2021 Consumer Confidence Report #### **Water System Information** Water System Name: Glenn Avenue WS #1 #270.0589.001 Report Date: 4/19/2022 Type of Water Source(s) in Use: Well Name and General Location of Source(s): Well #1 Echo Valley Road and Pope Drive; Salinas, CA 93907 Drinking Water Source Assessment Information: See attached; dated April, 2001 Time and Place of Regularly Scheduled Board Meetings for Public Participation: <u>July at the Monterey</u> <u>County Library</u> For More Information, Contact: Sergio Espinoza (831.663.2361) #### **About This Report** We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2021 and may include earlier monitoring data. # Importance of This Report Statement in Five Non-English Languages (Spanish, Mandarin, Tagalog, Vietnamese, and Hmong) Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse Glenn Avenue Water System #1 a Echo Valley Road and Pope Drive; Salinas, CA para asistirlo en español. Language in Mandarin: 这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 Glenn Avenue Water System #1以获得中文的帮助: Echo Valley Road and Pope Drive; Salinas, CA 831.663.2361. Language in Tagalog: Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa Glenn Avenue Water System #1; Echo Valley Road and Pope Drive; Salinas, CA o tumawag sa 831.663.2361 para matulungan sa wikang Tagalog. Language in Vietnamese: Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ Glenn Avenue Water System #1 tại Echo Valley Road and Pope Drive; Salinas, CA để được hỗ trợ giúp bằng tiếng Việt. Language in Hmong: Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau Glenn Avenue Water System #1 ntawm Echo Valley Road and Pope Drive; Salinas, CA rau kev pab hauv lus Askiv. #### **Terms Used in This Report** | Term | Definition | |--|---| | Level 1 Assessment | A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. | | Level 2 Assessment | A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. | | Maximum Contaminant
Level (MCL) | The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. | | Maximum Contaminant
Level Goal (MCLG) | The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA). | | Maximum Residual
Disinfectant Level
(MRDL) | The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. | | Maximum Residual
Disinfectant Level Goal
(MRDLG) | The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. | | Primary Drinking Water
Standards (PDWS) | MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. | | Public Health Goal
(PHG) | The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. | | Regulatory Action Level (AL) | The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. | | Secondary Drinking
Water Standards
(SDWS) | MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. | | Treatment Technique (TT) | A required process intended to reduce the level of a contaminant in drinking water. | | Variances and
Exemptions | Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions. | | ND | Not detectable at testing limit. | | ppm | parts per million or milligrams per liter (mg/L) | | ppb | parts per billion or micrograms per liter (µg/L) | | ppt | parts per trillion or nanograms per liter (ng/L) | | ppq | parts per quadrillion or picogram per liter (pg/L) | | pCi/L | picocuries per liter (a measure of radiation) | # Sources of Drinking Water and Contaminants that May Be Present in Source Water The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems. - Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. ### Regulation of Drinking Water and Bottled Water Quality In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health. #### **About Your Drinking Water Quality** #### **Drinking Water Contaminants Detected** Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report. Table 1. Sampling Results Showing the Detection of Coliform Bacteria Complete if bacteria are detected. | Microbiological
Contaminants | Highest No.
of
Detections | No. of
Months in
Violation | MCL | MCLG | Typical Source of Bacteria | |---------------------------------|---------------------------------|----------------------------------|-----|------|------------------------------| | E. coli | (In the year) | 0 | (a) | 0 | Human and animal fecal waste | (a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*. Table 1.A. Compliance with Total Coliform MCL between January 1, 2021 and June 30, 2021 (inclusive) | Microbiological
Contaminants | Highest No.
of
Detections | No. of
Months in
Violation | MCL | MCLG | Typical Source of Bacteria | |-----------------------------------|---------------------------------|----------------------------------|-------------------------------|------|--------------------------------------| | Total Coliform
Bacteria | (In a month) | 0 | 1 positive monthly sample (a) | 0 | Naturally present in the environment | | Fecal Coliform and <i>E. coli</i> | (in the year) | 0 | 0 | None | Human and animal fecal waste | (a) For systems collecting fewer than 40 samples per month: two or more positively monthly samples is a violation of the total coliform MCL For violation of the total coliform MCL, include potential adverse health effects, and actions taken by water system to address the violation: <u>See Table 7</u>. Table 2. Sampling Results Showing the Detection of Lead and Copper Complete if lead or copper is detected in the last sample set. | Lead and
Copper | Sample Date | No. of Samples
Collected | 90 th Percentile
Level Detected | No. Sites
Exceeding AL | AL | PHG | No. of Schools
Requesting
Lead Sampling | Typical Source
of
Contaminant | |--------------------|-------------|-----------------------------|---|---------------------------|----|-----|---|---| | Lead
(ppb) | 7/22/2020 | 5 | 0.5 | 0 | 15 | 0.2 | Not
applicable | Internal corrosion of
household water plumbing
systems; discharges from
industrial manufacturers;
erosion of natural deposits | | Lead and
Copper | Sample Date | No. of Samples
Collected | 90 th Percentile
Level Detected | No. Sites
Exceeding AL | AL | PHG | No. of Schools
Requesting
Lead Sampling | Typical Source
of
Contaminant | |--------------------|-------------|-----------------------------|---|---------------------------|-----|-----|---|---| | Copper (ppm) | 7/22/2020 | 5 | 0.06 | 0 | 1.3 | 0.3 | Not
applicable | Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives | Table 3. Sampling Results for Sodium and Hardness | Chemical or
Constituent (and
reporting units) | Sample
Date | Level
Detected | Range of Detections | MCL | PHG
(MCLG) | Typical Source of
Contaminant | |---|----------------|-------------------|---------------------|------|---------------|--| | Sodium (ppm) | 4/14/2016 | 70 | N/A | None | None | Salt present in the water and is generally naturally occurring | | Hardness (ppm) | 4/14/2016 | 73.8 | N/A | None | None | Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring | Table 4. Detection of Contaminants with a Primary Drinking Water Standard | Chemical or
Constituent
(and
reporting units) | Sample
Date | Level
Detected | Range of
Detections | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Source
of
Contaminant | |--|----------------|-------------------|------------------------|---------------|--------------------------|---| | Arsenic (ppb) | 2/8/2019 | 2 | N/A | 10 | 0.004 | Erosion of
natural
deposits; runoff
from orchards;
glass and
electronics
production
wastes | | Chromium, Total
(ppb) | 4/14/2016 | 14 | N/A | 50 | (100) | Discharge from
steel and pulp
mills and
chrome plating; | | | | | | | | erosion of natural deposits | |--------------------------------|-----------|------|---------|--------------|--------------|--| | Fluoride (ppm) | 4/14/2016 | 0.11 | N/A | 2.0 | 1 | Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories | | Gross Alpha (pCi/L) | 6/16/2021 | 1.58 | N/A | 15 | (0) | Erosion of natural deposits | | Nitrate (as Nitrogen, N) (ppm) | 2021 | 7.35 | 7.3-7.4 | 10
(as N) | 10
(as N) | Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits | Table 5. Detection of Contaminants with a Secondary Drinking Water Standard | Chemical or
Constituent (and
reporting units) | Sample
Date | Level
Detected | Range of Detections | SMCL | PHG
(MCLG) | Typical Source
of
Contaminant | |---|----------------|-------------------|---------------------|-------|---------------|--| | Chloride (ppm) | 4/4/2016 | 49 | N/A | 500 | N/A | Runoff/leaching
from natural
deposits; seawater
influence | | Conductivity
µS/cm | 7/10/2020 | 470 | N/A | 1,600 | N/A | Substances that form ions when in water; seawater influence | | Sulfate (ppm) | 4/14/2016 | 10 | N/A | 500 | N/A | Runoff/leaching
from natural
deposits; industrial
wastes | | Total Dissolved
Solids (TDS)
(ppm) | 4/14/2016 | 280 | N/A | 1,000 | N/A | Runoff/leaching
from natural
deposits | | Turbidity (units) | 4/14/2016 | 0.10 | N/A | 5 | N/A | Soil runoff | Table 6. Detection of Unregulated Contaminants | Chemical or
Constituent (and
reporting units) | Sample
Date | Level
Detected | Range of Detections | Notification
Level | Health Effects | |---|----------------|-------------------|---------------------|-----------------------|----------------| | Hexavalent
Chromium (ppb) | 2017 | 11.7 | 11-12 | Currently no MCL* | None | ^{*}There is currently no MCL for Hexavalent Chromium. The previous Hexavalent Chromium MCL of 10 ppb was withdrawn on September 11, 2017. #### **Additional General Information on Drinking Water** Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Glenn Avenue Water System #1 is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead. Additional Special Language for Nitrate: Nitrate in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider. State Revised Total Coliform Rule (RTCR): See Table 7. Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement Table 7. Violation of a MCL, MRDL, AL, TT or Monitoring Reporting Requirement | Violation | Explanation | Duration | Actions Taken to Correct Violation | Health Effects
Language | |-----------|-------------|----------|------------------------------------|----------------------------| | None | | | | | | | | | | | #### For Water Systems Providing Groundwater as a Source of Drinking Water Table 8. Sampling Results Showing Fecal Indicator-Positive Groundwater Source Samples | Microbiological Contaminants (complete if fecal- indicator detected) | Total No. of
Detections | Sample
Dates | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Source of
Contaminant | |--|----------------------------|-----------------|---------------|--------------------------|----------------------------------| | E. coli | (In the year) | N/A | 0 | (0) | Human and animal fecal waste | | Enterococci | (In the year)
0 | N/A | TT | N/A | Human and animal fecal waste | | Coliphage | (In the year)
0 | N/A | TT | N/A | Human and animal fecal waste | Summary Information for Fecal Indicator-Positive Groundwater Source Samples, Uncorrected Significant Deficiencies, or Violation of a Groundwater TT Special Notice of Fecal Indicator-Positive Groundwater Source Sample: None Special Notice for Uncorrected Significant Deficiencies: None Table 9. Violation of Groundwater TT | Violation | Explanation | Duration | Actions Taken to Correct Violation | Health Effects
Language | |-----------|-------------|----------|------------------------------------|----------------------------| | None | | | | | | | | | | | | | | 1 | | | ## For Systems Providing Surface Water as a Source of Drinking Water #### Not applicable. # Summary Information for Revised Total Coliform Rule Level 1 and Level 2 Assessment Requirements If a water system is required to comply with a Level 1 or Level 2 assessment requirement that is not due to an *E. coli* MCL violation, include the following information below [22 CCR section 64481(n)(1)]. ## Level 1 or Level 2 Assessment Requirement not Due to an E. coli MCL Violation Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments. During the past year there were no Level 1 assessments required to be completed for our water system. During the past year there were no Level 2 assessments required to be completed for our water system. We had an *E. coli*-positive repeat sample following a total coliform positive routine sample. We had a total coliform-positive repeat sample following an E. coli-positive routine sample. We failed to take all required repeat samples following an E. coli-positive routine sample. We failed to test for E. coli when any repeat sample tests positive for total coliform. ## **Drinking Water Source Assessment** Water System **GLENN AVE WS #01** Monterey County Water Source WELL 01 Assessment Date **April**, 2001 Assessment Completed By **Monterey County** California Department of Public Health Drinking Water Field Operations Branch LPA Monterey County District No. 57 System No. 2700589 Source No. 001 PS Code 2700589-001 | Vulnerab | ility Summary | | | | | |----------------|---|---------------------------------|------------|-----------------|-------------| | District Name | Monterey County | District No. 57 | County | Monterey | | | System Name | GLENN AVE WS #01 | | | System | No. 2700589 | | Source Name | WELL 01 | Source No | 001 | PS Code | 2700589-001 | | Completed by | Monterey County | | | ate April, 2001 | | | • | CDPH records, this Source
System Method. | is Groundwater. This Ass | essment v | vas done using | the Default | | A source water | er assessment was conduc | cted for the WELL 01 | | | | | of the GLEN | IN AVE WS #01 | | _ water s | ystem in Ap | ril, 2001 | | The source is | considered most vulnerab | ole to the following activities | s not asso | ciated | | with any detected contaminants: Septic systems - high density [>1/acre] #### **Discussion of Vulnerability** There have been no contaminants detected in the water supply recently, however the source is still considered vulnerable to activities located near the drinking water source. A copy of the complete assessment may be viewed at: Monterey County Health Department 1270 Natividad Road **Room 109** California, CA 93906 You may request a summary of the assessment be sent to you by contacting: Sandy Ayala **Environmental Health Specialist** (831)755-8924 (831)755-8929 (fax) ayalasa@co.monterey.ca.us Completed by Monterey County Date April, 2001 | · dilloluk | mity Kanking | | | | | | |---------------|------------------|-----------------|--------|----------|------|-----------| | District Name | Monterey County | District No. 57 | County | Monterey | | | | System Name | GLENN AVE WS #01 | | | Systen | n No | 2700589 | | Source Name | WELL 01 | Source No. | 001 | PS Code | 8= | 00589-001 | The following PCAs were identified in the assessment and are listed in priority order based on risk to the water supply. Refer to the last page for more information. | Zone | PCA (Risk Ranking) | * | PCA Risk
Points | Zone
Points | PBE
Points | Vulnerability
Score | |------|---|---|--------------------|----------------|---------------|------------------------| | Α | Septic systems - high density [>1/acre] (VH in Zone A, otherwise M) | | 7 | 5 | 3 | 15 | | Α | Grazing [> 5 large animals or equivalent per acre] (H in Zone A, otherwise M) | | 5 | 5 | 3 | 13 | | Α | Septic systems - low density [<1/acre] (H in Zone A, otherwise L) | | 5 | 5 | 3 | 13 | | Α | Wells - Water supply (M) | - | 3 | 5 | 3 | 11 | | Α | Schools (L) | | 1 | 5 | 3 | 9 | | Α | Transportation corridors - Roads/Streets (L) | | 1 | 5 | 3 | 9 | | B5 | Septic systems - high density [>1/acre] (VH in Zone A, otherwise M) | | 3 | 3 | 3 | 9 | | B5 | Wells - Water supply (M) | | 3 | 3 | 3 | 9 | | B10 | Automobile - Body shops (H) | | 5 | 1 | 3 | 9 | | B10 | Automobile - Repair shops (H) | | 5 | 1 | 3 | 9 | ^{* =} A contaminant potentially associated with this activity has been detected in the water supply. ### Explanation of Source Water Assessments and Definition of Terms A source water assessment was recently completed for this drinking water source. The assessment identifies the vulnerability of the drinking water supply to contamination from typical human activities. The assessments are intended to facilitate and provide the basic information necessary for a local community to develop a program to protect the drinking water supply. A summary of the complete assessment is provided here. For more information, contact the agency or individual that prepared the assessment (shown in summary). You may also contact the local Department of Public Health Drinking Water Field Operations Branch district office (http://www.cdph.ca.gov/programs/Documents/DDWEM/OriginalDistrictMapCDPH.pdf). Additional information about assessments can be found at: http://www.cdph.ca.gov/certlic/drinkingwater/Pages/DWSAP.aspx Terms used in this summary: **Source Water Assessment:** An assessment is an evaluation of a drinking water source to determine the "possible contaminating activities" (PCAs) to which the source is most vulnerable. The assessment includes: a delineation of protection zones around the source; an inventory of the types of PCAs within the source protection zones; and an analysis to determine the PCAs to which the source is most vulnerable. The information is compiled into a report that includes a map, calculations, checklists, and a summary of the findings. **Possible Contaminating Activity (PCA):** A PCA is a current or historic human activity that is an actual or potential origin of contamination for a drinking water source. PCAs include activities that use, store, produce or dispose of chemicals that have the potential to contaminate drinking water supplies. There are 110 types of PCAs in the California DWSAP program. **PCA Risk Ranking:** Each type of PCA is assigned a risk ranking (Very High, High, Moderate, or Low). The risk ranking is based on the contaminant(s) typically associated with that PCA, the likelihood of release from that type of facility based on historical experience, and the mobility of the contaminant(s). **PCA Inventory:** The PCA inventory is a review using local knowledge, databases, and on-site evaluations to identify the occurrence and approximate location of PCAs in the source water zones. The inventory for the basic DWSAP assessments is a presence-absence review. If a type of PCA occurs in a zone, a "Yes" is noted in the inventory for that zone, regardless of whether there is one or many of that type of facility within the zone. If a PCA has been associated with a contaminant detected in the water supply, a notation is made in the PCA inventory. **Source Water Zones or Areas:** These are areas located around and typically adjacent to a drinking water source that have been identified as initial protection areas. For **groundwater sources**, there are typically three concentric circular zones around a source (Zones A, B5 and B10). The sizes of the are determined based on characteristics of the source. PCAs located in the inner Zone A are considered more of a risk to the water supply than PCAs located in the middle Zone B5. Similarly, PCAs located in Zone B5 are considered more of a risk than PCAs located in the outer Zone B10. For **surface water sources**, the watershed is defined as the overall protection area, and as an option, zones are defined closer to the source. Two types of zones are typically established. Zone A is the area within and near the surface water body and its tributaries. Zone B is an area within 2,500 feet of the intake, not including areas in Zone A. For surface water sources, PCAs located in Zone A are considered a greater threat than PCAs located in Zone B. PCAs located on the watershed outside of the zones are considered to be of less risk to the water supply. If zones have not been defined, PCAs are considered to be of equal risk regardless of location on the watershed. **Physical Barrier Effectiveness (PBE):** The PBE for a source is an evaluation of the ability of the source and the surrounding area to prevent the movement of contaminants into the source. The PBE is based on the construction and operation features of the source, and the characteristics of the surrounding area. A source is assigned a PBE of Low, Moderate or High, where High indicates that the physical barriers of the source and site are very effective in preventing the movement of contaminants. By design, typical groundwater sources will have Moderate PBE, while typical surface water sources will have Low PBE. This is due to the greater exposure of surface water sources to contamination. **Vulnerability Ranking:** The vulnerability ranking is a summary of the PCAs identified in the assessment prioritized by the risk that they pose to the water supply. The prioritization is based on the risk associated with a PCA, the zone in which it occurs, and the PBE of the source. In the vulnerability ranking, points are assigned as follows: | PCA risk ranking | Very High = 7 | High = 5 | Moderate = 3 | Low = 1 | Unknown in any zone = 0 | |------------------------------------|---------------|--------------|---------------|---------|-------------------------| | Zone (Groundwater) | A = 5 | B5 = 3 | B10 = 1 | | | | Zone (Surface water with zones) | A = 5 | B = 3 | Watershed = 1 | | | | Zone (Surface water without zones) | Watershed = 5 | | | | | | Physical Barrier Effectiveness | Low = 5 | Moderate = 3 | High = 1 | | | The points for each type of PCA in each zone are totaled to give a vulnerability score, and the PCAs are ranked in order from the highest score to the lowest score. PCAs associated with detected contaminants are ranked at the top, regardless of vulnerability score. By definition, groundwater sources are not considered vulnerable to PCAs with scores less than 8, and surface water sources are not considered vulnerable to PCAs with scores less than 11. It should be noted that the vulnerability ranking scores do not have a direct quantitative value. Rather, the points are used only to relatively rank the types of PCAs for an individual source. Note: Some of the summaries do not include a vulnerability ranking. If the assessment was done on paper and the details were not entered into the database, the vulnerability ranking is not available here. In addition, alternate methods of determining vulnerability were allowed in some cases, and the vulnerability ranking is not in the database. **Vulnerability Summary:** The source is considered most vulnerable to the PCAs with the highest score, and to PCAs associated with detected contaminants. These PCAs are noted in the vulnerability summary. Further details or discussion may be provided in the vulnerability discussion.