2019 Consumer Confidence Report

Water System Name: San Vicente Mutual Water Company Report Date: June 16, 2020

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2018 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse San Vicente Mutual Water Company a 831-678-8900 para asistirlo en español.

这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 [San Vicente Mutual Water Company]以获得中

文的帮助:[40104 Blue Jay Lane, Soledad, CA 93960][831-320-0009]

Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa [San Vicente Mutual Water Company, 40104 Blue Jay Lane, Soledad, CA 93960] o tumawag sa [831-320-0009] para matulungan sa wikang Tagalog.

Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ [San Vicente Mutual Water Company] tại [831-320-0009] để được hỗ trợ giúp bằng tiếng Việt.

Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau [San Vicente Mutual Water Company] ntawm [831-320-0009] rau kev pab hauv lus Askiv.

Type of water source(s) in use: Ground Water Wells.

Name & general location of source(s): San Vicente Mutual Water Company (SVMWC) has three wells which are located adjacent to the Salinas River and approximately 1/2 mile northwest of Riverview Estates subdivision entrance.

Drinking Water Source Assessment information: In May 2002, the Monterey County Drinking Water Protection Services (DWPS) assessed the source of the SVMWC ground water wells which are located approximately 400 feet from the Salinas

River. The location was found to be most vulnerable to agricultural drainage, grazing and agricultural/irrigation wells. It was

further noted that nitrate levels were steadily rising at the source. A copy of the complete assessment is available at DWPS. You may request a summary of the assessment be sent to you by contacting DWPS at (831) 755-4505.

Time and place of regularly scheduled board meetings for public participation: <u>SVMWC bylaws specify an annual</u> general membership meeting be held by June of each calendar year. Members are notified in advance of the location, date and time of the meeting and may also participate by proxy ballot.

For more information, contact: Carl Peters

Phone: (831) 320-0009

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not **Secondary Drinking Water Standards (SDWS)**: MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

I	reflect the benefits of the use of disinfectants to control	ND: not detectable at testing limit
	microbial contaminants.	ppm : parts per million or milligrams per liter (mg/L)
	Primary Drinking Water Standards (PDWS): MCLs and	ppb : parts per billion or micrograms per liter (μ g/L)
	MRDLs for contaminants that affect health along with their	ppt : parts per trillion or nanograms per liter (ng/L)
	monitoring and reporting requirements, and water treatment	ppq : parts per quadrillion or picogram per liter (pg/L)
	requirements.	pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides*, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants*, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Microbiological Contaminants (complete if bacteria detected) Highest No. of Detections		No. of Months in Violation MCL		MCLG	Typical Source of Bacteria
Total Coliform Bacteria (state Total Coliform Rule)	(In a month)	0	1 positive monthly sample	0	Naturally present in the environment
Fecal Coliform or <i>E. coli</i> (state Total Coliform Rule)	(In the year)	0	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive	0	Human and animal fecal waste
<i>E. coli</i> (federal Revised Total Coliform Rule)	(In the year)	0	(a)	0	Human and animal fecal waste

TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER

Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	PHG	No. of Schools Requesting Lead Sampling	Typical Source of Contaminant
Lead (ppb)	09-18	5	.08	0	15	0.2	0	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	09-18	5	.269	0	1.3	0.3	Not applicable	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

	TABLE 3	- SAMPLING	RESULTS FOR	SODIUM A	AND HARD	NESS
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	06-17	72,5	59-86	None	None	Salt present in the water and is generally naturally occurring
Hardness (ppm)	06-17	169	123-215	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring
TABLE 4 – DET	TECTION O	F CONTAMIN	ANTS WITH A	PRIMARY	DRINKING	WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Nitrate-NO3 (ppm)	Quarterly 03, 06, 09, 12, 2019	26	16-42	45	45	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage systems; and erosion of natural mineral deposits
Fluoride (ppm)	06-17	.295	0.27-0.32	1	.03	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
Hexavalent Chromium (ppb)	02-17	0.27	0.26-0.28	10	1	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits.
Arsenic (ppb)	07-17	2.5	2-3	10	.004	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes.
Gross Alpha (pCi/L)	2014, 2019	4.65	2.01-7.3	15	0	Erosion of natural deposits.
Uranium (pCi/L)	2012, 2015	4.8	1.9-11	20	0.43	Erosion of natural deposits.
Selenium (ppb)	06-17	8	ND-16	50	30	Selenium is an essential nutrient. However, some people who drink water containing selenium in excess of the MCL over many years may experience hair or fingernail losses, numbness in fingers or toes, or circulation system problems.
TABLE 5 – DETH	ECTION OF	CONTAMINA	NTS WITH A <u>S</u>	ECONDAR	<u>Y</u> DRINKIN	G WATER STANDARD

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant
Chloride (ppm)	06-17	34	24-44	250	-	Runoff/leaching from natural deposits; seawater influence.
Color (Color Units)	06-17	<2	<2-2	15	-	Naturally occurring organic materials.
Conductivity (umho/cm)	06-17	680	531-829	900	-	Substances that form ions when in water; seawater influence.
Sulfate (ppm)	06-17	122	82-162	250	-	Runoff/leaching from natural deposits; industrial wastes.
Total Dissolved Solids (TDS) (ppm)	06-17	425	325-525	500	-	Runoff/leaching from natural deposits; industrial wastes.
Turbidity (NTU)	06-17	0.125	0.10-0.15	5	-	Soil runoff. Measure of the cloudiness of water.
pH (Laboratory)	06-17	7.35	7.3-7.4	-	-	A measure of the acidity (-) or alkalinity (+) of a solution, numerically equal to 7 for neutral solutions.
	TABLE	6 – DETECTION	NOF UNREGU	LATED CO	NTAMINA	NTS
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notifica	tion Level	Health Effects Language
Results of monitoring for u reported unless any of the c						sampling and will no longer be ing requirements.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. San Vicente Mutual Water Company is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [*OPTIONAL:* If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

Nitrate in drinking water at levels above 10 mg/L (45 mg/L NO3) is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L (45 mg/L NO3) may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. Total Dissolved Solids (TDS) indicate the presence of minerals, salts, metals, cations or anions dissolved in water. High TDS indicates hard water and can affect taste. It also results in scale buildup in pipes and valves. Point of entry or point of use reverse osmosis (R.O.) filtration is commonly used to remove TDS at the consumer's home.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT

Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language
Exceeding nitrate MCL	Nitrate levels increased apparently due to drought and agricultural fertilizer usage in proximity of wells. Compliance order 14-003 issued 09/05/14 by DWPS.	June 2014 through December 2016. Nitrate levels dropped below MCL in March 2017 and have remained below since that date. DWPS considers wells unreliable due to extended period of non-compliance. No new active water connections allowed until compliance is achieved.	Legal counsel obtained. Regional Water Board Enforcement Unit (RWBEU) contacted to investigate cause of contamination and initiate action. Responsible parties identified by RWBEU. Interim agreement reached to supply paid bottled water to all residents. Settlement reached by parties 12-19. Paid bottled water to cease 06-20 with residents to assume safe water supply availability. Nitrate analyzer purchased and installed to monitor levels and determine water safety with goal to return to compliance.	Infants below the age of six months who drink water containing nitrate in excess of the MCL may quickly become seriously ill and, if untreated, may die because high nitrate levels can interfere with the capacity of the infant's blood to carry oxygen. Symptoms include shortness of breath and blueness of the skin. High nitrate levels may also affect the oxygen-carrying ability of the blood of pregnant women.

For Water Systems Providing Groundwater as a Source of Drinking Water

TABLE 7 – SAMPLING RESULTS SHOWING FECAL INDICATOR-POSITIVE GROUNDWATER SOURCE SAMPLES							
Microbiological Contaminants (complete if fecal-indicator detected)	Sample Dates	Sample Dates MCL [MRDL] PHG [MRDL] (MCLG) [MRDLG]		Typical Source of Contaminant			
E. coli	(In the year) 0		0	(0)	Human and animal fecal waste		
Enterococci	(In the year) 0		TT	N/A	Human and animal fecal waste		
Coliphage	(In the year) 0		TT	N/A	Human and animal fecal waste		

Summary Information for Fecal Indicator-Positive Groundwater Source Samples, Uncorrected Significant Deficiencies, or Groundwater TT

SPECIAL NOTICE OF FECAL INDICATOR-POSITIVE GROUNDWATER SOURCE SAMPLE

None.

SPECIAL NOTICE FOR UNCORRECTED SIGNIFICANT DEFICIENCIES

(See Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement section.)

VIOLATION OF GROUNDWATER TT									
TT Violation	TT ViolationExplanationDurationActions Taken to Correct the ViolationHealth Effects Language								
None.									

For Systems Providing Surface Water as a Source of Drinking Water

TABLE 8 - SAMPLING RESULTS SHOWING TREATMENT OF SURFACE WATER SOURCES Treatment Technique (a) (Type of approved filtration technology used) Turbidity of the filtered water must: 1 – Be less than or equal to NTU in 95% of measurements in a month. Turbidity Performance Standards (b) (that must be met through the water treatment process) 2 – Not exceed NTU for more than eight consecutive hours. 3 - Not exceedNTU at any time. Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1. Highest single turbidity measurement during the year Number of violations of any surface water treatment requirements

(a) A required process intended to reduce the level of a contaminant in drinking water.

(b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements.

Summary Information for Violation of a Surface Water TT

VIOLATION OF A SURFACE WATER TT									
TT Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language					
Not applicable.									

Summary Information for Operating Under a Variance or Exemption

Not applicable.

Summary Information for Federal Revised Total Coliform Rule Level 1 and Level 2 Assessment Requirements

Level 1 or Level 2 Assessment Requirement not Due to an E. coli MCL Violation

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

During the past year we were required to conduct [*INSERT NUMBER OF LEVEL 1 ASSESSMENTS*] Level 1 assessment(s). [*INSERT NUMBER OF LEVEL 1 ASSESSMENTS*] Level 1 assessment(s) were completed. In addition, we were required to take [*INSERT NUMBER OF CORRECTIVE ACTIONS*] corrective actions and we completed [*INSERT NUMBER OF CORRECTIVE ACTIONS*] of these actions.

During the past year [INSERT NUMBER OF LEVEL 2 ASSESSMENTS] Level 2 assessments were required to be completed for our water system. [INSERT NUMBER OF LEVEL 2 ASSESSMENTS] Level 2 assessments were completed. In addition, we were required to take [INSERT NUMBER OF CORRECTIVE ACTIONS] corrective actions and we completed [INSERT NUMBER OF CORRECTIVE ACTIONS] of these actions.

Not applicable.

Level 2 Assessment Requirement Due to an *E. coli* MCL Violation

E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, the elderly, and people with severely-compromised immune systems. We found *E. coli* bacteria, indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) identify problems and to correct any problems that were found during these assessments.

We were required to complete a Level 2 assessment because we found *E. coli* in our water system. In addition, we were required to take [*INSERT NUMBER OF CORRECTIVE ACTIONS*] corrective actions and we completed [*INSERT NUMBER OF CORRECTIVE ACTIONS*] of these actions.

Not applicable.