 | (0) | Human and animal fecal waste | | | 0 | Monthly | | | | | Enterococci | (In the year) | | Π | N/A | Human and animal fecal waste | | | 0 | N/A | | | | | Coliphage | (In the year) | | Π | N/A | Human and animal fecal waste | | | 0 | N/A | | | | Summary Information for Fecal Indicator-Positive Groundwater Source Samples, Uncorrected Significant Deficiencies, or Violation of a Groundwater TT | Special Notice of Fecal Indicator-Positive Groundwater Source Sample: n/a | | |---|--| | | | Special Notice for Uncorrected Significant Deficiencies: n/a Table 9. Violation of Groundwater TT | Violation | Explanation | Duration | Actions Taken to
Correct Violation | Health Effects Language | |-----------------|-------------|----------|---------------------------------------|-------------------------| | None to report. | | | | |