2018 Consumer Confidence Report

Water System Name: Colonial Oak Water Company, Inc. 270.0534 Report Date: 4/18/2019

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2018 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse Colonial Oak Water Company, Inc. a Marjorie Lane, Karen & Leon Drives; Salinas, CA para asistirlo en español.

这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 Colonial Oak Water Company, Inc. 以获得中文的帮助:Marjorie Lane, Karen & Leon Drives; Salinas, CA 831.663.3880

Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa Colonial Oak Water Company, Inc. Marjorie Lane, Karen & Leon Drives; Salinas, CA o tumawag sa 831.663.3880 para matulungan sa wikang Tagalog.

Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ Colonial Oak Water Company, Inc.tại Marjorie Lane, Karen & Leon Drives; Salinas, CA để được hỗ trợ giúp bằng tiếng Việt.

Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau Colonial Oak Water Company ntawm Marjorie Lane, Karen & Leon Drives; Salinas, CA rau kev pab hauv lus Askiv.

Type of water source(s) in use: Ground water	
Name & general location of source(s): All 4 wells (Well	1 #1, #3, #4 & #5) are at the end of Marjorie Lane
Drinking Water Source Assessment information: See at	tached; dated 2002
Time and place of regularly scheduled board meetings for pu	ublic participation: Quarterly at 19115 Marjorie Lane
For more information, contact: <u>Alan Caughey</u>	Phone: (831) 663.3880
TERMS USED	IN THIS REPORT
 Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA). Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA). Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. 	 Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water. Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions. Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. ND: not detectable at testing limit ppm: parts per million or milligrams per liter (mg/L) ppt: parts per tillion or micrograms per liter (mg/L) ppt: parts per tillion or nanograms per liter (mg/L) ppt: parts per quadrillion or picogram per liter (mg/L) ppCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides*, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants*, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1 – SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA										
Microbiological Contaminants (complete if bacteria detected)	Highest N Detectio			f Months iolation	N	ICL		MCLG	Typical Source of Bacteria	
Total Coliform Bacteria (state Total Coliform Rule)	(In a mor 7	nth)		1*	1 positive month	ily sample	9	0	Naturally present in the environment	
Fecal Coliform or <i>E. coli</i> (state Total Coliform Rule)	(In the ye	ear)		0	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive				Human and animal fecal waste	
<i>E. coli</i> (federal Revised Total Coliform Rule)	(In the ye	ear)	0		(a)		1		0	Human and animal fecal waste
(a) Routine and repeat samples ar or system fails to analyze total co TABLE 2	liform-positiv	e repea	t sample	e for E. coli.				t samples following		
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. Sam Colle	ples	90 th Percentile Level Detected	Exceeding	AL	PHG	No. of Schools Requesting Lead Sampling	Typical Source of Contaminant	
Lead (ppb)	7/7/17 & 7/9/17	5	5	ND	0	15	0.2	0	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits	
Copper (ppm)	7/7/17 & 7/9/17	5	5	0.41	0	1.3	0.3	Not applicable	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives	

		– SAMPLING R		SODIUM A	-	NESS
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	2016, 2017 & 2018	45.3	34-63	None	None	Salt present in the water and is generally naturally occurring
Hardness (ppm)	2016, 2017 & 2018	110	83.6-137	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring
TABLE 4 – DET	TECTION O	F CONTAMINA	NTS WITH A	PRIMARY	DRINKING	WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Chromium (ppb)	2016, 2017 & 2018	13.5	0-34	50	(100)	Discharge from steel and pulp mills and chrome plating; erosion of natural deposits
Fluoride (ppm)	2016, 2017 & 2018	0.135	0.13-0.14	2.0	1	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Nitrate (as Nitrogen, N) (ppm) (Wells)	2018	9.6	7.6-11	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Nitrate (as Nitrogen, N) (ppm) (Blend)	2018	9.2	0.4-9.68	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
TABLE 5 – DETE	CTION OF	CONTAMINAN	NTS WITH A <u>S</u>	ECONDAR	Y DRINKIN	G WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant
Chloride (ppm)	2016, 2017 & 2018	59.5	43-82	500	N/A	Runoff/leaching from natural deposits; seawater influence
Sulfate (ppm)	2016, 2017 & 2018	16.5	10-25	500	N/A	Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids (TDS) (ppm)	2016, 2017 & 2018	318.8	260-400	1,000	N/A	Runoff/leaching from natural deposits
Turbidity (ppm)	2016, 2017 & 2018	0.35	0.15-0.7	5	N/A	Soil runoff
Zinc (ppm)	2016, 2017 & 2018	0.04	0-0.14	5	N/A	Runoff/leaching from natural deposits; industrial wastes
	TABLE	6 – DETECTION	OF UNREGU	LATED CC	ONTAMINA	NTS
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notifica	tion Level	Health Effects Language
Hexavalent Chromium (ppb) (Wells)	2016 & 2018	31.5	8.5-36		y no MCL*	None
Hexavalent Chromium (ppb) (Blend)	2017	8.4	7.9-9.2	Currently no MCL*		None
* There is currently no MC September 11, 2017	L for hexava	llent chromium. T	he previous hex	avalent chro	mium MCL o	of 0.010 mg/L was withdrawn on

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. <u>Colonial Oak Water Company, Inc.</u> is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [*OPTIONAL:* If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

Nitrate in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider.

VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT									
Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language					
*Total Coliform Bacteria	The water system failed the drinking water standard for total coliform during the month of June, 2018	June, 2018	Performed system inspection, minor system repairs and complete disinfection of the system.	Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially- harmful, bacteria may be present. Coliforms were found in more samples than allowed and this was a warning of potential problems.					

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

Summary Information for Federal Revised Total Coliform Rule Level 1 and Level 2 Assessment Requirements

Level 1 or Level 2 Assessment Requirement not Due to an *E. coli* MCL Violation

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

During the past year we were required to conduct one Level 1 assessment. The Level 1 assessment was completed. In addition, we were required to take 2 corrective actions and we completed both of these actions.

During the past year no Level 2 assessments were required to be completed.

Level 2 Assessment Requirement Due to an E. coli MCL Violation

E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, the elderly, and people with severely-compromised immune systems. When this occurs, we are required to conduct assessment(s) identify problems and to correct any problems that were found during these assessments.

During the past year no Level 2 assessments due to *E. coli* we required to be completed.

Drinking Water Source Assessment

Water System

COLONIAL OAKS WC Monterey County

Water Source

WELL 01

Assessment Date

March, 2002

Assessment Completed By

Monterey County

California Department of Public Health Drinking Water Field Operations Branch LPA Monterey County

> District No. 57 System No. 2700534 Source No. 001 PS Code 2700534-001

Vulnerability Summary

District Name	Monterey County	District No. 57	County	Monterey	
System Name	COLONIAL OAKS WC			System No. 2700534	
Source Name	WELL 01	Source No	001	PS Code	2700534-001
Completed by	Monterey County		D	Date March, 200	02

According to CDPH records, this Source is Groundwater. This Assessment was done using the Default Groundwater System Method.

A source water assessment was conducted for the	WELL 01

of the COLONIAL OAKS WC

water system in March, 2002

The source is considered most vulnerable to the following activities not associated with any detected contaminants:

Septic systems - high density [>1/acre]

Discussion of Vulnerability

The Colonial Oaks WC is currently blending water between the 4 wells into a single pipe, which is an unacceptable form of treatment for nitrates. Therefore, the water sources are considered vulnerable to nitrate contamination.

A copy of the complete assessment may be viewed at:

Monterey County Health Department 1270 Natividad Road Room 109 California, CA 93906

You may request a summary of the assessment be sent to you by contacting:

Sandy Ayala Environmental Health Specialist (831)755-8924 (831)755-8929 (fax) ayalasa@co.monterey.ca.us Page 2

Vulnerability Ranking

District Name	Monterey County	District No. 57	County	Monterey		
System Name	COLONIAL OAKS WC			System No. 2700534		
Source Name	WELL 01	Source No	001	PS Code2		00534-001

Completed by Monterey County

Date _ May, 2002

The following PCAs were identified in the assessment and are listed in priority order based on risk to the water supply. Refer to the last page for more information.

Zone	PCA (Risk Ranking)	*	PCA Risk Points	Zone Points	PBE Points	Vulnerability Score
А	Septic systems - high density [>1/acre] (VH in Zone A, otherwise M)		7	5	5	17
Α	Above ground storage tanks (M)		3	5	5	13
Α	Housing - high density [>1 house/0.5 acres] (M)		3	5	5	13
А	Transportation corridors - Freeways/state highways (M)		3	5	5	13
Α	Wells - Water supply (M)		3	5	5	13
А	Transportation corridors - Roads/Streets (L)		1	5	5	11
B5	Housing - high density [>1 house/0.5 acres] (M)		3	3	5	11
B5	Septic systems - high density [>1/acre] (VH in Zone A, otherwise M)		3	3	5	11
B5	Transportation corridors - Freeways/state highways (M)		3	3	5	11
B5	Wells - Water supply (M)		3	3	5	11
B5	Transportation corridors - Roads/Streets (L)		1	3	5	9
B10	Housing - high density [>1 house/0.5 acres] (M)		3	1	5	9
B10	Septic systems - high density [>1/acre] (VH in Zone A, otherwise M)		3	1	5	9
B10	Transportation corridors - Freeways/state highways (M)		3	1	5	9
B10	Wells - Water supply (M)		3	1	5	9

Explanation of Source Water Assessments and Definition of Terms

A source water assessment was recently completed for this drinking water source. The assessment identifies the vulnerability of the drinking water supply to contamination from typical human activities. The assessments are intended to facilitate and provide the basic information necessary for a local community to develop a program to protect the drinking water supply.

A summary of the complete assessment is provided here. For more information, contact the agency or individual that prepared the assessment (shown in summary). You may also contact the local Department of Public Health Drinking Water Field Operations Branch district office (<u>http://www.cdph.ca.gov/programs/Documents/DDWEM/OriginalDistrictMapCDPH.pdf</u>).

Additional information about assessments can be found at: <u>http://www.cdph.ca.gov/certlic/drinkingwater/Pages/DWSAP.aspx</u>

Terms used in this summary:

Source Water Assessment: An assessment is an evaluation of a drinking water source to determine the "possible contaminating activities" (PCAs) to which the source is most vulnerable. The assessment includes: a delineation of protection zones around the source; an inventory of the types of PCAs within the source protection zones; and an analysis to determine the PCAs to which the source is most vulnerable. The information is compiled into a report that includes a map, calculations, checklists, and a summary of the findings.

Possible Contaminating Activity (PCA): A PCA is a current or historic human activity that is an actual or potential origin of contamination for a drinking water source. PCAs include activities that use, store, produce or dispose of chemicals that have the potential to contaminate drinking water supplies. There are 110 types of PCAs in the California DWSAP program.

PCA Risk Ranking: Each type of PCA is assigned a risk ranking (Very High, High, Moderate, or Low). The risk ranking is based on the contaminant(s) typically associated with that PCA, the likelihood of release from that type of facility based on historical experience, and the mobility of the contaminant(s).

PCA Inventory: The PCA inventory is a review using local knowledge, databases, and on-site evaluations to identify the occurrence and approximate location of PCAs in the source water zones. The inventory for the basic DWSAP assessments is a presence-absence review. If a type of PCA occurs in a zone, a "Yes" is noted in the inventory for that zone, regardless of whether there is one or many of that type of facility within the zone. If a PCA has been associated with a contaminant detected in the water supply, a notation is made in the PCA inventory.

Source Water Zones or Areas: These are areas located around and typically adjacent to a drinking water source that have been identified as initial protection areas.

For groundwater sources, there are typically three concentric circular zones around a source (Zones A, B5 and B10). The sizes of the are determined based on characteristics of the source. PCAs located in the inner Zone A are considered more of a risk to the water supply than PCAs located in the middle Zone B5. Similarly, PCAs located in Zone B5 are considered more of a risk than PCAs located in the outer Zone B10.

For surface water sources, the watershed is defined as the overall protection area, and as an option, zones are defined closer to the source. Two types of zones are typically established. Zone A is the area within and near the surface water body and its tributaries. Zone B is an area within 2,500 feet of the intake, not including areas in Zone A. For surface water sources, PCAs located in Zone A are considered a greater threat than PCAs located in Zone B. PCAs located on the watershed outside of the zones are considered to be of less risk to the water supply. If zones have not been defined, PCAs are considered to be of equal risk regardless of location on the watershed.

Physical Barrier Effectiveness (PBE): The PBE for a source is an evaluation of the ability of the source and the surrounding area to prevent the movement of contaminants into the source. The PBE is based on the construction and operation features of the source, and the characteristics of the surrounding area. A source is assigned a PBE of Low, Moderate or High, where High indicates that the physical barriers of the source and site are very effective in preventing the movement of contaminants. By design, typical groundwater sources will have Moderate PBE, while typical surface water sources will have Low PBE. This is due to the greater exposure of surface water sources to contamination.

Vulnerability Ranking: The vulnerability ranking is a summary of the PCAs identified in the assessment prioritized by the risk that they pose to the water supply. The prioritization is based on the risk associated with a PCA, the zone in which it occurs, and the PBE of the source. In the vulnerability ranking, points are assigned as follows:

PCA risk ranking	Very High = 7	High = 5	Moderate = 3	Low = 1	Unknown in any zone = 0
Zone (Groundwater)	A = 5	B5 = 3	B10 = 1		
Zone (Surface water with zones)	A = 5	B = 3	Watershed = 1		
Zone (Surface water without zones)	Watershed = 5				
Physical Barrier Effectiveness	Low = 5	Moderate = 3	High = 1		

The points for each type of PCA in each zone are totaled to give a vulnerability score, and the PCAs are ranked in order from the highest score to the lowest score. PCAs associated with detected contaminants are ranked at the top, regardless of vulnerability score. By definition, groundwater sources are not considered vulnerable to PCAs with scores less than 8, and surface water sources are not considered vulnerable to PCAs with scores less than 8, and surface water sources are not considered vulnerable to PCAs with scores less than 11. It should be noted that the vulnerability ranking scores do not have a direct quantitative value. Rather, the points are used only to relatively rank the types of PCAs for an individual source.

Note: Some of the summaries do not include a vulnerability ranking. If the assessment was done on paper and the details were not entered into the database, the vulnerability ranking is not available here. In addition, alternate methods of determining vulnerability were allowed in some cases, and the vulnerability ranking is not in the database.

Vulnerability Summary: The source is considered most vulnerable to the PCAs with the highest score, and to PCAs associated with detected contaminants. These PCAs are noted in the vulnerability summary. Further details or discussion may be provided in the vulnerability discussion.

Drinking Water Source Assessment

Water System

COLONIAL OAKS WC Monterey County

Water Source

WELL 03

Assessment Date

May, 2002

Assessment Completed By

Monterey County

California Department of Public Health Drinking Water Field Operations Branch LPA Monterey County

> District No. 57 System No. 2700534 Source No. 003 PS Code 2700534-003

Vulnerability Summary

District Name	Monterey County	District No. 57	County	Monterey		
System Name	COLONIAL OAKS WC			System No. 2700534		
Source Name	WELL 03	Source No	003	PS Code	2700534-003	
Completed by	Monterey County		D	ate _May, 2002		

According to CDPH records, this Source is Groundwater. This Assessment was done using the Default Groundwater System Method.

A source water	assessment	was	conducted f	or the	WELL 03

of the COLONIAL OAKS WC

water system in May, 2002

The source is considered most vulnerable to the following activities not associated with any detected contaminants:

Septic systems - high density [>1/acre]

Discussion of Vulnerability

The Colonial Oaks WC is currently blending water between the 4 wells into a single pipe, which is an unacceptable form of treatment for nitrates. Therefore, the water sources are considered vulnerable to nitrate contamination.

A copy of the complete assessment may be viewed at:

Monterey County Health Department 1270 Natividad Road Room 109 California, CA 93906

You may request a summary of the assessment be sent to you by contacting:

Sandy Ayala Environmental Health Specialist (831)755-8924 (831)755-8929 (fax) ayalasa@co.monterey.ca.us Page 2

Vulnerability Ranking

District Name	Monterey County	District No. 57	County	Monterey		
System Name	COLONIAL OAKS WC			System No. 2700534		
Source Name	WELL 03	Source No	003	PS Code	27	00534-003

Completed by Monterey County

Date _ May, 2002

The following PCAs were identified in the assessment and are listed in priority order based on risk to the water supply. Refer to the last page for more information.

Zone	PCA (Risk Ranking)	*	PCA Risk Points	Zone Points	PBE Points	Vulnerability Score
А	Septic systems - high density [>1/acre] (VH in Zone A, otherwise M)		7	5	5	17
А	Above ground storage tanks (M)		3	5	5	13
А	Housing - high density [>1 house/0.5 acres] (M)		3	5	5	13
А	Transportation corridors - Freeways/state highways (M)		3	5	5	13
А	Wells - Water supply (M)		3	5	5	13
А	Transportation corridors - Roads/Streets (L)		1	5	5	11
B5	Housing - high density [>1 house/0.5 acres] (M)		3	3	5	11
B5	Septic systems - high density [>1/acre] (VH in Zone A, otherwise M)		3	3	5	11
B5	Transportation corridors - Freeways/state highways (M)		3	3	5	11
B5	Wells - Water supply (M)		3	3	5	11
B5	Transportation corridors - Roads/Streets (L)		1	3	5	9
B10	Housing - high density [>1 house/0.5 acres] (M)		3	1	5	9
B10	Septic systems - high density [>1/acre] (VH in Zone A, otherwise M)		3	1	5	9
B10	Transportation corridors - Freeways/state highways (M)		3	1	5	9
B10	Wells - Water supply (M)		3	1	5	9

Explanation of Source Water Assessments and Definition of Terms

A source water assessment was recently completed for this drinking water source. The assessment identifies the vulnerability of the drinking water supply to contamination from typical human activities. The assessments are intended to facilitate and provide the basic information necessary for a local community to develop a program to protect the drinking water supply.

A summary of the complete assessment is provided here. For more information, contact the agency or individual that prepared the assessment (shown in summary). You may also contact the local Department of Public Health Drinking Water Field Operations Branch district office (<u>http://www.cdph.ca.gov/programs/Documents/DDWEM/OriginalDistrictMapCDPH.pdf</u>).

Additional information about assessments can be found at: <u>http://www.cdph.ca.gov/certlic/drinkingwater/Pages/DWSAP.aspx</u>

Terms used in this summary:

Source Water Assessment: An assessment is an evaluation of a drinking water source to determine the "possible contaminating activities" (PCAs) to which the source is most vulnerable. The assessment includes: a delineation of protection zones around the source; an inventory of the types of PCAs within the source protection zones; and an analysis to determine the PCAs to which the source is most vulnerable. The information is compiled into a report that includes a map, calculations, checklists, and a summary of the findings.

Possible Contaminating Activity (PCA): A PCA is a current or historic human activity that is an actual or potential origin of contamination for a drinking water source. PCAs include activities that use, store, produce or dispose of chemicals that have the potential to contaminate drinking water supplies. There are 110 types of PCAs in the California DWSAP program.

PCA Risk Ranking: Each type of PCA is assigned a risk ranking (Very High, High, Moderate, or Low). The risk ranking is based on the contaminant(s) typically associated with that PCA, the likelihood of release from that type of facility based on historical experience, and the mobility of the contaminant(s).

PCA Inventory: The PCA inventory is a review using local knowledge, databases, and on-site evaluations to identify the occurrence and approximate location of PCAs in the source water zones. The inventory for the basic DWSAP assessments is a presence-absence review. If a type of PCA occurs in a zone, a "Yes" is noted in the inventory for that zone, regardless of whether there is one or many of that type of facility within the zone. If a PCA has been associated with a contaminant detected in the water supply, a notation is made in the PCA inventory.

Source Water Zones or Areas: These are areas located around and typically adjacent to a drinking water source that have been identified as initial protection areas.

For groundwater sources, there are typically three concentric circular zones around a source (Zones A, B5 and B10). The sizes of the are determined based on characteristics of the source. PCAs located in the inner Zone A are considered more of a risk to the water supply than PCAs located in the middle Zone B5. Similarly, PCAs located in Zone B5 are considered more of a risk than PCAs located in the outer Zone B10.

For surface water sources, the watershed is defined as the overall protection area, and as an option, zones are defined closer to the source. Two types of zones are typically established. Zone A is the area within and near the surface water body and its tributaries. Zone B is an area within 2,500 feet of the intake, not including areas in Zone A. For surface water sources, PCAs located in Zone A are considered a greater threat than PCAs located in Zone B. PCAs located on the watershed outside of the zones are considered to be of less risk to the water supply. If zones have not been defined, PCAs are considered to be of equal risk regardless of location on the watershed.

Physical Barrier Effectiveness (PBE): The PBE for a source is an evaluation of the ability of the source and the surrounding area to prevent the movement of contaminants into the source. The PBE is based on the construction and operation features of the source, and the characteristics of the surrounding area. A source is assigned a PBE of Low, Moderate or High, where High indicates that the physical barriers of the source and site are very effective in preventing the movement of contaminants. By design, typical groundwater sources will have Moderate PBE, while typical surface water sources will have Low PBE. This is due to the greater exposure of surface water sources to contamination.

Vulnerability Ranking: The vulnerability ranking is a summary of the PCAs identified in the assessment prioritized by the risk that they pose to the water supply. The prioritization is based on the risk associated with a PCA, the zone in which it occurs, and the PBE of the source. In the vulnerability ranking, points are assigned as follows:

PCA risk ranking	Very High = 7	High = 5	Moderate = 3	Low = 1	Unknown in any zone = 0
Zone (Groundwater)	A = 5	B5 = 3	B10 = 1		
Zone (Surface water with zones)	A = 5	B = 3	Watershed = 1		
Zone (Surface water without zones)	Watershed = 5				
Physical Barrier Effectiveness	Low = 5	Moderate = 3	High = 1		

The points for each type of PCA in each zone are totaled to give a vulnerability score, and the PCAs are ranked in order from the highest score to the lowest score. PCAs associated with detected contaminants are ranked at the top, regardless of vulnerability score. By definition, groundwater sources are not considered vulnerable to PCAs with scores less than 8, and surface water sources are not considered vulnerable to PCAs with scores less than 8, and surface water sources are not considered vulnerable to PCAs with scores less than 11. It should be noted that the vulnerability ranking scores do not have a direct quantitative value. Rather, the points are used only to relatively rank the types of PCAs for an individual source.

Note: Some of the summaries do not include a vulnerability ranking. If the assessment was done on paper and the details were not entered into the database, the vulnerability ranking is not available here. In addition, alternate methods of determining vulnerability were allowed in some cases, and the vulnerability ranking is not in the database.

Vulnerability Summary: The source is considered most vulnerable to the PCAs with the highest score, and to PCAs associated with detected contaminants. These PCAs are noted in the vulnerability summary. Further details or discussion may be provided in the vulnerability discussion.

Drinking Water Source Assessment

Water System

COLONIAL OAKS WC Monterey County

Water Source

WELL 04

Assessment Date

May, 2002

Assessment Completed By

Monterey County

California Department of Public Health Drinking Water Field Operations Branch LPA Monterey County

> District No. 57 System No. 2700534 Source No. 004 PS Code 2700534-004

Vulnerability Summary

District Name	Monterey County	District No. 57	County	Monterey	
System Name	COLONIAL OAKS WC			System No	2700534
Source Name	WELL 04	Source No	004	PS Code	2700534-004
Completed by	Monterey County		D	ate May, 2002	

According to CDPH records, this Source is Groundwater. This Assessment was done using the Default Groundwater System Method.

A source water	assessment	was	conducted for	the	WELL 04

of the COLONIAL OAKS WC

water system in May, 2002

The source is considered most vulnerable to the following activities not associated with any detected contaminants:

Septic systems - high density [>1/acre]

Discussion of Vulnerability

The Colonial Oaks WC is currently blending water between the 4 wells into a single pipe, which is an unacceptable form of treatment for nitrates. Therefore, the water sources are considered vulnerable to nitrate contamination.

A copy of the complete assessment may be viewed at:

Monterey County Health Department 1270 Natividad Road Room 109 California, CA 93906

You may request a summary of the assessment be sent to you by contacting:

Sandy Ayala Environmental Health Specialist (831)755-8924 (831)755-8929 (fax) ayalasa@co.monterey.ca.us Page 2

Vulnerability Ranking

District Name	Monterey County	District No. 57	County	Monterey		
System Name	COLONIAL OAKS WC			System	No.	2700534
Source Name	WELL 04	Source No. 004		PS Code	PS Code 2700534-	

Completed by Monterey County

Date _ May, 2002

The following PCAs were identified in the assessment and are listed in priority order based on risk to the water supply. Refer to the last page for more information.

Zone	PCA (Risk Ranking)	*	PCA Risk Points	Zone Points	PBE Points	Vulnerability Score
А	Septic systems - high density [>1/acre] (VH in Zone A, otherwise M)		7	5	5	17
А	Above ground storage tanks (M)		3	5	5	13
А	Housing - high density [>1 house/0.5 acres] (M)		3	5	5	13
А	Transportation corridors - Freeways/state highways (M)		3	5	5	13
А	Wells - Water supply (M)		3	5	5	13
А	Transportation corridors - Roads/Streets (L)		1	5	5	11
B5	Housing - high density [>1 house/0.5 acres] (M)		3	3	5	11
B5	Septic systems - high density [>1/acre] (VH in Zone A, otherwise M)		3	3	5	11
B5	Transportation corridors - Freeways/state highways (M)		3	3	5	11
B5	Wells - Water supply (M)		3	3	5	11
B5	Transportation corridors - Roads/Streets (L)		1	3	5	9
B10	Housing - high density [>1 house/0.5 acres] (M)		3	1	5	9
B10	Septic systems - high density [>1/acre] (VH in Zone A, otherwise M)		3	1	5	9
B10	Transportation corridors - Freeways/state highways (M)		3	1	5	9
B10	Wells - Water supply (M)		3	1	5	9

Explanation of Source Water Assessments and Definition of Terms

A source water assessment was recently completed for this drinking water source. The assessment identifies the vulnerability of the drinking water supply to contamination from typical human activities. The assessments are intended to facilitate and provide the basic information necessary for a local community to develop a program to protect the drinking water supply.

A summary of the complete assessment is provided here. For more information, contact the agency or individual that prepared the assessment (shown in summary). You may also contact the local Department of Public Health Drinking Water Field Operations Branch district office (<u>http://www.cdph.ca.gov/programs/Documents/DDWEM/OriginalDistrictMapCDPH.pdf</u>).

Additional information about assessments can be found at: <u>http://www.cdph.ca.gov/certlic/drinkingwater/Pages/DWSAP.aspx</u>

Terms used in this summary:

Source Water Assessment: An assessment is an evaluation of a drinking water source to determine the "possible contaminating activities" (PCAs) to which the source is most vulnerable. The assessment includes: a delineation of protection zones around the source; an inventory of the types of PCAs within the source protection zones; and an analysis to determine the PCAs to which the source is most vulnerable. The information is compiled into a report that includes a map, calculations, checklists, and a summary of the findings.

Possible Contaminating Activity (PCA): A PCA is a current or historic human activity that is an actual or potential origin of contamination for a drinking water source. PCAs include activities that use, store, produce or dispose of chemicals that have the potential to contaminate drinking water supplies. There are 110 types of PCAs in the California DWSAP program.

PCA Risk Ranking: Each type of PCA is assigned a risk ranking (Very High, High, Moderate, or Low). The risk ranking is based on the contaminant(s) typically associated with that PCA, the likelihood of release from that type of facility based on historical experience, and the mobility of the contaminant(s).

PCA Inventory: The PCA inventory is a review using local knowledge, databases, and on-site evaluations to identify the occurrence and approximate location of PCAs in the source water zones. The inventory for the basic DWSAP assessments is a presence-absence review. If a type of PCA occurs in a zone, a "Yes" is noted in the inventory for that zone, regardless of whether there is one or many of that type of facility within the zone. If a PCA has been associated with a contaminant detected in the water supply, a notation is made in the PCA inventory.

Source Water Zones or Areas: These are areas located around and typically adjacent to a drinking water source that have been identified as initial protection areas.

For groundwater sources, there are typically three concentric circular zones around a source (Zones A, B5 and B10). The sizes of the are determined based on characteristics of the source. PCAs located in the inner Zone A are considered more of a risk to the water supply than PCAs located in the middle Zone B5. Similarly, PCAs located in Zone B5 are considered more of a risk than PCAs located in the outer Zone B10.

For surface water sources, the watershed is defined as the overall protection area, and as an option, zones are defined closer to the source. Two types of zones are typically established. Zone A is the area within and near the surface water body and its tributaries. Zone B is an area within 2,500 feet of the intake, not including areas in Zone A. For surface water sources, PCAs located in Zone A are considered a greater threat than PCAs located in Zone B. PCAs located on the watershed outside of the zones are considered to be of less risk to the water supply. If zones have not been defined, PCAs are considered to be of equal risk regardless of location on the watershed.

Physical Barrier Effectiveness (PBE): The PBE for a source is an evaluation of the ability of the source and the surrounding area to prevent the movement of contaminants into the source. The PBE is based on the construction and operation features of the source, and the characteristics of the surrounding area. A source is assigned a PBE of Low, Moderate or High, where High indicates that the physical barriers of the source and site are very effective in preventing the movement of contaminants. By design, typical groundwater sources will have Moderate PBE, while typical surface water sources will have Low PBE. This is due to the greater exposure of surface water sources to contamination.

Vulnerability Ranking: The vulnerability ranking is a summary of the PCAs identified in the assessment prioritized by the risk that they pose to the water supply. The prioritization is based on the risk associated with a PCA, the zone in which it occurs, and the PBE of the source. In the vulnerability ranking, points are assigned as follows:

PCA risk ranking	Very High = 7	High = 5	Moderate = 3	Low = 1	Unknown in any zone = 0
Zone (Groundwater)	A = 5	B5 = 3	B10 = 1		
Zone (Surface water with zones)	A = 5	B = 3	Watershed = 1		
Zone (Surface water without zones)	Watershed = 5				
Physical Barrier Effectiveness	Low = 5	Moderate = 3	High = 1		

The points for each type of PCA in each zone are totaled to give a vulnerability score, and the PCAs are ranked in order from the highest score to the lowest score. PCAs associated with detected contaminants are ranked at the top, regardless of vulnerability score. By definition, groundwater sources are not considered vulnerable to PCAs with scores less than 8, and surface water sources are not considered vulnerable to PCAs with scores less than 8, and surface water sources are not considered vulnerable to PCAs with scores less than 11. It should be noted that the vulnerability ranking scores do not have a direct quantitative value. Rather, the points are used only to relatively rank the types of PCAs for an individual source.

Note: Some of the summaries do not include a vulnerability ranking. If the assessment was done on paper and the details were not entered into the database, the vulnerability ranking is not available here. In addition, alternate methods of determining vulnerability were allowed in some cases, and the vulnerability ranking is not in the database.

Vulnerability Summary: The source is considered most vulnerable to the PCAs with the highest score, and to PCAs associated with detected contaminants. These PCAs are noted in the vulnerability summary. Further details or discussion may be provided in the vulnerability discussion.