NORTH MARIN WATER DISTRICT

2020 ANNUAL WATER QUALITY REPORT · NOVATO EDITION · PUBLISHED JUNE 2021

Water served by North Marin Water District to its customers comes from protected watersheds and is purified using modern treatment techniques to remove pathogens, including bacteria and viruses. Water is continuously monitored to ensure that it surpasses all state and federal standards for health and safety.

This brochure is a snapshot of water quality monitoring performed in 2020. Included are details about where your water comes from, what it contains, and how it compares to regulatory standards. As you continue to keep your family safe from the COVID-19 virus you can feel confident that your tap remains a safe and reliable source of clean, good-tasting drinking water. If you have any questions regarding this Water Quality Report, contact Pablo Ramudo, Water Quality Supervisor, (415) 761-8929 or (800) 464-6693.

This report is available on our website: www.nmwd.com

North Marin Water District's Stafford Lake Water Treatment Plant produces about 25% of the water needed for Novato. This facility is designed to produce water which meets or exceeds strict state and federal standards for water quality. The water treatment process starts with chlorine dioxide and polymers prior to filtration through layers of anthracite and garnet sand. The water then passes through granular activated charcoal to remove any remaining impurities before adjusting the pH to 8.3 for corrosion control and the addition of a small amount of chlorine for disinfection.

Most of Novato's water supply is purchased as treated water from Sonoma County Water Agency (SCWA).

The SCWA water supply is collected from gravel beds 80 feet below and adjacent to the Russian River. The quality of this naturally filtered water is excellent, making additional treatment unnecessary. Water from additional SCWA wells in the Santa Rosa plain can be blended with the Russian River well water to augment water supply. Before delivering the water to Novato, SCWA adds small amounts of chlorine and sodium hydroxide to ensure purity and to adjust the pH to 8.3.

The Stafford Lake water supply blends with the SCWA water supply in the Novato water distribution system. The percentage from each source can vary by day and by season.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien. Para más información, llame al (415) 761-8929.

Image Image <t< th=""><th colspan="6">TABLE 1 Report on Detected Constituents with a Primary Drinking Water Standard (PDWS)</th><th></th><th colspan="2"></th><th colspan="2">STAFFORD WATER TREATMENT PLANT</th></t<>	TABLE 1 Report on Detected Constituents with a Primary Drinking Water Standard (PDWS)									STAFFORD WATER TREATMENT PLANT	
Nitrate (a N) mg/L 10 Soli runoff non Fertilizers, leaking from Species Species and Sevange Species Species Spec	CONSTITUENT	UNITS	[MRDLG]		ТҮГ	PICAL SOURCE	Average	Range	Avera	age	Range
Image Image <t< td=""><td>Fluoride</td><td>mg/L</td><td>1.0</td><td>2.0</td><td>Erosion</td><td>of natural deposits</td><td>ND</td><td>ND</td><td>0.1</td><td>1</td><td>0.10 - 0.12</td></t<>	Fluoride	mg/L	1.0	2.0	Erosion	of natural deposits	ND	ND	0.1	1	0.10 - 0.12
Gross Alpha Image Image	Nitrate (as N)	mg/L	10	10			ND	ND	NE)	ND
Chlorine, free mg/L [4.0] Drinking yeater divince an idded Average = 0.78. Range = 0.29. IS1 Tool Collorin Bacteria % of positive (0) >5% of monthly positive Naturally present in the environment All Samples negative for collorn hotectria 971 samples collected in 2020 Total adamethanes (1) up/L n/a 80 By product of dinking yearse dinnethanes (2) All Samples negative for collorn hotectria samples Total adamethanes (2) up/L n/a 60 By product of dinking yearse dinnethanes (2) Highest Lacation Running houses = 0.4 - 109 Adds (3) up/L 170 (AL 1300) Internal corresion of household plumbing yearse 30 samples collected note above the action lived 30 samples collected note above the action lived 30 samples collected note above the action lived plumbing yearse 30 samples collected note above the action lived 30 sampl	Radioactivity Gross Alpha	pCi/l	0	15	Erosion	of natural deposits	ND (1)	ND (1)	ND	(2)	ND (2)
Image Image <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>DISTRIBUT</td><td>ON SYSTEM</td><td>WATER</td><td>ł</td></t<>								DISTRIBUT	ON SYSTEM	WATER	ł
Batteria samples positive samples positive the environment 91 samples collected in 200 Total automethane (3) positive positive Batteria Highest Location Running Annual Average = 19. Total automethane (3) construction of dinketion water Highest Location Running Annual Average = 19. Range of all samples - 9.4.103 Total Automethane (3) construction of household of dinketion water Highest Location Running Annual Average = 19. Range of all samples - 9.4.103 Range of all samples - 9.4.103 Range of all samples - 9.4.103 Lead µg/L 2 (AL 1300) Internal corrosion of household plumbing systems 30 samples collected, none above the action level plumbing systems Secondary Drinking Water Standard Sontown water K offence NUN Range of all samples collected in None above the action level plumbing systems Sontown water K offence NUN TarRannetVT PLANTER Odor TON 3 Naturally-occurring organic materials ND ND ND ND Odor TON 3 Naturally-occurring organic materials ND ND ND ND Odor TON 3 Naturally-occurring organic materials ND<	Chlorine, Free	mg/L	[4.0]	[4.0]			Average = 0.78				
Name that set (i) Image of all samples = 9.4 · 109 Mange of all samples = 9.4 · 109 total Halacattic µg/L n/a 60 By product of dimking water disinfection Highest Location Ruming Annual Neurage = 19.7 Copper µg/L 170 (/L.1300) Internal corresion of household plumbing systems 30 samples collected, none above the action level 30 particule = 100. Range = ND · 120 Lead µg/L 2 (/L.15) Internal corresion of household plumbing systems 30 samples collected, none above the action level 30 samples collected, none above the action level plumbing systems ND ND NRange ND ONSTITUENT UNTS SNCL TYPICAL SOURCE Average Range Average Range Color PCU 15 Naturally-occurring organic materials ND ND ND ND Color PCU 15 Naturally-occurring organic materials ND ND NA NA Olord TON 3 Naturally-occurring organic materials ND ND NA NA Olord mg/L 500 Range of natural deposits, treatment chemicals 12 11-13 9.7 7.7.12	Total Coliform Bacteria	samples	(0)	samples	samples the environment		All Samples negative for coliform bacteria				
Acids (3)Image of all samples = 3.2 sBCopperµg/L170(AL 1300)Internal correction of household plumbing systems30 samples collected, none above the action level 90th percentile = 100, Range = ND - 120Leadµg/L2(AL 13)Internal correction of household plumbing systems30 samples collected, none above the action level 90th Percentile = ND, Range = ND - 120BLE 2Constituents With Aesthetic Concerns and/or a Secondary Drinking Water StandardSONOMA COUNTY WATER AGENCYSTAFFORD WATER REAMENT PLANTONSTITUENTUNTSSMCTYPICAL SOURCEAverageRangeAverage RangeRangeColorPCU15Naturally-occurring organic materials54-9NDNDOdorTON3Naturally-occurring organic materialsNDNDNANAColorPCU15Naturally-occurring organic materialsNDNDNANAColorTON3Naturally-occurring organic materialsNDNDNANAColormg/L500Runoff /leaching of natural deposits5.25.1-4.57.67.7-12Suffatemg/L100Runoff /leaching of natural deposits10010.110.010.110.0Soduummg/Ln/aNaturally-occurring of natural deposits10.010.010.010.010.010.0Soduummg/L100Substances that form ions in water240230-250240390-440<	Total rihalomethanes (3)	μg/L	n/a	80			High				2 = 57.4
LeadPCPP	Total Haloacetic Acids (3)	μg/L	n/a	60			High				e = 19.9
N plumbing systems 90th Percentile = ND, Range = ND BLE 2 Constituents With Aesthetic Concerns and/or a Secondary Drinking Water Standard SONOM COUNTY WATER AGENCY STAFFORD WATER TREAMENT PLANT ONSTITUENT UNITS SMCL TYPICAL SOURCE Average Range Average Range Color PCU 15 Naturally-occurring organic materials 5 4-9 ND ND Oddr TDN 3 Naturally-occurring organic materials 52 5.1-4.5 7.6 7.032 Sulfate mg/L 500 Leaching of natural deposits 5.22 5.1-4.5 7.6 7.032 Sulfate mg/L 1000 Runoff / leaching of natural deposits 130 120-150 240 240 240 Sodium mg/L n/a Naturall-poccuring organic materials 8.3 7.5-1 36 3040 Bitsolved Solids mg/L n/a Numfly / leaching of natural deposits 130 120-150 240 240 240 240 240 240 240 240 240 240 240 240 240 <	Copper	µg/L	170	(AL 1300)							
BLE 2 Secondary Drinking Water Standard SONOMA COUNTY WATER AGENCY STAFFORD WATER TREAMENT PLANT ONSTITUENT UNITS SMCL TYPICAL SOURCE Average Range Average Range Color PCU 15 Naturally-occurring organic materials 5 4-9 ND ND Odor TON 3 Naturally-occurring organic materials ND ND NA NA Chloride mg/L 500 Runoff / leaching of natural deposits 5.2 5.1.4.5 76 70-82 Suffate mg/L 500 Leaching of natural deposits 120 11-113 9.7 7.7-12 Suffate mg/L 500 Leaching of natural deposits 130 0.013 - 2.0 0.15 0.09- 0.19 Jbissolved Solids mg/L 1/a Naturally-occurring and treatment chemicals 8.3 7.5-9.1 36 30-40 Hardness (4) mg/L n/a Leaching of natural deposits 110 100-120 110 110-120 Radon pC/I n/a Substances that form ions in water 240 230-260 420 390-440 Manganese µg/L 50 Leaching from natural deposits 110 100 100 N	Lead	μg/L	2	(AL 15)			30 sa				
ColorPCU15Naturally-occurring organic materials54-9NDNDOdorTON3Naturally-occurring organic materialsNDNDNANAChloridemg/L500Runoff / leaching of natural deposits5.25.1-4.57670.82Sulfatemg/L500Leaching of natural deposits, treatment chemicals1211-139.77.7.12TurbidityNTU5Soil runoff0.030.013-2.00.150.09-0.19al Dissolved Solidsmg/L1000Runoff / leaching of natural deposits130120-150240240Sodiummg/Ln/aNaturally-occurring and treatment chemicals8.37.5-9.13630-40Hardness (4)mg/Ln/aLeaching of natural deposits110100-120110110-120RadonpCi/ln/aSee "Radon in Air," back page10382.4-114n/an/aManganese \mug/L 50Leaching from natural depositsNDNDNDNDND-25BIE 3Unregulated contaminants with no established maximums. The results below are part of monitoring conducted in 2019 in compliance with the Fourth Unregulated Contaminant Monitoring Rule (UCMR4). In addition to the regulated haloacetic acids presented in table 1, detections of other classes of haloacetic acids are presented below.Other contaminants tested in compliance with UCMR4 were not detected in drinking water.ONSTITUENTUNITSPrimary MCL [N											
OdorTON3Naturally-occurring organic materialsNDNDNANAChloridemg/L500Runoff / leaching of natural deposits5.25.1-4.57670-82Sulfatemg/L500Leaching of natural deposits, treatment chemicals1211-139.77.7-12TurbidityNTU5Solit nunoff0.030.013 - 2.00.150.09 - 0.19al Dissolved Solidsmg/L1000Runoff / leaching of natural deposits130120-150240240Sodiummg/Ln/aNaturally-occurring and treatment chemicals8.37.5-9.13630-40Hardness (4)mg/Ln/aNaturally-occurring of natural deposits110100-120110110-120RadonpCi/In/aSee "Radon in Air," back page10382.4-114n/an/aManganeseµg/L50Leaching from natural depositsNDNDNDNDND-25BELS 3Unregulated contaminants with no established maximums. The results below are part of monitoring conducted in 2019 in compliance with the Fourth Unregulated Contaminant Monitoring Rule (UCMR4). In addition to the regulated haloacetic acids presented in table 1, detections of other classes of haloacetic acids are presente below. Other contaminants were not detected in drinking water.MA6Brµg/Ln/aN/aBy-product of drinking water disinfection0.84-8.85.8\$.84HAA9µg/Ln/an/aN/aBy-product of drinking 		ary Drinking Wa	ater Standaı		TYPICAL SOU	RCE	WATER	AGENCY	TRE	AMEN	T PLANT
Sulfatemg/L500Leaching of natural deposits, treatment chemicals1211-139.77.7-12TurbidityNTU5Soil runoff0.030.013-2.00.150.09-0.19al Dissolved Solidsmg/L1000Runoff / leaching of natural deposits130120-150240240Sodiummg/Ln/aNaturally-occurring and treatment chemicals8.37.5-9.13630-40Hardness (4)mg/Ln/aLeaching of natural deposits110100-120110110-120RadonpCi/ln/aSee "Radon in Air," back page10382.4-114n/an/acific Conductanceµmhos/cm1600Substances that form ions in water240230-260420390-440Manganeseµg/L50Leaching from natural depositsNDNDNDND-25BLE 3Unregulated contaminants with no established maximums. The results below are part of monitoring conducted in 2019 in compliance with the Fourth Unregulated Contaminant Brule (UCMR4). In addition to the regulated haloacetic acids presented in table 1, detections of other classes of haloacetic acids are presented below. Other contaminants with uce established maximums. The results below are part of monitoring conducted in drinking water.System RangeMeets Regulations (YES/NO)ONSTITUENTUNITSPrimary MCL [Notification Level]State PHG or Federal (MCLG)TYPICAL SOURCESSystem RangeSystem AverageAverage AverageHAA6Brµg/L	Second CONSTITUENT	ary Drinking Wa	ater Standaı SMCL	rd			WATER Average	AGENCY Range	TRE Avera	AMEN	T PLANT Range
Sulfatemg/L500Leaching of natural deposits, treatment chemicals1211-139.77.7-12TurbidityNTU5Soil runoff / Eaching of natural deposits0.030.013 - 200.150.09 - 0.19al Dissolved Solidsmg/L1000Runoff / Eaching of natural deposits130120-15240240Sodiummg/Ln/aNaturally-occurring and treatment chemicals8.37.5-9.13630.40Hardness (4)mg/Ln/aLeaching of natural deposits110100-120110110-120RadonpCi/ln/aSee "Radon in Air" back page10382.4-114n/an/aMaganeseµg/L50Leaching from natural depositsNDNDNDND-25BLE3Unregulated contaming or nonitoring conducted in 2019 in constructions of other classes of baloacetic acids are presented below.SystemSystemRangeSystemRangeMeet RegulationsHAA6Brµg/Ln/an/an/an/aNnNn2.0-2.29.6YesHAA9µg/Ln/an/aNg-product of drinking water disinfection.NnS.8S.8Yes	Second CONSTITUENT Color	ary Drinking Wa	ater Standar SMCL 15	r d	aturally-occurring orga	nic materials	WATER Average 5	AGENCY Range 4-9	Avera ND	AMEN	T PLANT Range ND
al Dissolved Solidsmg/L1000Runoff / leaching of natural deposits130120-150240240Sodiummg/Ln/aNaturally-occurring and treatment chemicals8.37.5-9.13630-40Hardness (4)mg/Ln/aLeaching of natural deposits110100-120110110-120RadonpCi/ln/aLeaching of natural deposits110100-120110110-120RadonpCi/ln/aSee "Radon in Air," back page10382.4-114n/an/acific Conductanceµmhos/cm1600Substances that form ions in water240230-260420390-440Manganeseµg/L50Leaching from natural depositsNDNDNDND-25BLE 3Unregulated contaminants with no established maximums. The results below are part of monitoring conducted in 2019 in compliance with the Fourth Unregulated Contaminant Monitoring Rule (UCMR4). In addition to the regulated haloacetic acids presented in table 1, detections of other classes of haloacetic acids are presented below. Other contaminants tested in compliance with UCMR4 were not detected in drinking water.ONSTITUENTUNITSPrimary MCL [Notification Level]State PHG or Federal (MCLG)TYPICAL SOURCESSystem RangeMeets Regulations (YES/NO)HAA6Brµg/Ln/an/aBy-product of drinking water disinfection0.84 - 8.85.8YesHAA9µg/Ln/an/aN/aBy-product of drinking water disinfection2.0	Second CONSTITUENT Color Odor	ary Drinking Wa UNITS PCU TON	ater Standar SMCL 15 3	r d Na	aturally-occurring orga aturally-occurring orga	nic materials	WATER Average 5 ND	AGENCY Range 4-9 ND	Average ND NA	AMEN	T PLANT Range ND NA
Sodiummg/Ln/aNaturally-occurring and treatment chemicals8.37.5-9.13630-40Hardness (4)mg/Ln/aLeaching of natural deposits110100 - 120110110-120RadonpCi/ln/aSee "Radon in Air," back page10382.4+114n/an/acific Conductance μ mhos/cm1600Substances that form ions in water240230-260420390-440Manganese $\mu g/L$ 50Leaching from natural depositsNDNDNDND-25BLE 3Unregulated contaminants with no established maximums. The results below are part of monitoring conducted in 2019 in compliance with the Fourth Unregulated Contaminant Monitoring Rule (UCMR4). In addition to the regulated haloacetic acids presented in table 1, detections of other classes of haloacetic acids are presented below. Other contaminants tested in compliance with UCMR4 were not detected in drinking water.System RangeSystem AverageMeets Regulations (YES/NO)MAA6Br $\mu g/L$ n/an/aBy-product of drinking water disinfection0.84 - 8.85.8YesHAA9 $\mu g/L$ n/an/aBy-product of drinking water disinfection0.84 - 8.85.8Yes	Second CONSTITUENT Color Odor Chloride	ary Drinking Wa UNITS PCU TON mg/L	ater Standar SMCL 15 3 500	r d Na Na Ru	aturally-occurring orga aturally-occurring orga unoff / leaching of nati	nic materials nic materials nic materials nic materials	WATER Average 5 ND 5.2	AGENCY Range 4-9 ND 5.1-4.5	Average ND NA 76	AMEN	T PLANT Range ND NA 70-82
Hardness (4)mg/Ln/aLeaching of natural deposits110100 - 120110110-120RadonpCi/ln/aSee "Radon in Air," back page10382.4-114n/an/acific Conductanceµmhos/cm1600Substances that form ions in water240230-260420390-440Manganeseµg/L50Leaching from natural depositsNDNDNDNDND-25BLE 3Unregulated contaminants with no established maximums. The results below are part of monitoring conducted in 2019 in compliance with the Fourth Unregulated Contaminant Monitoring Rule (UCMR4). In addition to the regulated haloacetic acids presented in table 1, detections of other classes of haloacetic acids are presented below. Other contaminants tested in compliance with UCMR4 were not detected in drinking water.ONSTITUENTUNITSPrimary MCL [Notification Level]State PHG or Federal (MCLG)TYPICAL SOURCESSystem RangeMeets Regulations (YES/NO)HAA6Brµg/Ln/an/aBy-product of drinking water disinfection0.84 - 8.85.8YesHAA9µg/Ln/an/aBy-product of drinking water disinfection2.0 - 2.29.6Yes	Second CONSTITUENT Color Odor Chloride Sulfate	ary Drinking Wa UNITS PCU TON mg/L mg/L	Standar SMCL 15 3 500 500	r d Na Na Ru	aturally-occurring orga aturally-occurring orga unoff / leaching of natu g of natural deposits, tr	nic materials nic materials nic materials nic materials	WATER Average 5 ND 5.2 12	AGENCY Range 4-9 ND 5.1-4.5 11 - 13	TRE Average ND NA 76 9.7	AMEN [®] ge	T PLANT Range ND NA 70-82 7.7-12
RadonpCi/ln/aSee "Radon in Air," back page10382.4-114n/an/acific Conductanceµmhos/cm1600Substances that form ions in water240230-260420390-440Manganeseµg/L50Leaching from natural depositsNDNDNDNDND-25BLE 3Unregulated contaminants with no established maximums. The results below are part of monitoring conducted in 2019 in compliance with the Fourth Unregulated Contaminant Monitoring Rule (UCMR4). In addition to the regulated haloacetic acids presented in table 1, detections of other classes of haloacetic acids are presented below. Other contaminants tested in compliance with UCMR4 were not detected in drinking water.ONSTITUENTUNITSPrimary MCL [Notification Level]State PHG or Federal (MCLG)TYPICAL SOURCESSystem RangeMeets Regulations (YES/NO)HAA6Brµg/Ln/an/aBy-product of drinking water disinfection0.84-8.85.8YesHAA9µg/Ln/an/aBy-product of drinking water disinfection2.0-2.29.6Yes	Second CONSTITUENT Color Odor Chloride Sulfate	ary Drinking Wa UNITS PCU TON mg/L mg/L NTU	Standar SMCL 15 3 500 500 500 500	rd Na Na Na Na Na Na Na Na Na Na Na Na Na	aturally-occurring orga aturally-occurring orga unoff / leaching of natu g of natural deposits, tr Soil runoff unoff / leaching of natu	nic materials inic ma	WATER Average 5 ND 5.2 12 0.03	AGENCY Range 4-9 ND 5.1-4.5 11 - 13 0.013 - 2.0	TRE Average ND NA 76 9.7 0.15	AMEN [®]	T PLANT Range ND NA 70-82 7.7-12 0.09 – 0.19
cific Conductanceμmhos/cm1600Substances that form ions in water240230-260420390-440Manganeseμg/L50Leaching from natural depositsNDNDNDNDND-25BLE 3Unregulated contaminants with no established maximums. The results below are part of monitoring conducted in 2019 in compliance with the Fourth Unregulated Contaminant Monitoring Rule (UCMR4). In addition to the regulated haloacetic acids presented in table 1, detections of other classes of haloacetic acids are presented below. Other contaminants tested in compliance with UCMR4 were not detected in drinking water.System Federal (MCLG)System TYPICAL SOURCESSystem RangeMeets Regulations (YES/NO)HAA6Brμg/Ln/an/aBy-product of drinking water disinfection0.84 - 8.85.8YesHAA9μg/Ln/an/aBy-product of drinking water disinfection2.0 - 2.29.6Yes	Second CONSTITUENT Color Odor Chloride Sulfate Turbidity tal Dissolved Solids Sodium	Ary Drinking Wa UNITS PCU TON mg/L MTU mg/L mg/L	Standar SMCL 15 3 500 500 500 1000 n/a	rd Na Na Na Na Na Na Na Na Na Na Na Na Na	aturally-occurring orga aturally-occurring orga unoff / leaching of natu g of natural deposits, tr Soil runoff unoff / leaching of natu ally-occurring and trea	nic materials nic materials ural deposits eatment chemicals ural deposits tment chemicals	WATER Average 5 ND 5.2 12 0.03 130 8.3	AGENCY Range 4-9 ND 5.1-4.5 11 – 13 0.013 – 2.0 120-150 7.5-9.1	TRE Average ND NA 76 9.7 0.15 240 36	AMEN ge	T PLANT Range ND NA 70-82 7.7-12 0.09 – 0.19 240 30-40
Manganeseμg/L50Leaching from natural depositsNDNDNDND-25BLE 3 The results below are part of monitoring conducted in 2019 in compliance with the Fourth Unregulated Contaminant Monitoring Rule (UCMR4). In addition to the regulated haloacetic acids presented in table 1, detections of other classes of haloacetic acids are presented below. Other contaminants tested in compliance with UCMR4 were not detected in drinking water.ONSTITUENTUNITSPrimary MCL [Notification Level]State PHG or Federal (MCLG)TYPICAL SOURCESSystem RangeSystem AverageMeets Regulations (YES/NO)HAA6Brμg/Ln/an/aBy-product of drinking water disinfection0.84 - 8.85.8YesHAA9μg/Ln/an/aBy-product of drinking water disinfection2.0 - 2.29.6Yes	Second CONSTITUENT Color Odor Odor Chloride Sulfate Sulfate Turbidity tal Dissolved Solids Sodium Hardness (4)	Ary Drinking Wa UNITS PCU TON mg/L mg/L MTU mg/L mg/L mg/L	Standar SMCL 15 3 500 500 500 1000 n/a	rd Na Na Na Na Na Na Na Na Na Na Na Na Na	aturally-occurring orga aturally-occurring orga unoff / leaching of natu g of natural deposits, tr Soil runoff unoff / leaching of natu ally-occurring and trea Leaching of natural	nic materials inic materials ural deposits eatment chemicals ural deposits tment chemicals deposits	WATER Average 5 ND 5.2 12 0.03 130 8.3 110	AGENCY Range 4-9 ND 5.1-4.5 11 - 13 0.013 - 2.0 120-150 7.5-9.1 100 - 120	TRE Average ND NA 76 9.7 0.15 240 36 110	AMEN ge	T PLANT Range ND NA 70-82 7.7-12 0.09 – 0.19 240 30-40 110-120
BLE 3 Unregulated contaminants with no established maximums. The results below are part of monitoring conducted in 2019 in compliance with the Fourth Unregulated Contaminant Monitoring Rule (UCMR4). In addition to the regulated haloacetic acids presented in table 1, detections of other classes of haloacetic acids are presented below. Other contaminants tested in compliance with UCMR4 were not detected in drinking water. ONSTITUENT UNITS Primary MCL [Notification Level] State PHG or Federal (MCLG) TYPICAL SOURCES System Range System Average Meets Regulations (YES/NO) HAA6Br μg/L n/a n/a By-product of drinking water disinfection 0.84 – 8.8 5.8 Yes HAA9 μg/L n/a n/a By-product of drinking water disinfection 2.0 – 2.2 9.6 Yes	Second CONSTITUENT Color Odor Chloride Sulfate Sulfate Turbidity tal Dissolved Solids Sodium Hardness (4) Radon	Ary Drinking Wa UNITS PCU TON mg/L mg/L MTU mg/L mg/L mg/L mg/L	Standar SMCL 15 3 500 500 500 1000 n/a n/a n/a	rd rd Na Na Na Na Na Na Na Na Na N	aturally-occurring orga aturally-occurring orga unoff / leaching of natu g of natural deposits, tr Soil runoff unoff / leaching of natu ally-occurring and trea Leaching of natural See "Radon in Air," ba	nic materials nic materials ural deposits eatment chemicals ural deposits tment chemicals deposits deposits ack page	WATER Average 5 ND 5.2 12 0.03 130 8.3 110 103	AGENCY Range 4-9 ND 5.1-4.5 11 – 13 0.013 – 2.0 120-150 7.5-9.1 100 – 120 82.4-114	TRE Average ND NA 76 9.7 0.15 240 36 110 n/a	AMEN ge	T PLANT Range ND NA 70-82 7.7-12 0.09 – 0.19 240 30-40 110-120 n/a
The results below are part of monitoring conducted in 2019 in compliance with the Fourth Unregulated Contaminant Monitoring Rule (UCMR4). In addition to the regulated haloacetic acids presented in table 1, detections of other classes of haloacetic acids are presented below. Other contaminants tested in compliance with UCMR4 were not detected in drinking water.ONSTITUENTUNITSPrimary MCL [Notification Level]State PHG or Federal (MCLG)System RangeSystem AverageMeets Regulations (YES/NO)HAA6Brμg/Ln/an/aBy-product of drinking water disinfection0.84 - 8.85.8YesHAA9μg/Ln/an/aBy-product of drinking water disinfection2.0 - 2.29.6Yes	Second CONSTITUENT Color Odor Odor Chloride Sulfate Sulfate Turbidity al Dissolved Solids Sodium Hardness (4) Radon	Ary Drinking Wa UNITS PCU TON mg/L mg/L MTU mg/L mg/L mg/L mg/L	Standar SMCL 15 3 500 500 500 1000 n/a n/a n/a	rd rd Na Na Na Na Na Na Na Na Na N	aturally-occurring orga aturally-occurring orga unoff / leaching of natu g of natural deposits, tr Soil runoff unoff / leaching of natu ally-occurring and trea Leaching of natural See "Radon in Air," ba	nic materials nic materials ural deposits eatment chemicals ural deposits tment chemicals deposits deposits ack page	WATER Average 5 ND 5.2 12 0.03 130 8.3 110 103	AGENCY Range 4-9 ND 5.1-4.5 11 – 13 0.013 – 2.0 120-150 7.5-9.1 100 – 120 82.4-114	TRE Average ND NA 76 9.7 0.15 240 36 110 n/a	AMEN ge	T PLANT Range ND NA 70-82 7.7-12 0.09 – 0.19 240 30-40 110-120 n/a
HAA6Br μ g/Ln/an/aN/aBy-product of drinking water disinfection $0.84 - 8.8$ 5.8 YesHAA9 μ g/Ln/an/aBy-product of drinking By-product of drinking By-product of drinking $2.0 - 2.2$ 9.6 Yes	Second CONSTITUENT Color Odor Odor Chloride Sulfate Sulfate Turbidity tal Dissolved Solids Sodium Hardness (4) Radon	Arrow Drinking Wa UNITS PCU TON mg/L mg/L MTU mg/L mg/L mg/L pCi/l μmhos/cm	Standar SMCL 15 3 500 500 500 1000 n/a n/a n/a 1600	rd rd Na Na Na Na Na Na Na Na Na N	aturally-occurring orga aturally-occurring orga unoff / leaching of natu g of natural deposits, tr Soil runoff unoff / leaching of natu ally-occurring and trea Leaching of natural See "Radon in Air," ba Substances that form ic	nic materials inic ma	WATER Average 5 ND 5.2 12 0.03 130 8.3 110 103 240	AGENCY Range 4-9 ND 5.1-4.5 11 – 13 0.013 – 2.0 120-150 7.5-9.1 100 – 120 82.4-114 230-260	TRE Average ND NA 76 9.7 0.15 240 36 110 n/a 420	AMEN ge	T PLANT Range ND NA 70-82 7.7-12 0.09 – 0.19 240 30-40 110-120 n/a 390-440
HAA9 μg/L n/a n/a By-product of drinking 2.0 – 2.2 9.6 Yes	Second CONSTITUENT Color Odor Odor Chloride Sulfate Sulfate Turbidity tal Dissolved Solids Sodium Hardness (4) Radon Manganese Manganese	ary Drinking Wa UNITS PCU TON mg/L mg/L MTU mg/L mg/L grint μmhos/cm μg/L lated contamin ults below are p	Standar SMCL 15 3 500 500 500 1000 n/a n/a 1600 500 1600 1600 1600 50 1600 1600 50 1600 1600 50 0 1600 50	rd r	aturally-occurring orga aturally-occurring orga unoff / leaching of natu g of natural deposits, tr Soil runoff unoff / leaching of natu ally-occurring and trea Leaching of natural See "Radon in Air," ba Gubstances that form ic Leaching from natura in 2019 in complia ted in table 1, detect	nic materials inic materials iral deposits reatment chemicals iral deposits iral deposits iran deposits itment chemicals deposits ack page ons in water I deposits I	WATER Average 5 ND 5.2 12 0.03 130 8.3 110 103 240 ND ulated Contantal	AGENCY Range 4-9 ND 5.1-4.5 11 – 13 0.013 – 2.0 120-150 7.5-9.1 100 – 120 82.4-114 230-260 ND minant Monit	TRE Average ND NA 76 9.7 0.15 240 36 110 n/a 420 ND	AMEN ge	T PLANT Range ND NA 70-82 7.7-12 0.09 – 0.19 240 30-40 110-120 n/a 390-440 ND-25
	Second CONSTITUENT Color	ary Drinking Wa UNITS PCU TON mg/L mg/L MTU mg/L mg/L mg/L mg/L pCi/l μmhos/cm μg/L Iated contamin ults below are p tion to the regun n compliance w	Standar SMCL 15 3 500 500 500 500 1000 n/a n/a 1600 50 ants with no bart of monificities ith UCMR4 were prime [Notificities]	rd rd Na Na Na Na Na Na Na Na Na N	aturally-occurring orga aturally-occurring orga unoff / leaching of natu g of natural deposits, tr Soil runoff unoff / leaching of natu ally-occurring and trea Leaching of natural See "Radon in Air," ba Gubstances that form ic Leaching from natura Leaching from natura in 2019 in complia ted in table 1, detect d in drinking water. State PHG or Federal (MCLG)	nic materials inic materials inic materials iral deposits eatment chemicals iral deposits tment chemicals deposits ack page ons in water I deposits I depo	WATER Average 5 ND 5.2 12 0.03 130 8.3 110 103 240 ND	AGENCY Range A-9 ND 5.1-4.5 11 - 13 0.013 - 2.0 120-150 7.5-9.1 100 - 120 82.4-114 230-260 ND minant Monit s are present	Image: System Average	AMEN ge	T PLANT Range ND NA 70-82 7.7-12 0.09 – 0.19 240 30-40 110-120 n/a 390-440 ND-25 ND-35 entaminants Regulations (ES/NO)
	Second CONSTITUENT Color Odor Odor Chloride Sulfate Sulfate Turbidity tal Dissolved Solids Sodium Hardness (4) Radon Manganese Manganese ABLE 3 Unregu The resu In addit tested i	ary Drinking Wa UNITS PCU TON mg/L mg/L MTU mg/L mg/L mg/L mg/L pCi/l μmhos/cm μg/L Iated contamin ults below are p tion to the regun n compliance w	Standar SMCL 15 3 500 500 500 1000 n/a n/a n/a 1600 50 ants with no part of monificities vith UCMR4 to Prime [Notific	rd rd Na Na Na Na Natura	aturally-occurring orga aturally-occurring orga unoff / leaching of natural g of natural deposits, tr Soil runoff unoff / leaching of natural ally-occurring and trea Leaching of natural See "Radon in Air," ba Substances that form ic Leaching from natura in 2019 in complia ted in table 1, detect in drinking water. State PHG or Federal (MCLG) n/a	nic materials inic materials inic materials iral deposits reatment chemicals iral deposits itment chemicals	WATER Average 5 ND 5.2 12 0.03 130 8.3 110 103 240 ND ulated Contantal aloacetic acids s ng	AGENCY Range 4-9 ND 5.1-4.5 11 - 13 0.013 - 2.0 120-150 7.5-9.1 100 - 120 82.4-114 230-260 ND	Image: Straig of the strai	AMEN ge	T PLANT Range ND NA 70-82 7,7-12 0.09 – 0.19 240 30-40 110-120 n/a 390-440 ND-25 Antiput and a station statio

LEGEND

- (Public Health Goal): The level of a contaminant in drinking water below there is no known or expected risk to health. PHGs are set by the California onmental Protection Agency.
- i (Maximum Contaminant Level Goal): The level of a contaminant in drinking below which there is no known or expected risk to health. MCLGs are set by .S. Environmental Protection Agency (EPA).
- (Maximum Contaminant Level): The highest level of a contaminant that is ed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is pmically and technologically feasible. Secondary MCLs (SMCL) are set to protect dor, taste, and appearance of drinking water. MCLs and SMCLs are set by the rnia and/or U.S. EPA.
- (Primary Drinking Water Standard): MCLs and MRDLs, for contaminants affect health along with their monitoring and reporting requirements, and treatment requirements.
- ction Level): The concentration of a contaminant that, if exceeded, triggers nent or other requirements that a water system must follow.
- reatment Technique): A required process intended to reduce the level of a minant in drinking water.
- (Nephelometric Turbidity Units): A measure of suspended material in water.
- **Percentile:** Compliance based on highest value after eliminating the highest
- (Maximum residual disinfectant level): The level of a disinfectant added for treatment that may not be exceeded at the consumer's tap.
- LG (Maximum residual disinfectant level goal): The level of a disinfectant for water treatment below which there is no known or exposed risk to health. Gs are set by the U.S. EPA.
- lotification Level): The notification level for some unregulated contaminants.
- = milligrams per liter (parts per million) -equivalent to 4 drops of water in the average sized bathtub.
- = micrograms per liter (parts per billion) -equivalent to 50 drops in an olympic size swimming pool
- s/cm = micromhos per centimeter
- Not Detected
- Not Analyzed
- Not Applicable
- platinum cobalt units
- = picocuries per liter

pliance based on a four-quarter running average at each distribution system monitoring location age hardness shown in mg/L equates to 6.4 grains per gallon.

Concerning Lead and Drinking Water

nt, elevated levels of lead can cause serious health problems, especially for women and young children. There is no lead in drinking water produced by and there are no district owned lead service lines within our system, however leach into drinking water from materials and components associated with ers' service lines and home plumbing. NMWD is responsible for providing high drinking water to your meter, but cannot control the variety of materials used plumbing components. When water in your household plumbing has been or several hours, you can minimize the potential for lead exposure by running water for 30 seconds to 2 minutes before using water for drinking or cooking. concerned about lead in your water, you may wish to have your water tested. ion on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

A Message From the United States Environmental Protection Agency

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive materials, and can pick up substances resulting from the presence of animals or from

Contaminants that may be present in source water include:

human activity.

- Microbial Contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic Contaminants, such as salts and metals, that can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- <u>Pesticides and Herbicides</u>, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic Chemical Contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural applications and septic systems.
- <u>Radioactive Contaminants</u>, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. DHS regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800- 426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Drinking Water Source Assessment for SCWA Groundwater Supply

In January 2001, a Drinking Water Source Assessment for all of the SCWA's water sources was conducted to identify if any potential sources of contamination exist.

The SCWA source water is extracted from groundwater via 6 Rainey Collector Wells and 7 conventional wells located at Wohler and Mirabel, and three wells in the Santa Rosa Plain. The aquifer is recharged by subsurface flows and Russian River water filtering down through the gravel riverbed.

Most of the SCWA water supply comes from wells at Wohler and Mirabel adjacent to the Russian River. These sources are considered to be most vulnerable from wastewater treatment and gravel mining in the area. However, no contaminants associates with these activities were detected in the drinking water.

The SCWA also operates three groundwater wells on the Santa Rosa Plain near Occidental Road, Todd Road and Sebastopol Road. These sources are considered to be most vulnerable from animal feeding operations. However, no contaminants associated with this activity were detected in the drinking water.

A copy of the complete assessment may be reviewed at the California Water Boards-Division of Drinking Water Field Operations Branch office located at 50 D Street, Suite 200, Santa Rosa, CA 95404. You may request a summary of this assessment be sent to you by contacting the Office Representative at 707-876-2145 (voice) or by email to dwpdist18@ waterboards.ca.gov.

Drinking Water Source Water Assessment For Stafford Lake

An assessment of watershed activities, which may affect the Stafford Lake source of supply, was performed in 2002 as required by the U.S. Environmental Protection Agency. The watershed activities identified with the highest potential for contamination of Stafford Lake are animal feeding/ waste disposal at the existing stable and dairy operations on the watershed. These activities increase the potential to introduce microbial contaminants and nutrients to Stafford Lake. NMWD actively works with the stable and dairy owners to control their operations and reduce potential contaminants. The Stafford Lake source water is routinely monitored by NMWD to insure the controls are effective.

A copy of the complete assessment is on file at the North Marin Water District office at 999 Rush Creek Place, Novato.

Cryptosporidium & Giardia

Monitoring performed by NMWD on untreated water in Stafford Lake has intermittently shown the presence of cryptosporidium, a microbial pathogen found in surface waters throughout the U.S. NMWD's filtration is designed and operated to remove cryptosporidium, but 100% removal cannot be guaranteed. Should you be concerned? Healthy individuals should not be concerned. However, immunocompromised people are at greater risk. We suggest immuno-compromised individuals consult their physician regarding appropriate precautions.

Radon In Air

Radon is a radioactive gas that can move from decomposed granite soils into a home through cracks and holes in the foundation. Radon can also get into indoor air when running tap water for showering and other household activities. In most cases, radon from tap water is a small source of radon in air. Radon is a known human carcinogen. It can lead to lung cancer. Drinking water containing radon may also cause increased risk of stomach cancer. The SCWA water was tested for Radon and showed an average of 103 and a range of 82.4 – 114 pCi/L (picocuries per liter). There is no federal regulation for radon levels in drinking water. Exposure over a long period of time to air transmitting radon may cause adverse health effects. If you are concerned about radon in your home, test the air in your home! Testing is inexpensive and easy. For additional information, call your state radon program or call EPA's Radon Hotline (800-SOS-RADON).

Notice To Kidney Dialysis Patients

Chlorine dioxide is used as a pre-oxidant in water produced from Stafford Water Treatment Plant. Customers undergoing kidney dialysis treatment are advised to use sufficient pre-treatment to ensure chlorine dioxide does not pose a threat to the dialysis process.