For more information, contact: ## SEASIDE MUNICIPAL WATER SYSTEM 440 Harcourt Avenue Seaside, CA 93955 Phone: (831) 899-6700 www.ci.seaside.ca.us ## 2021 Consumer Confidence Report | Water System Name: | Seaside Municipal Water System | Report Date: | June 1, 2022 | |-------------------------|--|----------------------------|---| | | ater quality for many constituents as required of for the period of January 1 to December 31, 2 | | | | | información muy importante sobre su agua j
arcourt Ave. Seaside, CA, 93955, (831) 899-6 | | | | 这份报告含有关于您的 | 勺饮用水的重要讯息。请用以下地址和电话耶 | 关系 Seaside Munici j | oal Water System 以获得中文的帮 | | 助: 440 Harcourt Ave. | Seaside, CA, 93955, (831) 899-6825. | | | | | ay naglalaman ng mahalagang impormasy
Seaside Municipal Water System, 440 Harco
1 sa wikang Tagalog. | | | | | ng tin quan trọng về nước uống của bạn. Xin
aside, CA, 93955, (831) 899-6825 để được hỗ t | | | | | ov ntsiab lus tseem ceeb txog koj cov dej haus.
aside, CA, 93955, (831) 899-6825 rau kev pab | | le Municipal Water System ntawn | | Type of water source(s) | in use: Groundwater | | | | Name & general location | on of source(s): Well #4 City of Seaside | | | | | Assessment information: A "Source Wate | | | | | WA). This Assessment shows the water is within be requested by contacting the Seaside Public V | | monitored contaminants. A copy | | 1 0 | larly scheduled board meetings for public partic | eipation: 1st and | 3 rd Thursday of each month at | | Seaside City Hall, 440 | Harcourt Avenue, 5:00pm. | | | Signature Nisha Patel, PW Director/ City Engineer vanet, ever Date Phone: (831) 899-6825 #### TERMS USED IN THIS REPORT Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA). Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. **Treatment Technique (TT)**: A required process intended to reduce the level of a contaminant in drinking water. Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. Variances and Exemptions: Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions. Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. **Level 2 Assessment**: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. ND: not detectable at testing limit ppm: parts per million or milligrams per liter (mg/L) ppb: parts per billion or micrograms per liter (µg/L) ppt: parts per trillion or nanograms per liter (ng/L) ppq: parts per quadrillion or picogram per liter (pg/L) pCi/L: picocuries per liter (a measure of radiation) The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. #### Contaminants that may be present in source water include: - *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems. - Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health. Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were monitored during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report. | TABLE 1 – SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA | | | | | | | | | |---|------------------------------|-------------------------------|--|------|--------------------------------------|--|--|--| | Microbiological Contaminants (complete if bacteria detected) | Highest No. of
Detections | No. of Months
in Violation | MCL | MCLG | Typical Source of
Bacteria | | | | | Total Coliform Bacteria
(state Total Coliform Rule) | 0 | 0 | 1 positive monthly sample ^(a) | 0 | Naturally present in the environment | | | | | Fecal Coliform or E. coli
(state Total Coliform Rule) | 0 | 0 | A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive | 0 | Human and animal fecal waste | | | | | E. coli
(federal Revised Total
Coliform Rule) | 0 | 0 | (b) | 0 | Human and animal fecal waste | | | | ⁽a) Two or more positive monthly samples is a violation of the MCL (b) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*. | TABLE 2 | TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER | | | | | | | | | | |--|---|--------------------------------|---|------------------------------|-----|-----|--|---|--|--| | Lead and Copper
(complete if lead or copper
detected in the last sample set) | Sample
Date | No. of
Samples
Collected | 90 th
Percentile
Level
Detected | No. Sites
Exceeding
AL | AL | PHG | No. of Schools
Requesting
Lead
Sampling | Typical Source of
Contaminant | | | | Lead (ppb) | 6/4/20 | 10 | 1.1 | 0 | 15 | 0.2 | | Internal corrosion of
household water plumbing
systems; discharges from
industrial manufacturers;
erosion of natural deposits | | | | Copper (ppm) | 6/4/20 | 10 | 0.2 | 0 | 1.3 | 0.3 | Not applicable | Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives | | | | | TABLE 3 – SAMPLING RESULTS FOR SODIUM AND HARDNESS | | | | | | | | |---|--|-------------------|---------------------|------|---------------|---|--|--| | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | Range of Detections | MCL | PHG
(MCLG) | Typical Source of Contaminant | | | | Sodium (ppm) | 10/12/21 | 56 | NA | None | None | Salt present in the water and is generally naturally occurring | | | | Hardness (ppm) | 10/12/21 | 103 | NA | None | None | Sum of polyvalent cations present in
the water, generally magnesium and
calcium, and are usually naturally
occurring | | | | TABLE 4 – DET | TABLE 4 – DETECTION OF CONTAMINANTS WITH A <u>PRIMARY</u> DRINKING WATER STANDARD | | | | | | | | | |---|---|-------------------|------------------------|---------------------------|---------------------------|--|--|--|--| | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | Range of
Detections | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Source of Contaminant | | | | | Arsenic (ppb) | 6/8/20 | 1.2 | NA | 10 ppb | 10 ppb | Erosion of natural deposits, run off from orchards, Glass and Electronics production waste. | | | | | Chlorine (ppm) (at specific sites in system- not at the well) | Monthly | 0.59 | 0.38 – 0.96 | 4.0
As Cl ₂ | 4.0
As Cl ₂ | Drinking water Disinfectant added for treatment. | | | | | Nitrate as NO ₃ -N (ppm) | 10/12/21 | 1.1 | NA | 10 ppm | 10 ppm | Run/off from leaching from
fertilizer use, leaching from
septic tanks and sewer lines,
erosion of natural deposits. | | | | | TABLE 4 CONTINUE | D-DETECTI | ON OF CON | AMINANTS V | VITH A <u>PRI</u> | <u>MAKY</u> DKI | NKING WATER STANDARD | |--------------------------------|-----------|-----------|------------|-------------------|-----------------|---| | Nitrate +Nitrite as N
(ppm) | 6/8/20 | 1.2 | NA | 10 ppm | 10 ppm | Run/off from leaching from
fertilizer use, leaching from
septic tanks and sewer lines,
erosion of natural deposits. | | Barium (ppm) | 6/8/20 | 0.025 | NA | 1 ppm | 2 ppm | Discharge from oil drilling wastes and metal refineries; erosion of natural deposits. | | Fluoride (ppm) | 10/12/21 | 0.1 | NA | 2.0 ppm | 1.0 ppm | Erosion of natural deposits;
water additive for teeth health;
discharge from fertilizer and
aluminum factories; | | Selenium (ppb) | 6/8/20 | 1.3 | NA . | 50 ppb | 30 ppb | Discharge from petroleum, glass
and metal refineries; erosion of
natural deposits; discharge from
mines and chem manufacturers;
runoff from livestock lots (feed
additive) | | Trihalomethanes (ppb) | 8/2/21 | 11 | NA | 80 ppb | 80 ppb | By product of drinking water disinfection | | TABLE 5 – DETE | TABLE 5 – DETECTION OF CONTAMINANTS WITH A <u>SECONDARY</u> DRINKING WATER STANDARD | | | | | | | | | |---|---|----------------|---------------------|-------------|---------------|--|--|--|--| | Chemical or Constituent (and reporting units) | Sample
Date | Level Detected | Range of Detections | SMCL | PHG
(MCLG) | Typical Source of Contaminant | | | | | Chloride (ppm) | 10/12/21 | 81.2 | NA | 500 ppm | None | Runoff/leaching from natural deposits, seawater influence | | | | | Odor | 6/8/20 | 1 | NA | 3 Units | None | Naturally- occurring mineral | | | | | Copper | See Table 2 | See Table 2 | See Table 2 | See Table 2 | None | Internal corrosion of household
plumbing systems; erosion of
natural deposits; leaching from
wood preservatives | | | | | Total Dissolved Solids (ppm) | 10/12/21 | 264 | NA | 1000 ppm | None | Runoff and leaching from natural deposits | | | | | pН | 10/12/21 | 7.7 | NA | 6.5 – 8.5 | None | Naturally- occurring | | | | | Sulfate (ppm) | 10/12/21 | 17 | NA | 500 ppm | None | Runoff / Leaching from natural deposits industry waste. | | | | | TABLE 6 – DETECTION OF UNREGULATED CONTAMINANTS | | | | | | | | | |---|----------------|----------------|------------------------|--------------------|-------------------------|--|--|--| | Chemical or Constituent (and reporting units) | Sample
Date | Level Detected | Range of
Detections | Notification Level | Health Effects Language | | | | | Alkalinity (ppm) | 10/12/21 | 75 | NA | None | Naturally Occurring | | | | | Bromide (ppm) | 10/12/21 | .3 | NA | None | Naturally Occurring | | | | | Calcium (ppm) | 10/12/21 | 26 | NA | None | Naturally Occurring | | | | | Magnesium (ppm) | 10/12/21 | 9.2 | NA | None | Naturally Occurring | | | | | Potassium (ppm) | 10/12/21 | 2.4 | NA | None | Naturally Occurring | | | | #### Additional General Information on Drinking Water Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Seaside Municipal Water System is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead. # Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement | TABLE 7 – VIOLA | TABLE 7 – VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT | | | | | | | | | |-----------------|---|----------|--|----------------------------|--|--|--|--|--| | Violation | Explanation | Duration | Actions Taken to Correct the Violation | Health Effects
Language | | | | | | | None | | | | | | | | | | ### For Water Systems Providing Groundwater as a Source of Drinking Water | TABLE 8 – SAMPLING RESULTS SHOWING
FECAL INDICATOR-POSITIVE GROUNDWATER SOURCE SAMPLES | | | | | | | | | |--|---------------|----|----|-----|------------------------------|--|--|--| | Microbiological Contaminants (complete if fecal-indicator detected) Total No. of Detections Sample Dates MCL (MCLG) (MCLG) [MRDLG] Typical Source of Contaminant | | | | | | | | | | E. coli | (In the year) | NA | 0 | (0) | Human and animal fecal waste | | | | | Enterococci | (In the year) | NA | TT | N/A | Human and animal fecal waste | | | | | Coliphage | (In the year) | NA | ТТ | N/A | Human and animal fecal waste | | | | | | TABLE 9 – VIOLATION OF GROUNDWATER TT | | | | | | | | | |-----------|---------------------------------------|----------|--|----------------------------|--|--|--|--|--| | Violation | Explanation | Duration | Actions Taken to Correct the Violation | Health Effects
Language | | | | | | | None | | | | - No. 10 | | | | | |