

2024 Consumer Confidence Report

Water System Name: Camp Roberts – California National Guard

Report Date: June 2025

We test the drinking water quality for many constituents as required by State and Federal Regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2024 and may include earlier monitoring data.

Type of water source(s) in use: Groundwater wells

Name & location of source(s): Well C-01, Well C5-A, Well 03-A, Well C-4A Map available upon request

Drinking Water Source Assessment information: A copy of the complete assessment is available at the Camp Roberts Drinking Water System Operator's office.

Time and place of regularly scheduled board meetings for public participation: For more information, please contact the Camp Roberts Directorate of Public Works

For more information, contact Vince Hindley Phone: 805-238-8570

Importance of This Report Statement in Five Non-English Languages (Spanish, Mandarin, Tagalog, Vietnamese, and Hmong)

Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse [Enter Water System's Name] a [Enter Water System's Address or Phone Number] para asistirlo en español.

Language in Mandarin: 这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 [Enter Water System Name] 以获得中文的帮助: [Enter Water System's Address][Enter Water System's Phone Number].

Language in Tagalog: Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa [Enter Water System's Name and Address] o tumawag sa [Enter Water System's Phone Number] para matulungan sa wikang Tagalog.

Language in Vietnamese: Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ [Enter Water System's Name] tại [Enter Water System's Address or Phone Number] để được hỗ trợ giúp bằng tiếng Việt.

Language in Hmong: Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau [Enter Water System's Name] ntawm [Enter Water System's Address or Phone Number] rau kev pab hauv lus Askiv.

TERMS USED IN THIS REPORT:

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Primary Drinking Water Standards (PDWS): MCLs or MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Variances and Exemptions: Department permission to exceed an MCL or not comply with a treatment technique under certain conditions.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a disinfectant added for water treatment below which there is no known or expected risk to health. MRDLGs are set by the U.S. Environmental Protection Agency.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (ug/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides*, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- *Organic chemical contaminants*, including synthetic and volatile organic chemicals that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- *Radioactive contaminants*, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, USEPA and the state Department of Health Services (Department) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Department regulations also establish limits for contaminants in bottled water that must provide the same protection for public health.

Tables 1, 2, 3, 4, and 5 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The Department requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, are more than one year old.

TABLE 1 - SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA

Microbiological Contaminants (to be completed only if there was a detection of bacteria)	Highest No. of detections	No. of months in violation	MCL	MCLG	Typical Source of Bacteria
Total Coliform Bacteria	0	0	More than 1 sample in a month with a detection	0	Naturally present in the environment
Fecal Coliform or <i>E. coli</i>		0	A routine sample and a repeat sample detect total coliform and either sample also detects fecal coliform or <i>E. coli</i>	0	Human and animal fecal waste

TABLE 2 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER

Lead and Copper (to be completed only if there was a detection of lead or copper in the last sample set)	No. of samples collected	90 th percentile level detected	No. Sites exceeding AL	AL	MCLG	Typical Source of Contaminant
Lead (ppb) 09/2024	10	.014	1	15	2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits.
Copper (ppm) 09/2024	10	.17	0	1.3	0.17	Internal corrosion of household water plumbing systems; erosion of natural deposits; leaching from wood preservatives.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. **Camp Roberts** is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <http://www.epa.gov/lead>.

TABLE 3 - SAMPLING RESULTS FOR SODIUM AND HARDNESS

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	2024	101	17 - 240	none	none	Generally found in ground and surface water
Hardness (ppm)	2024	205	133 - 275	none	none	Generally found in ground and surface water

*Any violation of an MCL or AL is asterisked. Additional information regarding the violation is provided on the next page.

TABLE 4 - DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Arsenic (ppb)	09/2023	4	2.3 – 5.5	10	0.004	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Barium (ppm)	09/2023	.187	.027 - .070	1	2	Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits
Fluoride (ppm)	09/2023	.25	.14 – 0.35	2	1	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Nitrate (as N) (ppm)	2024	1.52	.92 – 2	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Selenium (ppb)	09/2023	5.5	1.2 - 14	50	30	Discharge from petroleum, glass, and metal refineries; erosion of natural deposits; discharge from mines and chemical manufacturers; runoff from livestock lots (feed additive)

Chromium [Total] (ppb)	09/2023	1.5	ND - 5.9	50	(100)	Discharge from steel and pulp mills and chrome plating; erosion of natural deposits
Nickel (ppb)	09/2023	1.7	ND – 6.9	100	12	Erosion of natural deposits; discharge from metal factories
TTHMs [Total Trihalomethanes] (ppb) Main Garrison	09/2024	17		80	NA	Byproduct of drinking water disinfection
TTHMs [Total Trihalomethanes] (ppb) East Garrison	09/2024	6.3		60	NA	Byproduct of drinking water disinfection

TABLE 5 - DETECTION OF CONTAMINANTS WITH A SECONDARY DRINKING WATER STANDARD

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
TDS (ppm)	2024	498	305 - 735	1000	NA	Runoff/leaching from natural deposits
Chloride (ppm)	2024	50	9.7 - 111	500	NA	Runoff/leaching from natural deposits; seawater influence
Sulfate (ppm)	2024	102	45 - 171	500	NA	Runoff/leaching from natural deposits, industrial wastes
Iron (ppb)	2024	194	ND - 478	300	NA	Leaching from natural deposits; industrial wastes
Specific Conductance (µS/cm)	2024	794	467 - 1210	1600	NA	Substances that form ions when in water; seawater influence

Table 1. Detection of Unregulated Contaminants

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects
Boron (ppm)	2023	1.1	ND – 2.2	1	Boron exposures resulted in decreased fetal weight (developmental effects) in newborn rats.
Vanadium (ppb)	2015	13	6 - 19	50	Vanadium exposures resulted in developmental and reproductive effects in rats.

Table 7. Violation of a MCL, MRDL, AL, TT or Monitoring Reporting Requirement

Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language
None				

Additional General Information On Drinking Water

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).