2018 Consumer Confidence Report Water System Name: Schelby School Report Date: 03/22/19 We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2018 and may include earlier monitoring data. #### Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse Schelby School a (209) 406-6069 para asistirlo en español. | Type of water source(s) in use: | Groundwater Wells | | | | | | | |---|-------------------|--------------------------------------|--|--|--|--|--| | Name & general location of source | e(s): | Well #4 and Well #5 at 6738 No. Su | 4 and Well #5 at 6738 No. Sultana Dr. Livingston, CA | | | | | | Drinking Water Source Assessmen | nt informat | tion: Completed in November | of 2002 - see last nage | | | | | | 211111111111111111111111111111111111111 | | don. Completed in November | or zooz - see last page | | | | | | | | d meetings for public participation: | 1st. Monday of the month at 3:30pm at | | | | | For more information, contact: Sam Hedge - water operator Phone: (209) 406-6069 #### TERMS USED IN THIS REPORT Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA). Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water. Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions ND: not detectable at testing limit ppm: parts per million or milligrams per liter (mg/L) ppb: parts per billion or micrograms per liter (µg/L) ppt: parts per trillion or nanograms per liter (ng/L) pCi/L: picocuries per liter (a measure of radiation) The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. #### Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff. industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential - Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems. 2018 SWS CCR Form Revised Feb 2019 Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, the USEPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health. Tables 1, 2, 3, 4, and 5 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. | Microbiological
Contaminants | Highest
No. of
Detections | No. of Months
in Violation | MCL | MCLG | | | |---|---------------------------------|-------------------------------|--|------|--------------------------------------|--| | Total Coliform Bacteria
(State Total Coliform Rule) | (In a mo.) | 0 | I positive monthly sample | 0 | Naturally present in the environment | | | Fecal Coliform or <i>E. coli</i>
(State Total Coliform Rule) | (In the year) | 0 | A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive | 0 | Human and animal fecal waste | | | E. coli
Federal Revised Total
Coliform Rule) | (In the year) | 0 | (a) | 0 | Human and animal fecal waste | | | Lead and Copper (and reporting units) | Sample
Date | No. of
Samples
Collected | 90th Percentile Level Detected | No. Sites
Exceeding
AL | AL | PHG | Typical Source of Contaminant | |---------------------------------------|----------------|--------------------------------|--------------------------------|------------------------------|--------|------|--| | Lead (ppb) | 10/21/17 | 43 | 7 | 0 | 15 | 0.2 | Internal corrosion of household
water plumbing systems; discharges
from industrial manufacturers;
erosion of natural deposits | | Copper (ppm) | 10/21/17 | 43 | 0.07 | 0 | 1.3 | 0.3 | Internal corrosion of household
plumbing systems; erosion of
natural deposits; leaching from
wood preservatives | | | | TABLE 3 | -SAMPLIN | G RESULTS | FOR SC | DIUM | | | Chemical or Constituent | Sample | Level | R | ange of | | PHG | | | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | Range of
Detections | MCL | PHG
(MCLG) | Typical Source of Contaminant | |---|----------------|-------------------|------------------------|------|---------------|--| | Sodium (ppm) | 12/14/15 | 45 | | None | None | Salt present in the water and is generally naturally occurring | ^{*}Any violation of an MCL or AL is asterisked. Additional information regarding the violation is provided later in this report. | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | Range of
Detections | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Source of Contaminant | |---|----------------|-------------------|------------------------|---------------|--------------------------|--| | Fluoride (ppm) | 2015-2018 | 0.2 | 0.2 - 0.3 | 2 | 1 | Erosion of natural deposits; water
additive which promotes strong
teeth; discharge from fertilizer and
aluminum factories | | Nitrate as Nitrogen (ppm) | 2017-2018 | < 0.4 | < 0.4 - 0.5 | 10 | 10 | Runoff and leaching from fertilize
use; leaching from septic tanks
and sewage; erosion of natural
deposits | | Arsenic (ppb) | 2012-2018 | < 2 | < 2-3 | 10 | 0.004 | Erosion of natural deposits; runof
from orchards; glass and
electronics production wastes | | 1,2,3-Trichloropropane
[TCP] (μg/L) | 2018 | < 0.005 | < 0.005 - 0.007* | 0.005 | 0.0007 | Discharge from industrial and agricultural chemical factories; leaching from hazardous waste sites; used as cleaning and maintenance solvent, paint and varnish remover, and cleaning and degreasing agent; byproduct during the production of other compounds and pesticides. | | | | | | CONDAR | | G WATER STANDARD | | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | Range of
Detections | MCL | PHG
(MCLG) | Typical Source of Contaminant | | Iron (ppb) | 12/14/15 | 150 | | 300 | N/A | Leaching from natural deposits;
industrial wastes | | Manganese (ppb) | 12/14/15 | 33 | | 50 | N/A | Leaching from natural deposits | | Color (unit) | 12/14/15 | 5 | | 15 | N/A | Naturally-occurring organic materials | | Turbidity (NTU) | 12/14/15 | 3 | - | 5 | N/A | Soil runoff | ^{*}Any violation of an MCL or AL is asterisked. Additional information regarding the violation is provided on the next page. ## Additional General Information on Drinking Water Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline. # Summary Information for Contaminants Exceeding an MCL or AL, or a Violation of any Treatment or Monitoring and Reporting Requirements In 2018, 1,2,3-Trichloropropane (1,2,3-TCP) was detected at both wells above the 0.005 ug/L maximum contaminant (allowable) limit. The annual average for 1,2,3-TCP was within the acceptable limit. State regulations require that additional testing will be required for this water system in the future. No action to lower 1,2,3-TCP has been required by the State at this time. Some people who drink water containing 1,2,3-TCP in excess of the MCL over many years may have an increased risk of getting cancer. ### **Vulnerability Assessment Summary** A source water assessment was conducted for Well #4 and Well #5 of the Schelby School water system in November of 2002. The sources are considered most vulnerable to the following activities not associated with any detected contaminants: wells - agricultural/irrigation. The wells are located in an area known to have high levels of nitrate and DBCP. For more information regarding the assessment summary, contact: Sam Hedge at (209) 406-6069. ---------------