Petaluma para asistirlo en español.

2019 Consumer Confidence Report

Water System Name:	McEvoy Ranch	Report Date:	4/27/20	
8	er quality for many constituents as required by ring for the period of January 1 - December 31,	U	O	
Este informe contiene inform	nación muy importante sobre su agua nara beber - Fayo	or de comunicarse N	McEvov Ranch a	5935 Red Hill Road

这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 McEvoy Ranch以获得中文的帮助: 5935 Red Hill Road, Petaluma

Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa McEvoy Ranch 5935 Red Hill Road, Petaluma o tumawag sa para matulungan sa wikang Tagalog.

Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ McEvoy Ranch tại 5935 Red Hill Road, Petaluma để được hỗ trợ giúp bằng tiếng Việt.

Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau McEvoy Ranch ntawm 5935 Red Hill Road, Petaluma rau kev pab hauv lus Askiv.

Type of water source(s) in use: Surface water #1,2,3,4,5,6,7,8,9,10,12,14,23,33,98,99 and Two Ground Water Wells
Name & general location of source(s): Throughout McEvoy Ranch Property
Drinking Water Source Assessment information: Has been completed and may be viewed by contacting the State Water Program of Control Program 50 P. Start Spring 200, Source Program of Pro
Water Resources Control Board, 50 D Street, Suite 200, Santa Rosa
Time and place of regularly scheduled board meetings for public participation: NA
For more information, contact: Tyler Judson, Weeks Water Treatment Phone: (707) 823-3184

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter $(\mu g/L)$

ppt: parts per trillion or nanograms per liter (ng/L)

 $\boldsymbol{ppq}:$ parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1 – SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA							
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of months in violation	MCL	MCLG	Typical Source of Bacteria		
Total Coliform Bacteria	(In a mo.)	0	1 positive monthly	0	Naturally present in the		
(state Total Coliform Rule)	<u>0</u>		sample		environment		
Fecal Coliform or <i>E. coli</i> (state Total Coliform Rule)	(In the year)	0	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive		Human and animal fecal waste		
E. coli (federal Revised Total Coliform Rule)	(In the year)	0	(a)	0	Human and animal fecal waste		

(a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER									
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. of samples collected	90 th percentile level detected	No. sites exceeding AL	AL	PHG	Typical Source of Contaminant		
Lead (ppb)	8/16/19	5	ND	0	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits		
Copper (ppm)	8/16/19	5	0.38	0	1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives		

	TABLE 3	- SAMPLING	RESULTS FOR	SODIUM A	AND HARDN	NESS
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	5/8/14	24.4	13-34	none	none	Salt present in the water and is generally naturally occurring
Hardness (ppm)	5/8/14	148	100-200	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring
TABLE 4 – DET	TECTION O	F CONTAMIN	ANTS WITH A	<u>PRIMARY</u>	DRINKING	WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Barium (ppm)	5/13/19	0.064	0.0-0.110	1	2	Discharge of oil drilling wastes and from metal refineri3es; erosion of natural deposits
Chlorine (ppm)	2019	1.0	0.5-2.0	[MRDL = 4.0 (as Cl ₂)]	[MRDLG = 4 (as Cl2)]	Drinking water disinfectant added for treatment
Chromium (ppb)	11/14/18	1.55	0 – 5.9	50	(100)	Discharge from steel and pulp mills and chrome plating; erosion of natural deposits
Gross Alpha (pCi/L)	5/31/16	0.335	0.02 - 0.836	15	(0)	Erosion of natural deposits
Fluoride (ppm)	5/13/19	0.25	0.14-0.34	2.0	1	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Mercury (ppb)	11/28/17	0.68	077	2	1.2	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and cropland
TTHM (Total Trihalomethanes) (ppb)	9/23/19	18.9	NA	80	NA	By-product of drinking water disinfection
Haloacetic Acids (ppb)	9/23/19	7.3	NA	60	NA	By-product of drinking water disinfection
Nitrate (ppm)	5/13/19	0.13	0 – 0.93	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Nickle (ppb)	11/28/17	4.43	0 - 31	100	12	Erosion of natural deposits; discharge from metal factories
TABLE 5 – DETE	ECTION OF	CONTAMINA	NTS WITH A S	ECONDAR	Y DRINKIN	G WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Chloride (ppm)	5/8/14	16.4	12-23	500	NA	Runoff/leaching from natural deposits
Color (Units)`	5/8/14	1	0-5.0	15	NA	Naturally-occurring organic materials
Specific Conductance (μS/cm)	5/8/14	395	300-490	1600	NA	Substances that form ions when in water; seawater influence
Odor (Units)	5/8/14	1	na	3	NA	Naturally-occurring organic materials

(and reporting units) None	Date	Detected	Detections	Notification Level		Acanii Enecis Language
Chemical or Constituent	Sample	Level	Range of			Health Effects Language
	TABLE (6 – DETECTIO	N OF UNREGU	LATED CO	NTAMINA	NTS
Manganese (ppb)	5/8/14	17.4	0-56	50	NA	Leaching from natural deposits
Sulfate (ppm)	5/8/14	25.8	13-34	500	NA	Runoff/leaching from natural deposits industrial wastes
Iron (ppb)	5/8/14	256	0 - 960	300	NA	Leaching from natural deposits; industrial wastes
Total Dissolved Solids (TDS) ppm	5/8/14	214	150-280	1000	NA	Runoff/leaching from natural deposits
Turbidity (Units)	5/8/14	1.29	0-4.7	5	NA	Soil runoff

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. McEvoy Ranch is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4701) or at http://www.epa.gov/lead.

*Some people who drink water containing aluminum in excess of the MCL over many years may experience short-term gastrointestinal tract effects.

2019 (2) of the 7 sources of Raw water was over the MCL for Aluminum. McEvoy Ranch has a treatment system in place to bring aluminum to acceptable levels.

The McEvoy Ranch water system is operated under contract by Weeks Water Treatment of Sebastopol.

To inquire about the system or to report trouble, please call 707-823-3184.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT							
Violation	Explanation Duration Actions Taken to Correct the Violation Language						
None							

For Water Systems Providing Ground Water as a Source of Drinking Water

TABLE 7 – SAMPLING RESULTS SHOWING FECAL INDICATOR-POSITIVE GROUND WATER SOURCE SAMPLES								
Microbiological Contaminants (complete if fecal-indicator detected) Total No. of Detections Sample Dates MCL [MRDL] PHG (MCLG) [MRDLG] Typical Source of Contaminant								
E. coli	(In the year)		0	(0)	Human and animal fecal waste			
Enterococci	(In the year)		TT	n/a	Human and animal fecal waste			
Coliphage	(In the year)		TT	n/a	Human and animal fecal waste			

Summary Information for Fecal Indicator-Positive Ground Water Source Samples, Uncorrected Significant Deficiencies, or Ground Water TT

SPECIAL NOTICE OF FECAL INDICATOR-POSITIVE GROUND WATER SOURCE SAMPLE							
SFECIAL	NOTICE OF FECAL IND	ICATOR-FOSITIVE GR	OUND WATER SOURCE	SAMIFLE			
None							
SPECIAL NOTICE FOR UNCORRECTED SIGNIFICANT DEFICIENCIES							
None							
	VIOLATION OF GROUND WATER TT						
TT Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language			
None							

For Systems Providing Surface Water as a Source of Drinking Water

TABLE 8 - SAMPLING RESULTS SHOWING TREATMENT OF SURFACE WATER SOURCES					
Treatment Technique ^(a) (Type of approved filtration technology used)					
Turbidity Performance Standards (b) (that must be met through the water treatment process)	Turbidity of the filtered water must: 1 – Be less than or equal to <u>0.1</u> NTU in 95% of measurements in a month. 2 – Not exceed <u>1.0</u> NTU for more than eight consecutive hours. 3 – Not exceed <u>2.0</u> NTU at any time.				
Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1.	99				
Highest single turbidity measurement during the year	2.33				
Number of violations of any surface water treatment requirements	0				

- (a) A required process intended to reduce the level of a contaminant in drinking water.
- (b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements.

Summary Information for Violation of a Surface Water TT

VIOLATION OF A SURFACE WATER TT							
TT Violation Explanation Duration Actions Taken to Correct the Violation Language							
None							

Summary	Information	for O	perating	Under a	Variance or	Exemption
Julilia		101	perauma	CHUCI U	v allunce of	Lacinpuon