2021 Consumer Confidence Report

Report Date: 05/20/2022

Water System Name: Lake San Antonio MHP WS

	lity for many constituents as required by state or r the period of January 1 - December 31, 2021 or					
	ación muy importante sobre su agua para l 805-472-0132 para asistirlo en español	oeber. Favor de comunicarse Lake San				
Type of water source(s) in use:	Groundwater Well					
Name & general location of so	urce(s): Well #1					
Drinking Water Source Assess						
	nent is available at the Monterey County Enviro 32, or Reza Monajjemi at (877)472-7166 Ext 1	nmental Health Office or by contacting				
	eduled board meetings for public participation:					
For more information, contact:	Evelyn Gallant P	Phone: (805) 472-0132				
	Terms Used in This Report					
Term	Defini	tion				
Level 1 Assessment	A Level 1 assessment is a study of the water system to id why total coliform bacteria have been found in our water s					
Level 2 Assessment	A Level 2 assessment is a very detailed study of the wate (if possible) why an <i>E. coli</i> MCL violation has occurred an our water system on multiple occasions.	er system to identify potential problems and determine d/or why total coliform bacteria have been found in				
Maximum Contaminant Level (MCL)	The highest level of a contaminant that is allowed in drink PHGs (or MCLGs) as is economically and technologically odor, taste, and appearance of drinking water.					
Maximum Contaminant Level Goal (MCLG)	The level of a contaminant in drinking water below which are set by the U.S. Environmental Protection Agency (U.S.					
Maximum Residual Disinfectant Level (MRDL)	The highest level of a disinfectant allowed in drinking wate disinfectant is necessary for control of microbial contamin					
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.					
Primary Drinking Water Standards (PDWS)	MCLs and MRDLs for contaminants that affect health alou and water treatment requirements.	ng with their monitoring and reporting requirements,				
Public Health Goal (PHG)	The level of a contaminant in drinking water below which are set by the California Environmental Protection Agency					
Regulatory Action Level (AL)	The concentration of a contaminant which, if exceeded, tr system must follow.	iggers treatment or other requirements that a water				
Secondary Drinking Water Standards (SDWS)	MCLs for contaminants that affect taste, odor, or appeara do not affect the health at the MCL levels.	nce of the drinking water. Contaminants with SDWSs				
Treatment Technique (TT)	A required process intended to reduce the level of a conta	aminant in drinking water.				
Variances and Exemptions	Permissions from the State Water Resources Control Boa with a treatment technique under certain conditions.	ard (State Board) to exceed an MCL or not comply				
ND	Not detectable at testing limit.					
ppm	parts per million or milligrams per liter (mg/L)					
ppb	parts per billion or micrograms per liter (µg/L)					
ppt	parts per trillion or nanograms per liter (ng/L)					
ppq	parts per quadrillion or picogram per liter (pg/L)					

picocuries per liter (a measure of radiation)

pCi/L

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides*, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants*, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1 –	SAMPLIN	G RESUI	TS SHOW	ING THE	DETECT	ION O	F COLIFOR	M BACTERIA
Microbiological Contaminants (complete if bacteria detected)	Highest No of Detection	NO. OI	No. of Months in Violation		MCL			Typical Source of Bacteria
E. coli	0		0	(a)			0	Human and animal fecal waste
TABLE 1A – COMPL	IANCE W	ТТН ТОТ		FORM MCI		EEN JA	NUARY 1, 2	2021 AND JUNE 30, 2021
Total Coliform Bacteria (state Total Coliform Rule)	0		0 1 positive monthly sample		0	Naturally present in the environment		
Fecal Coliform or <i>E. coli</i> (state Total Coliform Rule)	0		0	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive			Human and animal fecal waste	
(a) Routine and repeat samples a sample or system fails to analyze TABLE 2	total coliforn	n-positive rep	eat sample for	E. coli.	-			lowing <i>E. coli</i> -positive routine ND COPPER
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. of Samples Collecte d	90 th Percentile Level Detected	No. Sites Exceedi ng MCL	AL	PHG	No. of Schoo Requesting Lead Sampli	Typical Source of
Lead (µg/L)	06/17/21	1	4.0	0	15	0.2	Not applicab	le Internal corrosion of household water plumbing systems; discharges from industrial manufacturers;
Copper (mg/L)	06/15/21	5	76	0	1300	0.3	Not applicab	le Internal corrosion of household plumbing systems erosion of natural deposits; leaching from wood preservatives.

	TABLE 3	- SAMPLING	RESULTS FOR	SODIUM A	AND HARD	NESS
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (mg/L)	06/15/21	30		none	none	Salt present in the water and is generally naturally occurring
Hardness (mg/L)	06/08/21	402		none	none	Sum of polyvalent captions presen in the water, generally magnesium and calcium, and are usually naturally occurring
TABLE 4 – DET	TECTION O	F CONTAMIN	ANTS WITH A	PRIMARY	DRINKING	WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Nitrite as N (µg/L)	06/08/21	ND	0.1	1	1	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage, erosion of natural deposits
Nitrate as N (µg/L)	06/08/21	ND	0.1	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and
Fluoride (µg/L):	06/08/21	.2	0.1	2	1	sewage; erosion of natural deposits Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
Arsenic (ppb)	06/17/21	ND	1	10	0.004	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Antimony (ppb)	06/17/21	ND	1	6	6	Discharge from petroleum refineries; fire retardants; ceramics electronics; solder
Barium (ppm)	06/17/21	63.9	5	1000	2	Discharge of oil drilling wastes and from metal refineries; erosion of natural deposits
Beryllium (ppb)	06/17/21	ND	0.5	4	1	Discharge from metal refineries, coal-burning factories, and electrical, aerospace, and defense industries
Cadmium(ppb)	06/17/21	0.3	0.25	5	0.04	Internal corrosion of galvanized pipes; erosion of natural deposits; discharge from electroplating and industrial chemical factories, and metal refineries; runoff from waste batteries and paints
Chromium (ppb)	06/17/21	2.4	1	50	(100)	Discharge from steel and pulp mill and chrome plating; erosion of natural deposits
Cyanide (ppb)	06/08/21	ND	4	150	150	Discharge from steel/metal, plastic and fertilizer factories
Mercury (inorganic) (ppb)	06/17/21	ND	0.3	2	1.2	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and cropland
Nickel (ppb)	06/17/21	20.3	5	100	12	Erosion of natural deposits; discharge from metal factories
Selenium (ppb)	06/17/21	1.2	1	50	30	Discharge from petroleum, glass, and metal refineries; erosion of natural deposits; discharge from mines and chemical manufacturers runoff from livestock lots (feed additive)
Thallium (ppb)	06/17/21	ND	0.5	2	0.5	Leaching from ore-processing sites discharge from electronics, glass, and drug factories

06/17/21	ND	15	2000	0.6	Erosion of natural deposits; residue from some surface water treatment processes
11/04/21	3.68		15	(0)	Erosion of natural deposits
CTION OF		NTS WITH A SE		V DRINKIN	IC WATER STANDARD
	CONTRIMINA	115 WITH A <u>51</u>			
Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
TABLE (6 – DETECTIO	N OF UNREGUI	LATED CO	NTAMINA	NTS
Sample Date	Level Detected	Range of Detections	Notification Level		Health Effects Language
	11/04/21 CTION OF Sample Date TABLE (Sample	11/04/21 3.68 CTION OF CONTAMINA Sample Date Detected TABLE 6 – DETECTIO Sample Level	11/04/21 3.68 CTION OF CONTAMINANTS WITH A SE Sample Level Date Range of Detected Detections TABLE 6 – DETECTION OF UNREGUI Sample Level Range of Range of	11/04/21 3.68 15 CTION OF CONTAMINANTS WITH A SECONDAR Sample Date Level Range of Detections MCL TABLE 6 – DETECTION OF UNREGULATED CO Sample Level Range of Notifice	11/04/21 3.68 15 (0) CTION OF CONTAMINANTS WITH A SECONDARY DRINKIN Sample Date Level Range of Detections MCL PHG (MCLG) Image: Comparison of the second detection dete

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Lake San Antonio MHE WS is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT							
Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language			
0							
0							

For Water Systems Providing Groundwater as a Source of Drinking Water

TABLE 7 – SAMPLING RESULTS SHOWING FECAL INDICATOR-POSITIVE GROUNDWATER SOURCE SAMPLES								
Microbiological Contaminants (complete if fecal-indicator detected) Total No. of Detections Sample Da		Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant			
E. coli	0	N/A	0	(0)	Human and animal fecal waste			
Enterococci	0	N/A	TT	N/A	Human and animal fecal waste			
Coliphage	0	N/A	TT	N/A	Human and animal fecal waste			

Summary Information for Fecal Indicator-Positive Groundwater Source Samples, Uncorrected Significant Deficiencies, or Groundwater TT

SPECIAL	NOTICE OF FECAL IND	DICATOR-POSITIVE	GROUNDWATER SOURCE S	AMPLE
	SPECIAL NOTICE FOR	UNCORRECTED SIG	GNIFICANT DEFICIENCIES	
	VIOLA	TION OF GROUNDV	VATER TT	
TT Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language

Summary Information for Federal Revised Total Coliform Rule Level 1 and Level 2 Assessment Requirements

Level 1 or Level 2 Assessment Requirement not Due to an *E. coli* MCL Violation

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

During the past year we were required to conduct zero Level 1 assessment(s). Zero Level 1 assessment(s) were completed. In addition, we were required to take zero corrective actions and we completed zero of these actions.

During the past year zero Level 2 assessments were required to be completed for our water system. Zero Level 2 assessments were completed. In addition, we were required to take zero corrective actions and we completed zero of these actions.

Level 2 Assessment Requirement Due to an *E. coli* MCL Violation

E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, the elderly, and people with severely-compromised immune systems. We found *E. coli* bacteria, indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) identify problems and to correct any problems that were found during these assessments.

We were required to complete a Level 2 assessment because we found *E. coli* in our water system. In addition, we were required to take zero corrective actions and we completed zero of these actions.